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Exercises to Chapter 3

Exercise 3.1. Let X be an arbitrary metric space and Q(X) the family of all curves in X. Verify that
(1) if v € Q(X) joins the points x,y € X, then |y| > |zyl;

2) if vy = 71 - 72 is the gluing of curves v1,72 € Q(X) then |y| = |y1| + |y2l;

3) for each v € Q(X), v: [a,b] — X, and reparametrization ¢: [c,d] — [a, b], it holds |y| = |y o ¢|;

5

(2)

(3)

(4) foreach z € X, e >0, y € X \ U-(z) and the curve v € Q(X) joining = and y, |y| > & holds;
(5) is it true that for any v € Q(X), v: [a,b] — X, the function f(t) = |7|(a,g]| is continuous?
(6)

6) is it true that for any sequence 7, € Q(X) converging pointwise to some v € (X), we have

Iyl < liminf |y, |?
n—oo

Exercise 3.2. Will the items (B) and (B) of Exercise Bl remain true if we change Q0(X) to Q(X)?

Exercise 3.3. Show that the piecewise smooth curve in R™ is Lipschitzian with a Lipschitz constant equal to the
maximum modulus of the velocity vector of the curve, therefore each such curve is rectifiable.

Exercise 3.4. Let X be a metric space in which any two points are connected by a rectifiable curve.
(1) Prove that d;;, is a metric.

(2) Denote by 7 the metric topology of X w.r.t. the initial metric on X, by 7;, the metric topology w.r.t. d;,, by
X the set X with metric d;;,, and topology 7;,. Show that 7 C 74,. In particular, if a mapping v: [a,b] — X,
is continuous, then the mapping v: [a,b] — X is continuous as well.

(3) Construct an example when 7 # 7.
(4) Prove that for each rectifiable curve 7: [a,b] — X the mapping v: [a,b] — X, is continuous.

(5) Denote by |y|in the length of a curve 7: [a,b] — X;,. Show that for each curve «: [a,b] — X which is also
a curve in X;,, it holds |y| = |vy|in. Thus, the sets of rectifiable curves for X and X;, coincide, and each
non-rectifiable curve in X is either a non-rectifiable one in X;,,, or the mapping 7: [a,b] = X, is discontinuous.

(6) Construct an example of continuous mapping v: [a,b] — X such that the mapping ~: [a,b] — X;, is not
continuous. Notice that the curve v: [a,b] — X can not be rectifiable.

Exercise 3.5. Let X be a metric space in which any two points are connected by a rectifiable curve. Prove that the
metric d;, is intrinsic.

Exercise 3.6. Let p; < p2 be generalized pseudometrics on a set X, and Y be a topological space. Prove that each
mapping f: Y — X, continuous w.r.t. pa, is also continuous w.r.t. p1, in particular, if -y is a curve in (X, p2), then =
is also a curve in (X, p1); moreover, if p] and p} denote the corresponding generalized intrinsic pseudometrics, then
pi < ph.

Exercise 3.7. Let X be an arbitrary set covered by a family {X;};er of generalized pseudometric spaces. Denote
the distance function on X; by p;, and consider the set D of all generalized pseudometrics d on X such that for any ¢
and z,y € X, it holds d(z,y) < p;(z,y). Extend each p; to the whole X by setting p}(z,y) = oo if at least one of x, y
does not belong to X;, and pl(x,y) = p(x,y) otherwise (it is easy to see that each p, is a generalized pseudometric).
Denote by D’ the set of all such p. Prove that supD = inf D', and if all p; are intrinsic, then sup D is intrinsic as
well.

Exercise 3.8. Let D be a collection of generalized pseudometrics defined on the same set X, and Xy for d € D
denote the generalized pseudometric space (X,d). Put W = Ugep X4 and denote by p the generalized pseudometric
of W. Define on W an equivalence relation ~ by identifying those points x4 € X4 and z4 € X4 which correspond to
the same point x of the set X. The equivalence class of these points x4 and x4 we denote by [z]. Denote by p.. the
quotient generalized pseudometric on W/~. Define the mapping ¢: W/~— X as ¢: [z] — «x, then ¢ is bijective, and
p~ can be considered as a generalized pseudometric on X. Prove that p. = inf D.
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Exercise 3.9. Let p; and ps be intrinsic metrics on a set X. Suppose that these metrics generate the same topology,
and that each z € X has a neighborhood U® such that the restrictions of p; and ps to U® coincide. Prove that
p1 = p2. Show that the condition “p; and py are intrinsic” is essential.

Exercise 3.10. Prove that a metric space X is locally compact if and only if for each point x € X there exists a
neighborhood with compact closure.

Exercise 3.11. Show that a metric spaces is boundedly compact if and only if its compact subsets are exactly those
subsets that are closed and bounded.

Exercise 3.12. Let X be an arbitrary set and Y an arbitrary metric space. Consider the collection of sets of the
form ], .y V(2) C[[,cx Y, where {V(m)}rex is the family of nonempty open subsets of Y such that for all x € X,
except for their finite number, V(z) =Y. Show that the family defined in this way forms a basis of a topology, and
the convergence in this topology of points f, to a point f is equivalent to pointwise convergence of the mappings f,
to the mapping f.

Exercise 3.13. Let X be an arbitrary set and Y an arbitrary metric space. A mapping f: X — Y is called bounded
if its image f(X) is a bounded subset of Y. The family of all bounded mappings from X to Y we denote by B(X,Y).
We define the following distance function on B(X,Y): |fg| = supzex|f(m)g(x)|. Prove that the distance function
defined above is a metric, and that the convergence in this metric of a sequence f,, € B(X,Y") to some f € B(X,Y)
is equivalent to uniform convergence of the mappings f, to the mapping f.

Exercise 3.14. Let X be an arbitrary set and Y an arbitrary metric space. Define the following generalized distance
function on Y |fg| = sup,c x| f(2)g(x)|. Prove that the generalized distance function defined above is a generalized
metric, and that the convergence in this generalized metric of a sequence f, € Y to some f € Y¥ is equivalent to
uniform convergence of the mappings f,, to the mapping f.

Exercise 3.15. Let v be a curve in a metric space. Prove that

(1) nondegenerate v can be reparameterized to an arc-length or, more generally, to a uniform one if and only if
is rectifiable and non-stop;

(2) degenerate  can be reparameterized to an arc-length one if and only if its domain is singleton (indeed, such v
is arc-length itself and, thus, it need not a reparametrization);

(3) degenerate v is always uniform.

Exercise 3.16. Prove that a curve y in a metric space can be monotonically reparameterized to an arc-length or,
more generally, a uniform one if and only if  is rectifiable.

The reparameterized curve is unique upto the choice of its domain and direction. In arc-length case one can
choose any segment of the length |y|. In the uniform case the domain can be arbitrary nondegenerate segment for
nondegenerate 7, and arbitrary segment for degenerate ~.

Exercise 3.17. Prove that an arc-length curve 7: [a,b] — X in a space X with an intrinsic metric is shortest if and
only if 7 is an isometric embedding.

Exercise 3.18. Let Z be an everywhere dense subset of a metric space X, and f: Z — Y be some C-Lipschitz map
into a complete metric space Y. Then there exists a unique continuous mapping F': X — Y extending f. Moreover,
the mapping F' is also C-Lipschitz.

Exercise 3.19. Show that in a space with an intrinsic (strictly intrinsic) metric, for any two points and any € > 0
there is an e-midpoint (a midpoint), respectively.



