DiffGeom Logo
 
О кафедре
История кафедры
Фотоальбом
Сотрудники
Наши студенты
Наши магистранты
Наши аспиранты
Научная работа
Научные достижения
Лаборатория компьютерных методов
Digital Vision Laboratory
Проекты при поддержке РНФ
Где работают наши выпускники
Международные и внутри-российские связи кафедры
Публикации
Наши книги
Наши статьи
Диссертации
Работы студентов
Студентам
Спецкурсы
Спецсеминары
Учебные материалы
Видеолекции
Задачи для исследования
Олимпиада кафедры
Наглядная и компью­терная геометрия и топология
Геометрические сюжеты
Энциклопедические статьи
Задать вопрос


 

СПЕЦСЕМИНАРЫ  КАФЕДРЫ
(2024–2025 уч. год)

 

РуководительНазваниеДеньВремя Ауд. 
А.В.Болсинов
А.А.Ошемков
А.Ю.Коняев
Бигамильтоновы структуры и интегрируемые системыПН18-30??-??

Дополнительная информация
Семинар для студентов 3–5 курсов и аспирантов.

Аннотация о начале работы семинара (октябрь 2010)

В этом семестре семинар возобновляет свою работу с 17 февраля 2011
(темы докладов см. ниже)

Записки лекций А.В.Болсинова

14.10.2010
Обсуждение плана работы на этот семестр
Раздача докладов участникам семинара

21.10.2010
И.К.Козлов
«Теорема Жордана–Кронекера»
Будет рассказано доказательство теоремы Жордана–Кронекера и описаны ее приложения к теории бигамильтоновых систем.

28.10.2010
П.П.Андреянов, К.Е.Душин
«Скобки Пуассона–Ли и их свойства»
В рамках доклада будут введены основные понятия, касающиеся скобок Пуассона–Ли, а также приведены основные примеры подобных структур.
Краткий план доклада

ВНИМАНИЕ! В связи с праздниками очередное заседание семинара вместо 04.11.2010
состоится 03.11.2010 (с 16-45 до 18-20; ауд. будет написана на двери кафедры)

03.11.2010
Д.А.Федосеев
«Теорема Вейнстейна о расщеплении»
В докладе обсуждаются понятия почти пуассоновой и пуассоновой структур. Для случая пуассоновой структуры доказывается теорема Вейнстейна, известная также как теорема о расщеплении. Данная теорема — важный результат, описывающий локальную структуру скобки Пуассона в окрестности произвольной точки, который обобщает многие известные теоремы, включая теорему Дарбу. Часть доклада будет посвящена обсуждению теоремы Фробениуса.

11.11.2010
Д.И.Тонконог
«Линеаризация скобок Пуассона»
Краткий план доклада

18.11.2010
Е.О.Кантонистова, М.В.Новиков
«Различные примеры скобок Пуассона»
В рамках доклада будут рассмотрены примеры скобок Пуассона, возникающих в различных разделах математики.

25.11.2010
В.В.Фокичева
«Вопросы классификации скобок, согласованных с линейным тензором Пуассона–Ли на e(3)»
В докладе будет рассказано о вопросах классификации различных однородных пучков, согласованных с данным линейным тензором Пуассона на шестимерном пространстве, соответствующим алгебре e(3). Этим вопросом интенсивно занимался А.В.Цыганов, которым был получен ряд замечательных результатов в этом направлении. По ходу доклада будут сформулированы вопросы, касающиеся завершения данной классификации.

02.12.2010
Г.Е.Смирнов
«Редукция гамильтоновых систем»
Под редукцией понимается понижение порядка гамильтоновой системы ОДУ.
Редукция возможна, если система обладает симметрией. Теорема Нётер устанавливает однозначное соответствие между однопараметрическими симметриями и первыми интегралами системы. А потому, в этой простейшей, «однопараметрической» ситуации для редукции достаточно наличие первого интеграла.
В докладе будет рассказано о методе выполнения такой редукции. И будут рассмотрены важные частные случаи: редукция в смысле Рауса для лагранжевых систем ОДУ и теорема Уиттекера, которая позволяет выполнить редукцию, если нас устраивает переход к неавтономному гамильтониану.

09.12.2010
А.Ю.Коняев
«Скобка Схоутена и когомологии Лихнеровича–Пуассона»
В рамках доклада будут рассказаны основные понятия и теоремы, касающиеся скобки Схоутена, когомологий Лихнеровича–Пуассона, а также их связи с пуассоновой геометрией.

16.12.2010
А.М.Изосимов
«Интегрирование бигамильтоновых систем, расширенный метод сдвига аргумента и теорема о коммутанте аннулятора»
Аннотация доклада

17.02.2011
А.Ю.Коняев
«Открытые вопросы в теории бигамильтоновых систем»
По результатам работы семинара в первом семестра удалось сформулировать ряд конкретных вопросов в теории бигамильтоновых систем. В докладе будут обсуждаться подробные формулировки этих вопросов. Некоторые из них могут служить темами курсовых и дипломных работ.

24.02.2011
Д.А.Федосеев
«Тензоры Нийенхейса и Хантьеса и связанные с ними результаты»
В докладе будет рассказано о двух важных объектах — тензоре Нийенхейса и тензоре Хантьеса, а также об их связи с линейными операторами и согласованными пуассоновыми структурами. Будет доказан критерий Хантьеса локальной диагонализуемости оператора. Будет обсуждена связь между согласованностью пуассоновых структур и тензором Нийенхейса их оператора рекурсии.

03.03.2011
Д.И.Тонконог
«Симплектические групоиды и пуасонова геометрия»
Я расскажу про определение двух категорий: симплектических групоидов SG и алгеброидов Ли LA, а также естественных функторов SG --> POIS, POIS --> LA, SG --> LA, которые образуют коммутативный треугольник. Здесь POIS - категория пуассоновых многообразий.
Я также разберу начало статьи Ping Xu (1992), в которой показано, что пуассоновы когомологии пуассонова многообразия можно считать через когомологии де Рама левоинвариантных форм на некотором симплектическом групоиде. Этот подход дает конкретные результаты. Например, рассмотрим многообразие R^3 с выколотым началом координат и линейной so(3)-скобкой Пуассона-Ли. У этого многообразия следующие пуассоновы когомологии:
H^0 = гладкие функции на луче R^+ (Казимиры)
H^1 = 0
H^2 = 0
H^3 = гладкие функции на луче R^+
H^k = 0 (k>3)

10.03.2011
Д.И.Тонконог
«Симплектические групоиды и пуасонова геометрия»
Продолжение доклада от 03.03.2011

17.03.2011
А.М.Изосимов
«Устойчивость стационарных вращений многомерного твердого тела»
Рассмотрим трехмерное твердое тело, вращающееся по инерции. Хорошо известно, что вращение вокруг большой и малой осей инерции устойчиво, а вокруг средней — неустойчиво. В докладе будет приведен аналогичный результат для твердого тела в пространстве произвольной размерности.

24.03.2011
И.К.Козлов
«Некоторые примеры негамильтоновых полей, сохраняющих скобку Пуассона»
В докладе будут приведены различные примеры негамильтоновых полей, сохраняющих скобку Пуассона.

31.03.2011
Заседание семинара не состоится. Следующее заседание 7 апреля.

07.04.2011
Е.Г.Пунинский
«О классификации линейных согласованных скобок Пуассона на многообразии e(3)* (по статье А.В.Цыганова)»
А.В.Цыгановым при помощи современных систем символьных исчислений была получена классификация всех линейных пучков Пуассона вида P+λP', где P — канонический тензор Пуассона в базисе Картана–Вейля, в случае когда функции Казимира этих пучков, порождают интегрируемую (по Лиувиллю) систему.


Вернуться к расписанию спецсеминаров