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Exercises to Chapter 3
Exercise 3.1. Let X be an arbitrary metric space and Ω(X) the family of all curves in X. Verify that

(1) if γ ∈ Ω(X) joins the points x, y ∈ X, then |γ| ≥ |xy|;

(2) if γ = γ1 · γ2 is the gluing of curves γ1, γ2 ∈ Ω(X) then |γ| = |γ1|+ |γ2|;

(3) for each γ ∈ Ω(X), γ : [a, b] → X, and reparametrization φ : [c, d] → [a, b], it holds |γ| = |γ ◦ ψ|;

(4) for each x ∈ X, ε > 0, y ∈ X \ Uε(x) and the curve γ ∈ Ω(X) joining x and y, |γ| ≥ ε holds;

(5) is it true that for any γ ∈ Ω(X), γ : [a, b] → X, the function f(t) =
∣∣γ|[a,t]∣∣ is continuous?

(6) is it true that for any sequence γn ∈ Ω(X) converging pointwise to some γ ∈ Ω(X), we have

|γ| ≤ lim inf
n→∞

|γn|?

Exercise 3.2. Will the items (2) and (5) of Exercise 3.1 remain true if we change Ω0(X) to Ω(X)?

Exercise 3.3. Show that the piecewise smooth curve in Rn is Lipschitzian with a Lipschitz constant equal to the
maximum modulus of the velocity vector of the curve, therefore each such curve is rectifiable.

Exercise 3.4. Let X be a metric space in which any two points are connected by a rectifiable curve.

(1) Prove that din is a metric.

(2) Denote by τ the metric topology of X w.r.t. the initial metric on X, by τin the metric topology w.r.t. din, by
X∈ the set X with metric din and topology τin. Show that τ ⊂ τin. In particular, if a mapping γ : [a, b] → Xin

is continuous, then the mapping γ : [a, b] → X is continuous as well.

(3) Construct an example when τ 6= τin.

(4) Prove that for each rectifiable curve γ : [a, b] → X the mapping γ : [a, b] → Xin is continuous.

(5) Denote by |γ|in the length of a curve γ : [a, b] → Xin. Show that for each curve γ : [a, b] → X which is also
a curve in Xin, it holds |γ| = |γ|in. Thus, the sets of rectifiable curves for X and Xin coincide, and each
non-rectifiable curve in X is either a non-rectifiable one in Xin, or the mapping γ : [a, b] → Xin is discontinuous.

(6) Construct an example of continuous mapping γ : [a, b] → X such that the mapping γ : [a, b] → Xin is not
continuous. Notice that the curve γ : [a, b] → X can not be rectifiable.

Exercise 3.5. Let X be a metric space in which any two points are connected by a rectifiable curve. Prove that the
metric din is intrinsic.

Exercise 3.6. Let ρ1 ≤ ρ2 be generalized pseudometrics on a set X, and Y be a topological space. Prove that each
mapping f : Y → X, continuous w.r.t. ρ2, is also continuous w.r.t. ρ1, in particular, if γ is a curve in (X, ρ2), then γ
is also a curve in (X, ρ1); moreover, if ρ′1 and ρ′2 denote the corresponding generalized intrinsic pseudometrics, then
ρ′1 ≤ ρ′2.

Exercise 3.7. Let X be an arbitrary set covered by a family {Xi}i∈I of generalized pseudometric spaces. Denote
the distance function on Xi by ρi, and consider the set D of all generalized pseudometrics d on X such that for any i
and x, y ∈ Xi it holds d(x, y) ≤ ρi(x, y). Extend each ρi to the whole X by setting ρ′i(x, y) = ∞ if at least one of x, y
does not belong to Xi, and ρ

′
i(x, y) = ρ(x, y) otherwise (it is easy to see that each ρ′i is a generalized pseudometric).

Denote by D′ the set of all such ρ′i. Prove that supD = inf D′, and if all ρi are intrinsic, then supD is intrinsic as
well.

Exercise 3.8. Let D be a collection of generalized pseudometrics defined on the same set X, and Xd for d ∈ D
denote the generalized pseudometric space (X, d). Put W = td∈DXd and denote by ρ the generalized pseudometric
of W . Define on W an equivalence relation ∼ by identifying those points xd ∈ Xd and xd′ ∈ Xd′ which correspond to
the same point x of the set X. The equivalence class of these points xd and xd′ we denote by [x]. Denote by ρ∼ the
quotient generalized pseudometric on W/∼. Define the mapping φ : W/∼→ X as φ : [x] → x, then φ is bijective, and
ρ∼ can be considered as a generalized pseudometric on X. Prove that ρ∼ = inf D.
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Exercise 3.9. Let ρ1 and ρ2 be intrinsic metrics on a set X. Suppose that these metrics generate the same topology,
and that each x ∈ X has a neighborhood Ux such that the restrictions of ρ1 and ρ2 to Ux coincide. Prove that
ρ1 = ρ2. Show that the condition “ρ1 and ρ2 are intrinsic” is essential.

Exercise 3.10. Prove that a metric space X is locally compact if and only if for each point x ∈ X there exists a
neighborhood with compact closure.

Exercise 3.11. Show that a metric spaces is boundedly compact if and only if its compact subsets are exactly those
subsets that are closed and bounded.

Exercise 3.12. Let X be an arbitrary set and Y an arbitrary metric space. Consider the collection of sets of the
form

∏
x∈X V (x) ⊂

∏
x∈X Y , where

{
V (x)

}
x∈X

is the family of nonempty open subsets of Y such that for all x ∈ X,

except for their finite number, V (x) = Y . Show that the family defined in this way forms a basis of a topology, and
the convergence in this topology of points fn to a point f is equivalent to pointwise convergence of the mappings fn
to the mapping f .

Exercise 3.13. Let X be an arbitrary set and Y an arbitrary metric space. A mapping f : X → Y is called bounded
if its image f(X) is a bounded subset of Y . The family of all bounded mappings from X to Y we denote by B(X,Y ).
We define the following distance function on B(X,Y ): |fg| = supx∈X

∣∣f(x)g(x)∣∣. Prove that the distance function
defined above is a metric, and that the convergence in this metric of a sequence fn ∈ B(X,Y ) to some f ∈ B(X,Y )
is equivalent to uniform convergence of the mappings fn to the mapping f .

Exercise 3.14. Let X be an arbitrary set and Y an arbitrary metric space. Define the following generalized distance
function on Y X : |fg| = supx∈X

∣∣f(x)g(x)∣∣. Prove that the generalized distance function defined above is a generalized
metric, and that the convergence in this generalized metric of a sequence fn ∈ Y X to some f ∈ Y X is equivalent to
uniform convergence of the mappings fn to the mapping f .

Exercise 3.15. Let γ be a curve in a metric space. Prove that

(1) nondegenerate γ can be reparameterized to an arc-length or, more generally, to a uniform one if and only if γ
is rectifiable and non-stop;

(2) degenerate γ can be reparameterized to an arc-length one if and only if its domain is singleton (indeed, such γ
is arc-length itself and, thus, it need not a reparametrization);

(3) degenerate γ is always uniform.

Exercise 3.16. Prove that a curve γ in a metric space can be monotonically reparameterized to an arc-length or,
more generally, a uniform one if and only if γ is rectifiable.

The reparameterized curve is unique upto the choice of its domain and direction. In arc-length case one can
choose any segment of the length |γ|. In the uniform case the domain can be arbitrary nondegenerate segment for
nondegenerate γ, and arbitrary segment for degenerate γ.

Exercise 3.17. Prove that an arc-length curve γ : [a, b] → X in a space X with an intrinsic metric is shortest if and
only if γ is an isometric embedding.

Exercise 3.18. Let Z be an everywhere dense subset of a metric space X, and f : Z → Y be some C-Lipschitz map
into a complete metric space Y . Then there exists a unique continuous mapping F : X → Y extending f . Moreover,
the mapping F is also C-Lipschitz.

Exercise 3.19. Show that in a space with an intrinsic (strictly intrinsic) metric, for any two points and any ε > 0
there is an ε-midpoint (a midpoint), respectively.


