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Exercises to Chapter 2
Exercise 2.1. Let X be a pseudometric space and ∼ is the natural equivalence relation: x ∼ y if and only if |xy| = 0.
For each x ∈ X denote by [x] the equivalence class containing x. Prove that for any x, y ∈ X, x′ ∈ [x], and y′ ∈ [y] it is
true that |x′y′| = |xy|. Thus, on the set X/∼ the corresponding distance function is correctly defined:

∣∣[x][y]∣∣ = |xy|.
Show that this distance function is a metric.

Exercise 2.2. Let X be an arbitrary metric space, x, y ∈ X, r ≥ 0, s, t > 0, and A ⊂ X be nonempty. Verify that

(1) Us

(
{x}

)
= Us

(
x) and Br

(
{x}

)
= Br

(
x);

(2) the functions y 7→ |xy|, y 7→ |yA| are continuous;

(3) an open neighborhood Us(A) is an open subset of X, and a closed neighborhood Br(A) is a closed subset of X;

(4) Ut

(
Us(A)

)
⊂ Us+t(A) and construct an example demonstrating that the left-hand side can be different from the

right-hand side;

(5) Bt

(
Bs(A)

)
⊂ Bs+t(A) and construct an example demonstrating that the left-hand side can be different from

the right-hand side;

(6) ∂Us(x), ∂Bs(x) are not related by any inclusion; ∂Us(x) ⊂ Ss(x) and ∂Br(x) ⊂ Sr(x); the both previous
inclusions can be strict;

(7) diamUs(x) ≤ diamBs(x) ≤ 2s;

(8) diamUs(A) ≤ diamBs(A) ≤ diamA+ 2s.

Exercise 2.3. Let L(f) ⊂ R be the set of all Lipschitz constants for a Lipschitz mapping f . Prove that inf L(f) is
also a Lipschitz constant.

Exercise 2.4. Show that each Lipschitz map is uniformly continuous, and each uniformly continuous map is contin-
uous.

Exercise 2.5. Show that each isometry is a homeomorphism, in particular, each isometric mapping of one metric
space into another one is an embedding, i.e., we recall, it is a homeomorphism with an image.

Exercise 2.6. Verify that the identity map, the composition of isometries, and the inverse mapping to an isometry
are also isometries, i.e., the set of all isometries of an arbitrary metric space forms a group.

Exercise 2.7. Let X be an arbitrary metric space, x, y ∈ X and A ⊂ X be nonempty. Prove that |Ax|+ |xy| ≥ |Ay|,
so that the function ρA(x) = |Ax| is 1-Lipschitz and, therefore, uniformly continuous.

Exercise 2.8. Describe the Cayley graphs for the following groups G and generating sets S:

(1) G = Z and S = {1};

(2) G = Zm and S = {1};

(3) G = Z2 and S =
{
(1, 0) (0, 1)

}
;

(4) G = Z2 and S =
{
(1, 0) (0, 1), (1, 1)

}
;

(5) G is a free group with generators a and b.

Exercise 2.9. Let (X, ρ) be a metric (pseudometric) space, and ∼ an equivalence relation on X. Define the following
quotient distance function on X:

ρ∼(x, y) = inf
{ n∑

i=0

ρ(pi, qi) : p0 = x, qn = y, n ∈ N, qi ∼ pi+1 for all i
}
.

Prove that ρ∼ is a pseudometric on X.
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Exercise 2.10. Let ξ = (p0 − q0 ∼ p1 − q1 ∼ · · · ∼ pn − qn) be an irreducible admissible sequence. Prove that

(1) for any i < j we have pi 6∼ pj , qi 6∼ qj ;

(2) qi ∼ pj if and only if j = i+ 1;

(3) for any i we have qi 6= pi+1.

Exercise 2.11. Let ∼ be the trivial equivalence on a metric space (X, ρ), i.e., x ∼ y if and only if x = y. Prove that
ρ∼ = ρ.

Exercise 2.12. Let ∼ be an equivalence on a pseudometric space (X, ρ). Prove that for any x, y ∈ X it holds
ρ∼(x, y) ≤ ρ(x, y). Thus, if we define the function b : X×X → R such that b(x, y) = 0 for x ∼ y, and b(x, y) = ρ(x, y)
otherwise, then ρ∼ ≤ b.

Exercise 2.13. Let X be a generalized pseudometric space. We can define two equivalence relations: x∼1 y if and
only if |xy| = ∞, and x∼2 y if and only if |xy| = 0. Prove that each class of equivalence ∼1 is a pseudometric space
(with finite distance), and that the distance between points from different classes equals ∞. Thus, if we denote by
Xi the classes of equivalence ∼1, then X = tXi. Prove that the space X/∼2 equals the disjoint union t(Xi/∼2) of
metric spaces Xi/∼2.

Exercise 2.14. Let X and Y be metric spaces, Z ⊂ X, and f : Z → Y is an isometric mapping. Let ρ be the metric
on the Xtf Y . Prove that the restrictions of ρ to X and Y coincides with the initial metrics of X and Y , respectively.

Exercise 2.15. Let y0 ∈ Y and f(X) = y0. Prove that X tf Y is isometric to Y .

Exercise 2.16. Let X be a metric space and G ⊂ Iso(X) a subgroup of its isometry group. For each two elements
G(x), G(y) ∈ X/G we set d

(
G(x), G(y)

)
= inf

{
|x′y′| : x′ ∈ G(x), y′ ∈ G(y)

}
. Prove that d = ρ∼, where the

equivalence ∼ is generated by the action of G on X.

Exercise 2.17. Let S1 be the standard unit circle in the Euclidean plane. As a distance between x, y ∈ S1 we take
the length of the shortest arc of S1 between x and y. By the standard torus we mean the direct product T 2 = S1×S1

(with the Euclidean binder). We describe the points on the both S1 by their polar angles φ1 and φ2, defined up to
2π. So, the shifts sa,b : (φ1, φ2) 7→ (φ1 + a, φ2 + b) are isometries of T 2. Fix some (a, b) ∈ R2 and consider a subgroup
Ga,b ⊂ Iso(T 2) consisting of all shifts sta,tb, t ∈ R. For different a and b, find the corresponding pseudometric and
metric quotient spaces.

Exercise 2.18. Represent the standard torus from Exercise 2.17 as a polyhedron space.

Exercise 2.19. Verify that the constructions given in Section 2.3 do define (pseudo-)metrics, as declared.

Exercise 2.20. Let d be a metric. Find the least possible c such that d+ c is a pseudometric. Verify that for such c
and any c′ > c the function d+ c′ is a metric.

Exercise 2.21. Show that a subspace of a complete metric space is complete if and only if it is closed.

Exercise 2.22. Let X be an arbitrary subspace of a complete metric space. Then the closure X of the set X is a
completion of the space X.

Exercise 2.23. Let f : X → Y be a bi-Lipschitz mapping of metric spaces. Prove that X is complete if and only of
Y is complete. Construct a homeomorphism of metric spaces that does not preserves completeness.

Exercise 2.24. Show that a metric space is complete if and only if the following condition holds: for any sequence
of closed subsets X1 ⊃ X2 ⊃ X3 ⊃ · · · such that diamXn → 0 as n → 0, the intersection ∩∞

i=1Xi is not empty (in
fact, it consists of unique element). Show that the condition diamXn → 0 is essential.

Exercise 2.25 (Fixed-point theorem). Let f : X → X be a C-Lipschitz mapping of a complete metric spaces X.
Prove that for C < 1 there exists and unique a point x0 such that f(x0) = x0 (it is called the fixed point of the
mapping f).

Exercise 2.26. Give an example of a topological space that is

(1) compact, but not sequentially compact;
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(2) sequentially compact, but not compact.

Exercise 2.27 (Lebesgue’s lemma). Let X be a compact metric space. Prove the following statement: for any open
cover {Ui}i∈I of X there exists ρ > 0 such that for any x ∈ X one can find Ui with Bρ(x) ⊂ Ui.

Exercise 2.28. Show that each continuous mapping f : X → Y from a compact metric space to an arbitrary metric
space is uniformly continuous.

Exercise 2.29. Prove that the diameter diamX of a compact metric space X if finite, and that there exist x, y ∈ X
such that diamX = |xy|.

Exercise 2.30. Prove that every compact metric space is separable.

Exercise 2.31 (Baire’s theorem). A subset of a topological space is called nowhere dense if its closure has empty
interior. Prove that a complete metric space cannot be covered by at most countably many nowhere dense subsets.
Moreover, the complement of the union of at most countably many nowhere dense subsets is everywhere dense.

Exercise 2.32. Prove that a compact metric space X cannot be isometrically mapped to a subspace Y ⊂ X such
that Y 6= X. In other words, each isometric mapping f : X → X for a compact metric space X is surjective.

Exercise 2.33. Let X be a compact metric space and f : X → X be a mapping. Prove that

(1) if f is surjective and nonexpanding, then f is an isometry;

(2) if
∣∣f(x)f(y)∣∣ ≥ |xy| for all x, y ∈ X, then f is an isometry.


