
Chapter 8

Calculating GH-distances to simplexes
and some applications.

Schedule. GH-distance to simplexes with more points, GH-distance to simplexes with at most the same number of points, generalized Borsuk
problem, solution of generalized Borsuk problem in terms of GH-distances, clique covering number and chromatic number of simple graphs, their
dualities, calculating these numbers in terms of GH-distances.

By simplex we mean a metric space in which all non-zero distances equal to each other. If m is an arbitrary
cardinal number, a simplex contain m points, and all its non-zero distances equal 1, then we denote this simplex by
∆m. Thus, λ∆m, λ > 0, is a simplex whose non-zero distances equal λ. Also, for arbitrary metric space X and λ = 0,
the space λX coincides with ∆1.

8.1 Gromov–Hausdorff distance to simplexes with more points

The next result generalizes Theorem 4.1 from [1].

Theorem 8.1. Let X be an arbitrary metric space, m > #X a cardinal number, and λ ≥ 0, then

2dGH(λ∆m, X) = max{λ, diamX − λ}.

Proof. If X is unbounded, then 2dGH(λ∆m, X) = ∞ by Example 6.29, and we get what is required.
Now, let diamX <∞.
If #X = 1, then diamX = 0, and, by Example 6.28, we have

2dGH(λ∆, X) = diamλ∆ = λ = max{λ,diamX − λ}.

If λ = 0, then, by Example 6.28, we have

2dGH(∆1, X) = diamX = max{λ,diamX − λ}.

Let #X > 1 and λ > 0. Choose an arbitrary R ∈ R(λ∆m, X). Since #X < m and λ > 0, then there exists x ∈ X
such that #R−1(x) ≥ 2, thus, disR ≥ λ and 2dGH(λ∆m, X) ≥ λ.

Consider an arbitrary sequence (xi, yi) ∈ X ×X such that |xiyi| → diamX. If it contains a subsequence (xik , yik)
such that for each ik there exists zk ∈ λ∆, (zk, xik) ∈ R, (zk, yik) ∈ R, then disR ≥ diamX and

2dGH(λ∆m, X) ≥ max{λ,diamX} ≥ max{λ,diamX − λ}.

If such subsequence does not exist, then there exists a subsequence (xik , yik) such that for any ik there exist
distinct zk, wk ∈ λ∆m, (zk, xik) ∈ R, (wk, yik) ∈ R, and, therefore,

2dGH(λ∆m, X) ≥ max
{
λ, |diamX − λ|

}
≥ max{λ,diamX − λ}.

Thus, in the both cases we have 2dGH(λ∆, X) ≥ max
{
λ,diamX − λ

}
.
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Choose an arbitrary x0 ∈ X, then, by assumption, #X > 1, and, thus, the set X \ {x0} is not empty. Since
#X < m, then λ∆m contains a subset λ∆′ of the same cardinality with X \ {x0}. Let g : λ∆′ → X \ {x0} be an
arbitrary bijection, and λ∆′′ = λ∆m \ λ∆′, then #λ∆′′ > 1. Consider the following correspondence:

R0 =
{(
z′, g(z′)

)
: z′ ∈ λ∆′

}
∪
(
λ∆′′ × {x0}

)
.

Then we can apply Proposition 6.23, thus we have

disR0 = sup{λ, |x1x′1| − λ, λ− |x2x′2| : x1, x′1, x2, x′2 ∈ X, x1 6= x′1, x2 6= x′2} = max{λ,diamX − λ},

therefore,
2dGH(λ∆, X) = max{λ,diamX − λ},

what is required.

8.2 Gromov–Hausdorff distance to simplexes with at most the same
number of points

Let X be an arbitrary set different from singleton, 2 ≤ m ≤ #X a cardinal number, and λ > 0. Under notations
from Section 6.1, consider an arbitrary D ∈ Dm(X), any bijection g : λ∆m → D, and construct the correspondence
RD ∈ R(λ∆m, X) in the following way:

RD =
⋃

z∈λ∆m

{z} × g(z).

Clearly that each correspondence RD is irreducible.
From Proposition 6.23 we get

Proposition 8.2. Let X 6= ∆1 be an arbitrary metric space, 2 ≤ m ≤ #X a cardinal number, and λ > 0. Then for
any D ∈ Dm(X) it holds

disRD = max{diamD, λ− α(D), β(D)− λ}.

Proof. If X is unbounded, then disR = ∞ for any R ∈ R(λ∆m, X). Since m ≥ 2, for any D = {Xi}i∈I ∈ Dm(X)
we have either diamD = ∞, or β(D) = ∞. Indeed, if diamD < ∞ and β(D) < ∞ then for any x, y ∈ X either
x, y ∈ Xi, thus |xy| ≤ diamD, or x ∈ Xi, y ∈ Xj , i 6= j, and |xy| ≤ |XiXj | ≤ β(D), therefore X is bounded. Thus,
for unbounded X the right-hand side of the considered equation is infinite as well, thus we get what is required.

Now, let diamX <∞. By Proposition 6.23, we have

disRD = sup
{
diamD, λ− |XiXj |, |XiXj |′ − λ : i, j ∈ I, i 6= j

}
= max{diamD, λ− α(D), β(D)− λ},

that completes the proof.

Corollary 8.3. Let X 6= ∆1 be an arbitrary metric space, 2 ≤ m ≤ #X a cardinal number, and λ > 0. Then for
any D ∈ Dm(X) it holds

disRD = max{diamD, λ− α(D), diamX − λ}.

Proof. Again, for unbounded X the equation evidently holds.
Consider now the case of bounded X. Notice that diamD ≤ diamX and β(D) ≤ diamX. In addition, if

diamD < diamX, and (xi, yi) ∈ X × X is a sequence such that |xiyi| → diamX, then, starting from some i, the
points xi and yi belong to different elements of D, therefore, in this case we have β(D) = diamX, and the formula is
proved.

Now, let diamD = diamX, then β(D)− λ ≤ diamX and diamX − λ ≤ diamX, thus

max{diamD, λ− α(D), β(D)− λ} = max{diamX, λ− α(D)} = max{diamD, λ− α(D), diamX − λ},

that completes the proof.

Proposition 8.4. Let X 6= ∆1 be an arbitrary metric space, and 2 ≤ m ≤ #X a cardinal number, and λ > 0. Then

2dGH(λ∆m, X) = inf
D∈Dm(X)

disRD.
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Proof. The case of unbounded X is trivial, so, let X be bounded. By Corollary 6.21,

2dGH(λ∆m, X) = inf
R∈R0(λ∆m,X)

disR,

thus it suffices to prove that for any irreducible correspondence R ∈ R0(λ∆m, X) there exists D ∈ Dm(X) such that
disRD ≤ disR.

Let us choose an arbitrary R ∈ R0(λ∆m, X) such that it cannot be represented in the form RD, then the partition
DR

λ∆m
is not pointwise, i.e., there exists x ∈ X such that #R−1(x) ≥ 2, therefore, disR ≥ λ.

Define a metric on the set DR
λ∆m

to be equal λ between any its distinct elements, then this metric space is isometric
to a simplex λ∆′

n, n ≤ m. The correspondence R generates naturally another correspondence R′ ∈ R(λ∆′
n, X),

namely, if DR
λ∆m

= {∆j}j∈J , and fR : DR
λ∆m

→ DR
X is the bijection generated by R, then

R′ =
⋃
j∈J

{∆j} × fR(∆j).

It is easy to see that disR = max{λ, disR′}. Moreover, R′ is generated by the partition D′ = DR
X , i.e., R′ = RD′ ,

thus, by Corollary 8.3, we have

disR′ = max{diamD′, λ− α(D′), diamX − λ},

and hence,
disR = max{λ,diamD′, λ− α(D′), diamX − λ} = max{λ, diamD′, diamX − λ}.

Since n ≤ m, the partition D′ has a subpartition D ∈ Dm(X). Clearly, diamD ≤ diamD′, therefore,

disRD = max{diamD, λ− α(D), diamX − λ} ≤ max{diamD′, λ, diamX − λ} = disR,

q.e.d.

Considering separately the case λ = 0, we get the following

Corollary 8.5. Let X 6= ∆1 be an arbitrary metric space, 2 ≤ m ≤ #X a cardinal number, and λ ≥ 0. Then

2dGH(λ∆m, X) = inf
D∈Dm(X)

max{diamD, λ− α(D), diamX − λ}.

For any metric space X put
ε(X) = inf

{
|xy| : x, y ∈ X, x 6= y

}
.

Notice that ε(X) ≤ diamX, and for a bounded X the equality holds, if and only if X is a simplex.
Corollary 8.5 immediately implies the following result that is proved in [1].

Theorem 8.6 ([1]). Let X 6= ∆1 be a finite metric space, m = #X, and λ ≥ 0, then

2dGH(λ∆m, X) = max
{
λ− ε(X), diamX − λ

}
.

8.3 Generalized Borsuk problem

Classical Borsuk Problem deals with partitions of subsets of Euclidean space into parts having smaller diameters. We
generalize the Borsuk problem to arbitrary bounded metric spaces and partitions of arbitrary cardinality. Let X be
a bounded metric space, m a cardinal number such that 2 ≤ m ≤ #X, and D = {Xi}i∈I ∈ Dm(X). We say that D
is a partition into subsets having strictly smaller diameters, if there exists ε > 0 such that diamXi ≤ diamX − ε for
all i ∈ I.

By Generalized Borsuk problem we call the following one: Is it possible to partition a bounded metric space X
into a given, probably infinite, number of subsets, each of which has a strictly smaller diameter than X?

We give a solution to the Generalized Borsuk problem in terms of the Gromov–Hausdorff distance.

Theorem 8.7. Let X be an arbitrary bounded metric space and m a cardinal number such that 2 ≤ m ≤ #X. Choose
an arbitrary number 0 < λ < diamX, then X can be partitioned into m subsets having strictly smaller diameters if
and only if 2dGH(λ∆m, X) < diamX.
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Proof. For the λ chosen, due Corollary 8.5, we have 2dGH(λ∆m, X) ≤ diamX, and the equality holds if and only if
for each D ∈ Dm(X) we have diamD = diamX. The latter means that there is no partition of the space X into m
parts having strictly smaller diameters.

Corollary 8.8. Let d > 0 be a real number, and m ≤ n cardinal numbers. By Mn we denote the set of isometry
classes of bounded metric spaces of cardinality at most n, endowed with the Gromov–Hausdorff distance. Choose an
arbitrary 0 < λ < d. Then the intersection

Sd/2(∆1) ∩ Sd/2(λ∆m)

of the spheres, considered as the spheres in Mn, does not contain spaces, whose cardinality is less than m, and consists
exactly of all metric spaces from Mn, whose diameters are equal to d and that cannot be partitioned into m subsets
of strictly smaller diameters.

Proof. LetX belong to the intersection of the spheres, then diamX = d in accordance with Example 6.28. Ifm > #X,
then, due to Theorem 8.1, we have

2dGH(λ∆, X) = max{λ, diamX − λ} < d,

therefore X 6∈ Sd/2(λ∆m), that proves the first statement of Corollary.
Now let m ≤ #X. Since diamX = d and 2dGH(λ∆m, X) = d, then, due to Theorem 8.7, the space X cannot be

partitioned into m subsets of strictly smaller diameters.
Conversely, each X of the diameter d, such that m ≤ #X and which cannot be partitioned into m subsets of

strictly smaller diameter, lies in the intersection of the spheres by Theorem 8.7.

8.4 Calculating clique covering and chromatic numbers of a graph

Recall that a subgraph of an arbitrary simple graph G is called a clique, if any its two vertices are connected by an
edge, i.e., the clique is a subgraph which is a complete graph itself. Notice that each single-vertex subgraph is also a
clique. For convenience, the vertex set of a clique is also referred as a clique.

On the set of all cliques, an ordering with respect to inclusion is naturally defined, and hence, due to the above
remarks, a family of maximal cliques is uniquely defined; this family forms a cover of the graph G in the following
sense: the union of all vertex sets of all maximal cliques coincides with the vertex set V (G) of the graph G.

If one does not restrict himself by maximal cliques, then, generally speaking, one can find other families of cliques
covering the graph G. One of the classical problems of the Graph Theory is to calculate the minimal possible number
of cliques covering a finite simple graph G. This number is referred as the clique covering number and is often denoted
by θ(G). It is easy to see that the value θ(G) is also equal to the least number of cliques whose vertex sets form a
partition of V (G).

Another popular problem is to find the least possible number of colors that is necessary to color the vertices of a
simple finite graph G in such a way that adjacent vertices have different colors. This number is denoted by γ(G) and
is referred as the chromatic number of the graph G.

For a simple graph G, by G′ we denote its dual graph, i.e., the graph with the same vertex set and the comple-
mentary set of edges (two vertices of G′ are adjacent if and only if they are not adjacent in G).

Problem 8.1. For any simple finite graph G it holds θ(G) = γ(G′).

Let G = (V,E) be an arbitrary finite graph. Fix two real numbers a < b ≤ 2a and define a metric on V as
follows: the distance between adjacent vertices equals a, and nonadjacent vertices equals b. Then a subset V ′ ⊂ V
has diameter a if and only if G(V ′) ⊂ G is a clique. This implies that each clique covering number equals to the least
cardinality of partitions of the metric space V onto subsets of (strictly) smaller diameter. However, this number was
calculated in Theorem 8.7. Thus, we get the following

Corollary 8.9. Let G = (V,E) be an arbitrary finite graph. Fix two real numbers a < b ≤ 2a and define a metric
on V as follows: the distance between adjacent vertices equals a, and nonadjacent vertices equals b. Let m be the
greatest positive integer k such that 2dGH(a∆k, V ) = b (in the case when there is no such k, we put m = 0). Then
θ(G) = m+ 1.
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Problem 8.2. Consider simple finite graphs G = (V,E) for which the clique covering numbers θ(G) are known, and
get the Gromov–Hausdorff distances between the corresponding metric spaces V and simplexes λ∆m with m ≤ θ(G).
Verify explicitly that for k > m these distances are less than diamV .

Because of the duality between clique and chromatic numbers, we get

Corollary 8.10. Let G = (V,E) be an arbitrary finite graph. Fix two real numbers a < b ≤ 2a and define a metric
on V as follows: the distance between adjacent vertices equals b, and nonadjacent vertices equals a. Let m be the
greatest positive integer k such that 2dGH(a∆k, V ) = b (in the case when there is no such k, we put m = 0). Then
γ(G) = m+ 1.

Problem 8.3. Consider simple finite graphs G = (V,E) for which the chromatic numbers γ(G) are known, and get
the Gromov–Hausdorff distances between the corresponding metric spaces V and simplexes λ∆m with m ≤ γ(G).
Verify explicitly that for k > m this distances are less than diamV .
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Exercises to Chapter 8
Exercise 8.1. For any simple finite graph G it holds θ(G) = γ(G′).

Exercise 8.2. Consider simple finite graphs G = (V,E) for which the clique covering numbers θ(G) are known, and
get the Gromov–Hausdorff distances between the corresponding metric spaces V and simplexes λ∆m with m ≤ θ(G).
Verify explicitly that for k > m these distances are less than diamV .

Exercise 8.3. Consider simple finite graphs G = (V,E) for which the chromatic numbers γ(G) are known, and get
the Gromov–Hausdorff distances between the corresponding metric spaces V and simplexes λ∆m with m ≤ γ(G).
Verify explicitly that for k > m this distances are less than diamV .


