DiffGeom Logo
 
О кафедре
История кафедры
Фотоальбом
Сотрудники
Наши студенты
Наши магистранты
Наши аспиранты
Научная работа
Научные достижения
Лаборатория компьютерных методов
Digital Vision Laboratory
Проекты при поддержке РНФ
Где работают наши выпускники
Международные и внутри-российские связи кафедры
Публикации
Наши книги
Наши статьи
Диссертации
Работы студентов
Студентам
Спецкурсы
Спецсеминары
Учебные материалы
Видеолекции
Задачи для исследования
Олимпиада кафедры
Наглядная и компью­терная геометрия и топология
Геометрические сюжеты
Энциклопедические статьи
Задать вопрос


 

СПЕЦСЕМИНАРЫ  КАФЕДРЫ
(2024–2025 уч. год)

 

РуководительНазваниеДеньВремя Ауд. 
В.О.Мантуров
Д.П.Ильютко
И.М.Никонов
Узлы и теория представленийВТ18-3014-03

Дополнительная информация
 
КРАТКАЯ АННОТАЦИЯ

6 ноября 2012
В.А.Краснов
« Об интегральных формулах объема гиперболических тетраэдров и октаэдров с симметриями »

Вычисление объёма многогранника - старая и сложная задача классической геометрии. Первый серьёзный результат в данном направлении получил, по-видимому, Тарталья (1494 г.). Он выразил объём евклидова тетраэдра через квадраты длин его ребер. Что касается неевклидовых случаев, то здесь ситуация более сложная. Формула объёма произвольного гиперболического тетраэдра долгое время не была известна. Наконец, на рубеже веков эта проблема была решена в работах Чо-Кима (1999 г.) и Мураками-Яно (2001 г.). Но формулы, предложенные вышеназванными математиками, являются довольно громоздкими и трудно обозримыми. И лишь в 2004 году Д.А. Деревниным и А.Д. Медных была предложена компактная интегральная формула объёма гиперболического тетраэдра через двугранные углы. В первой части доклада будет рассказано об этой формуле и изложена схема ее доказательства на основе формулы Мураками-Яно. Что касается второй части доклада, то в ней будет рассказано о некоторых применениях формулы Деревнина-Медных, а именно о возможности использования данной формулы при выводе формул объема гиперболических октаэдров, обладающих так называемыми mmm- и 2|m-симметриями.


Вернуться к расписанию спецсеминаров