КРАТКАЯ АННОТАЦИЯ
30 апреля 2013 М.У.Крисман
«
Виртуальные узлы и расслоенные узлы
»
Let L=J U K be a two component link in S3 such that J is a fibered knot and the linking number of J and K is zero. Let FL denote the ambient isotopy
classes of such links L and let VK denote the set of virtual isotopy classes of virtual knots. We construct a surjective map f:FL to VK. The map is
used to give applications of virtual knot theory to classical knot theory. We use virtual knot invariants to distinguish classical two component links,
detect non-invertibility of two component classical links, and establish minimality theorems for diagrams of classical two component links. The examples
reveal that subtle geometric properties of classical knots can be detected easily using virtual knot theory.
|
Вернуться к расписанию спецсеминаров
|