Chapter 7

Gromov—Hausdorff space.

Schedule. Gromov-Hausdorff space (GH-space), distortions of a correspondence and its closure, calculating GH-distance in terms of closed
correspondences, compactness of the set of all closed correspondences for compact metric spaces, continuity of distortion for compact metric
spaces, optimal correspondences, existence of closed optimal correspondences for compact metric spaces, GH-space is geodesic, cover number and
packing number, there relations, total boundness of families of compact metric spaces in terms of cover and packing numbers, isometric embedding
of all compact metric spaces from a totally bounded family to the same compact subset of £, completeness of GH-space, separability of GH-space,
mst-spectrum in terms of GH-distances to simplexes, Steiner problem in GH-space.

This section describes some geometrical and topological properties of the space consisting the isometry classes of
compact metric spaces, endowed with the Gromov—Hausdorff metric.

We denote by M the set of all compact metric spaces considered up to isometry (in other words, the set of
isometry classes of compact metric spaces). From Propositions B8 and B2 it follows that the distance dgy is a
metric on M. The metric space (M,dgy) is called the Gromov-Hausdorff space. Recall that by A; we denoted a
one-point metric space. Note that M contains all finite metric spaces, in particular, A; € M. The results presented
in Examples E2Z8-637 lead to the following geometric model of M, see Figure [l
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Figure 7.1: Gromov—Hausdorff space: general properties.

Indeed, according to Example 6232, the operation of multiplying the metric by a number A > 0 is a homothety of
the space M, centered in the one-point metric space A, so M is a cone with the vertex A;. By Example 631, the
curves y(t) ==t X, X € M, X # A, are shortest between any of their points, so they are the generators of the cone.
Figure [ also illustrates Examples and B=30.
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7.1 Existence of optimal correspondences between compact metric spaces

Let X and Y be arbitrary metric spaces.

Agreement 7.1. In what follows, when we work with the metric space X x Y, we always suppose that its distance
function is

|(z,9) (@, )| = max{|za’], lyy'l},
and just this metric generates the Hausdorff distance on Po(X x Y) and on all its subspaces, e.g., on R(X,Y).

Problem 7.1. Prove that the product topology on X X Y coincides with the one generated by the metric from
Agreement [l

Proposition 7.2. For arbitrary metric spaces X and Y, if G is the closure of o € Po(X X Y), then disg = diso.

Proof. Since 0 C & then we have diso < dis &, hence in the case diso = oo the result holds.

Now let diso < co. It remains to prove that diso > disa.

By definition, for each £ > 0 and any (z,7), (z',§) € & there exist (z,y), (2/,y’) € o such that max{|zz|,|jy|} <
e/6 and max{|Z'2’|,|7'y'|} < /6, thus ||z2| — |za’|| < /3 and ||7y’| — |yy'|| < /3. Therefore,

[|22'| — 57'|| < |lz2’| — lyy'|| + 2¢/3 < diso + 2¢/3.

Passing to the supremum in definition of dis&, we conclude that disg < diso + 2¢/3. Since ¢ is arbitrary, we have
disg < diso. O

Denote by R.(X,Y) the subset of R(X,Y) consisting of all closed correspondences R. Clearly that for any
R e R(X,Y) its closure R is also a correspondence, i.e., R € R.(X,Y). This fact, together with Proposition 2 and
Theorem ET2, immediately implies

Corollary 7.3. For any metric spaces X and Y we have
1
dep(X,Y) = 3 inf{disR R € RC(X,Y)}.

Now, let X and Y be compact metric spaces. Then X x Y is compact as well, and R.(X,Y) C H(X xY). By
Corollary 5230, H(X x Y') is compact.

Proposition 7.4. For X, Y € M the set R.(X,Y) is closed in H(X X Y), thus, R.(X,Y) is compact.

Proof. Tt suffices to show that for each o0 € H(X x Y) \ Ro(X,Y) some its neighborhood in H(X x Y) does not
intersect R.(X,Y). Notice that 0 € R(X,Y") because H(X x Y) consists of all closed nonempty subsets of X x Y,
and R.(X,Y) equals to the set of all closed R € R(X,Y). Then either mx(c) # X, or my(c) # Y, where mx and 7y
are the canonical projections. To be definite, suppose that the first condition holds, i.e., there exists z € X \ mx (o).
Since o is a closed subset of the compact X x Y, then it is compact itself, and therefore 7x (o) is compact in X,

thus, mx (o) is closed. The latter implies that there exists an open ball U.(x) such that U.(x) N7wx(c) = 0. Let
U= U:/LgXXY)(U), then for each ¢’ € U we have dy(o,0’) < /2, thus for any (a’,b") € o’ there exists (a,b) € o such
that |(a,b), (a/,b')| < /2. Since a € 7x (o) then |za| > £. On the other hand, |aa’| < |(a,b), (a/,V')| < £/2, therefore,
|ra’| > ¢/2, ie., a’ & U.jo(x) and hence mx(0’) N U./o(x) = . This implies that ¢’ is not a correspondence, thus
o' € Re(X,Y) and UNR(X,Y) = 0. O

Define a function f: (X xY)x (X xY) = Ras f(z,y,2',y) = ‘|xa:’| —|yy/||. Clearly that f is continuous. Notice
that for each o € Po(X x Y') we have

diso = sup{f(z7y7xl7y/) : (I,y)7 (l'/7y/) € U} = Supf|0><0"
Proposition 7.5. If X, Y € M, then the function dis: H(X xY) — R is continuous.

Proof. Since (X xY) x (X xY) is compact, then the function f is uniformly continuous, i.e., for any € > 0 there
exists § > 0 such that for every (21,y1,2},y}) and (22, y2, 24, yb) with max{|z1z2], |y1, y2|, [zi2b], [yiyh|} < & it holds

|f(x1,y1,1'/1;y/1) - f(x27y2ax/23y£)| <e.
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Thus, for any 0 € H(X x Y) and any e > 0 there exists § > 0 such that for the open d-neighborhood U = U *¥ (0) C
X xY of ¢ it holds

sup fluxu < sup floxo +¢.

By V we denote the open ball U;{(Xxy)(a) C H(X xY) of radius § centered at ¢. Since for any ¢/ € V we have
o' C U, then it follows that

diso’ =sup floxor <sup fluxu <sup floxo +€ =diso + .

Swapping o and ¢/, we get | disc — diso’| < ¢, and hence, the function dis is continuous. O

Definition 7.6. A correspondence R € R(X,Y) is called optimal if dog(X,Y) = 1 dis R. By Ropi(X,Y) we denote
the set of all optimal correspondences between X and Y.

Theorem 7.7. For any X, Y € M we have Ropt(X,Y) NR(X,Y) # 0.

Proof. By Proposition I3, the function dis: R.(X,Y) — R is continuous, and by Proposition 4 the space R.(X,Y) is
compact, thus the function dis attains its least value. The half of this value equals dg g (X, Y'), and each correspondence
R which this least value is attained at is optimal. O

From Theorem 2 and Propositions B0 and BT, we immediately get
Corollary 7.8. For each nonisometric X, Y € M there exist
(1) a correspondence R € R.(X,Y) such that dgu(X,Y) = + dis R;
(2) an admissible metric p € D(X,Y) such that dgu(X,Y) = pu(X,Y);

(3) a metric space Z and isometric embeddings of X and Y into Z such that the Hausdorff distance between their
images equals dgg(X,Y).

7.2 The Gromov—-Hausdorff space is geodesic

Let X and Y be arbitrary metric spaces. We assume that the space X x Y is by default endowed with the metric
(2, y)(a",y")| = max{|az’], |yy'| }.
Also, we introduce on X X Y the following 1-parametric family of metrics d;, t € (0, 1):
di((2,y), (2',y)) = (1 = )|z’ | + tlyy'l.

Problem 7.2. Prove that the topologies generated by all d;, and by | - | as well, coincide with the product topology
of X xY.

Now we suppose that dgg(X,Y) < 0o, and R € R(X,Y) is any correspondence with dis R < co. By Ry, t € [0, 1],
we denote the metric space (R, d;) if t € (0,1), and we put Rp = X, Ry =Y.

Proposition 7.9. The mapping t — R; is Lipschitzian with the Lipschitz constant %disR (w.r.t. the Gromov—
Hausdorff distance).

Proof. We have to show that 2dgy(Rs, Rt) < |s — t|dis R for arbitrary s,¢ € [0,1]. Let us start with the case
0 < s,t < 1. As always, we denote by id the identical mapping. Then

2d¢u(Rs, Ry) < disid = sup{

(2.0, &9) (0.0, @)+ ). (/) € R =
=|s— t|sup{‘|mx’| — || : (=), (@', y) € R} =|s —t|dis R.

Now we consider the case s =0, 0 < ¢ < 1. As a correspondence we take S; € R(Ry, R:) of the form

S = U {(a;(x,y))}

(z,y)ER
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Notice that such S; does not depend on t as a set. We have

2dGH(ROaRt) < diSSt = SUP{‘xx/| - dt(('ray)v (xlvy/))‘ : (J}, ('ray))v (l‘l, (xlay/)> € St} =
= tsup{|\xx’| —lyy'l| : (z, (z,9)), (2, (2, y)) € St} =tdisR = |s — t|dis R.

All remaining cases can be proved similarly. O

Now, let X and Y be compact metric spaces, and R € R.(X,Y). Then R is compact as well, and by Problem 3,
all metric spaces R; are compact too. Thus, by Proposition [9, the mapping ¢ — R; is a Lipschitz curve in M, and
it joins X and Y.

Theorem 7.10. Given X,Y € M and R € Ropt (X, Y)NR(X,Y), the curve y: [0,1] = M, v: t — Ry, is a shortest
geodesic with the speed dgy (X,Y). In particular, the length of v equals to dau(X,Y), thus, the space M is geodesic.

Proof. Choose arbitrary 0 < s <t¢ < 1, then, by Proposition [, we have
(7.1) de(Ra, Ry) < t_TSdisR: (t — 8) den (X, Y),
thus, taking into account the triangle inequality, we get
den(X,Y) <deu(X, Rs) +dau(Rs, Rt) + deu (R, Y) < deu(X,Y),

therefore, dap (X, Rs) + dau(Rs, Rt) + der(R:,Y) = dgu(X,Y). If for some s and ¢ the inequality in Formula ()
is strict, then the previous equality is not satisfied, thus dgp (Rs, Rt) = (t — s) dgm(X,Y). It remains to note that

|’7‘ = sup ZdGH(Rti—l7Rti) = dGH(Xv Y)»

O=to<--<tn=1%—{

hence 7 is shortest. 0

7.3 Cover number and packing number

Let X be an arbitrary metric space and € > 0. The numerical characteristics of the pair (X, ) defined below will be
used by us in the study of totally bounded families of compact metric spaces, in particular, in terms of these numbers,
the Gromov criterion for the precompactness of a family of compact metric spaces will be formulated.

Definition 7.11. The cover number
cov(X,e) = inf{n eN:dzy,...,zp,€ X, X = U Us(xi)}
i=1

(as usually, we put inf ) = 0o). In other words, the cover number is the minimum number of open balls of radius e
that cover the space X.
The packing number

pack(X,e) =sup{n € N: Jz1,...,2, € XVi#j U.pa(z;) NUspa(z;) = 0}.

In other words, the packing number is the maximum number of open pairwise disjoint balls of radius £/2 in the space
X.

Problem 7.3. Prove that
(1) a metric space X is bounded if only for some ¢ > 0 it holds cov(X,e) < oo (similarly, pack(X,e) < 00);

(2) a metric space X is finite if and only if there exists n such that cov(X,e) < n for all € > 0 (similarly, for
pack(X; e));

(3) the functions f(e) = cov(X,¢e) and g(e) = pack(X, ) are monotonically decreasing.
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Proposition 7.12. For any metric space X and any number € > 0 we have
cov(X,e) < pack(X,e) < cov(X,e/4).

Proof. First we prove the first inequality. If pack(X,e) = oo, then the inequality is automatically satisfied. Now
let pack(X,e) < oo and xy,...,2,, n = pack(X,¢), be a largest set of points in X for which the balls U, 5(z;) are
disjoint. Since this family is maximal, for any = € X there exists xj such that U, o (z) N Uy a(wx) # 0, ie., |zzp] < e.
Then the family {U.(z;)}", covers X, so cov(X,e) < n = pack(X,¢).

Let us prove the second inequality. Again, if cov(X,e/4) = oo, then the inequality holds. Now let cov(X,e/4) <
oo and Z1,...,Tm, m = cov(X,e/4), be the smallest set of points in X for which the balls U, 4(x;) cover X.
Suppose that pack(X,e) > cov(X,e/4), then there exist z7,...,2;, n > cov(X,e/4), such that the balls U, 5(x})
are pairwise disjoint. On the other hand, for some i # j there exists k such that z},2) € U./4(zx), therefore,
xi € Ugya(x}) NUc/2(x}), so this intersection is not empty, a contradiction. O

Corollary 7.13. Let X be an arbitrary metric space, then
(1) if pack(X,e) < oo, then cov(X,e) < oo;
(2) if cov(X,e) < o0, then pack(X,4e) < 0.
Thus, cov(X,e) < oo for all e > 0, if and only if pack(X,e) < oo for all e > 0.
Proposition 7.14. Let X be an arbitrary metric space. Then the following statements are equivalent:
(1) cov(X,¢e) < oo for any e > 0;
(2) pack(X,e) < oo for any e > 0;
(3) the space X is totally bounded.

Proof. () < (B) This follows from Corollary [T3.

(I) < (B) The condition cov(X,e) < oo is equivalent to the existence of a finite cover {U.(x;)}" ,, which is
equivalent to the existence of a finite e-net {z;}? ;. Thus, the condition of Item (M) is equivalent to the total
boundedness of the space X. O

Proposition 7.15. Let X, Y be metric spaces, § > 0, and dgu(X,Y) < 0, then
(1) cov(X,e) > cov(Y, e+ 26),
(2) pack(X,e) > pack(Y, 2e + 40).

Proof. (M) The case cov(X,e) = oo is obvious. Now let m := cov(X,e) < oo and {UE(Ii)}Zl be a cover of X. By
Theorem B3, there exists R € R(X,Y) such that dis R < 2J. For each ¢, we choose an arbitrary y; € R(x;) and
show that the set {y;}1", is an (¢ + 26)-net, thus cov(Y, e + 20) < m = cov(X,¢). So, we take arbitrary y € ¥ and
choose any € R™!(y). Then for some j we have |zz;| < e. Since dis R < 24, then |yy;| < € 4 24, as required.

(2) Since the case pack(Y, 26 440) = oo is trivial, we assume that n := pack(Y, 2e+46) < oo and let {U.425 (yl)}?zl
be a disjoint family of open balls in Y. Then for any i # j we have |y;y;| > €+ 2J. For each 4, we choose an arbitrary
z; € R(y;). Since disR < 24, we have |zv;z;| > ¢, therefore the family {UE/Q(I'Z')}?:I is disjoint and, thus,
pack(X,e) > n = pack(Y, 2 4 49). O

7.4 Totally bounded families of compact metric spaces

We will be interested in when a particular family of compact metric spaces is totally bounded. We begin with the
following auxiliary statement, which will be needed below. For n € N we denote by M,, C M (M[,] C M) the set of all
metric spaces with at most (respectively, exact) n points. For D > 0, by M(D) C M we denote the set of all compact
metric spaces whose diameters do not exceed D. We also put M,,(D) = M,, N M(D) and M,)(D) = M, N M(D).
It is clear that M,, = Up<, My and My, (D) = Ug<n Mg (D).

Proposition 7.16. The space M, (D) C M is totally bounded.
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Proof. Given X € My, (D), we consider all possible bijections v: X — {1,...,n}, and for every such v we construct
the distance matrix f(X,v) = p = (p;;), where p;; = ’V‘l(i)u_l(j)|. Let T be the set of all such matrices. It is clear
that the mapping g: T' — M, (D) such that g: f(X,v) — X is surjective.

We define on T the distance function generated by the {,.-norm, so T" will be considered as a subset of jo. Since
for every i, j we have |p;;| < D, the set T' is bounded and, therefore, totally bounded as a subset of ]jo.

If X,X' € Mp(D), p= f(X,v) and p' = f(X',v/), then R = (v')! o v is a bijective correspondence between X
and X', and |pp'[oc = dis R > 2dgy (X, X'). Thus, the surjection g is Lipschitzian, therefore, My, (D) = g(T) is also
totally bounded. O

Corollary 7.17. The space M,,(D) C M is totally bounded.
Problem 7.4. Prove that the set M, (D) is compact, while M,(D) for n > 1 is not.
Theorem 7.18. Let C be a nonempty subset of M. Then the following statements are equivalent.

(1) There is a number D > 0 and a function N: (0,00) — N such that for all X € C we have diam X < D and
pack(X,e) < N(e).

(2) There is a number D > 0 and a function N: (0,00) — N such that for all X € C we have diam X < D and
cov(X,e) < N(e).

(3) The space C with the metric dgy is totally bounded.

Proof. (8) = (). Fix an arbitrary € > 0. We have to find the corresponding D and N(e). Since C is totally bounded,
for any § > 0 there exists a finite d-net ¢’ C C. Choose ¢ such that 46 < e. Since all the spaces lying in C’ are
totally bounded, by Proposition 14, their packing numbers are finite. In addition, their diameters are finite. Put
D’ = maxxsecr diam X’ and N'(e) = maxx e pack(X’,€). For an arbitrary X € C there exists X’ € C’ such that
dam (X, X') < 4. Tt is easy to see that diam X < diam X’ 42§ < D'+ 24, so that we can put D = D’+24. In addition,
by Proposition [Z13, it holds pack(X,e) < pack(X’,e/2 —2§) < N'(e/2 — 2§), so we can put N(¢) = N'(g/2 — 20).

() < (B). This immediately follows from Proposition [T2.

(2) = (B). Fix some ¢ > 0, and for each X € C consider a finite cover of the space X by at most n = N(g) open
balls of radius ¢. By F%5 we denote the set of centers of these balls, then dgy (X, F%) < e. In addition, F§ € M, (D),
therefore, by Corollary T4, the family F¢ = {F% }xecc C M, (D) is totally bounded. Since for any X € C and any
e > ¢ we have X € UM (F%), then C C UX'(F®). Since € and ¢’ are arbitrary, we conclude that C is also totally
bounded (verify that). O

The following theorem allows us to realize all metric spaces from a totally bounded subset of M as subsets of some
compact subset of .

Theorem 7.19 (Gromov). For each totally bounded family C C M there exists a compact K C ly such that every
X € C is isometrically embedded into K.

Proof. The compact K is constructed as follows. By Theorem IR, there exist D > 0 and N: (0,00) — N such
that for all X € C we have diam X < D and cov(X,e) < N(eg). Choose an arbitrary decreasing sequence of positive
numbers E = {e1,¢9,...} such that Y~ &; < oo. This sequence and the function N(g) generate a sequence of natural
numbers N; = N(g;). These two sequences, together with the number D, define the set Fip g C {o as follows.

Construction 7.1. Put A = U52,({1,..., N1} x --- x {1,...,N;}). It is clear that A is a countable set. Let
loo(A) = {f: A — R :sup|f| < oo}, then fos(A) is isometric to fo. For brevity, instead of f((n1,...,n;)) we will
write f(nl, ey nj).

We now define the set Fp g, composing it from all f: A — R that satisfy the following conditions:

(1) 0< f(ny) < Dforall 1 <nj <Ny
(2) |f(n1,...,nj,nj+1) — f(nl,...,nj)| < ¢, for all elements (n4,...,n;,n,11) € A.

Lemma 7.20. The set Fp g defined above is a compact subset of {o(A).
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Proof. First, note that for each function f € Fp g it holds sup,e 4| f(a)| < D+ Y32, &; < 00, s0 f € lo(A). Further,
since all the inequalities defining Fp g are non-strict, the set Fp g is closed in £o,(A). Since o (A) is complete, Fip g
is also complete. In addition, the diameter of Fp g is finite (it bounded by the number D + 2> 7, ;).

Put Ay = {(n1,...,n) € A} and Ay, = U¥_| A;. We denote by 7y : £oo(A) = Lo (A) the canonical projection
that maps each function f: A — R to its restriction on Ay C A, and let Fy, = 7, (Fp g). Note that Fy, is a closed and
bounded subset of the finite-dimensional vector space £ (Ayg), therefore F, is compact.

Define the mapping v: Fj, — £+ (A) by extending each function fj € F to the entire set A as follows:

fk(nl, ey N, ME4-1, - - ) = fk(nl, o e ,nk).

It is clear that v is isometric, therefore F] = v(F}) is also a compact set.

Put e, = e + €541 + ..., then e — 0 as k — oo. By Condition (B), we have Fp g C Uf,ff(A)(F,g) for all k > 2,
which implies the total boundedness of Fp g (verify that). O

We now take the set Fp o as K and show that each space X € C can be isometrically embedded into this K. We
consider points of the form z,, a € A, and again, for brevity, instead of z(,,, .. ;) We write Tp,...n;.

Take an arbitrary X € C. Since cov(X,e1) < N(e1) = Ny, then X contains an €1-net Ugf:l{xm }, i.e., the family
{v., (asm)}n]\?:1 forms a cover of X. Note that some points x,,, may coincide.

Further, since cov(X,e2) < N(g2) = N, then X contains an e3-net Ufj;:l{z’nz}, i.e., the family {U., (x’m)}m:l
forms a cover of X. Fix n; and choose only those balls U,, (x],,) that satisfy |z, 2, | < e1 + 2. In this way we have

got at most Ny balls. Enumerate them and add some copies of them to obtain exactly Ns balls which we denote by
Ue, (pyny)s m2 = 1,..., Na. So, we have got a cover {U., (xnm)}szl of the ball Ue, (z,, ). By construction, it holds

n2
|xn1zn1n2‘ < €1 +52 < 251.
Continuing this process, at the j-th step we get the family of balls {U., (z4) }

Na

ac Ay, WIth [Ty, o Ty comymy g | < 265
It is easy to see that the set {z,}qca of centers of these balls is a countable everywhere dense subset of X (some
x, may coincide with each other). By Theorem P28, the space X can be isometrically embedded into ¢ (A) by

associating with each point z the function f,: A — R defined as follows: f,(a) = |2z,

Lemma 7.21. For every x € X we have f, € Fpap.

Proof. 1t is clear that 0 < f, < D, so that Item () from the definition of the set Fp of is satisfied. Further, for each

(N1, ,nj,M541), the point Ty, ...n;n;,, lies in Use, (Tn,...n; ), 50 for every x € X we have
’fl(nlv AR 7nj7nj+1) - fa:(nh v anj)’ = H-Tn1~~njnj+1x| - ‘xnanxH < |xn1-~~njnj+1xn1mnj| < 25]"
therefore, Item (B) from the definition of the set Fip o is also fulfilled. O
Thus, the mapping x — f, isometrically embeds X into K. O

7.5 Some other properties of Gromov—Hausdorff space

In this section we apply the previous results to prove a few more properties of the Gromov—Hausdorff space M.

7.5.1 Completeness of Gromov-Hausdorff space
Theorem T4 implies the following result.
Theorem 7.22. The space M is complete.

Proof. Consider an arbitrary fundamental sequence {X;}2; € M. Then {X;}$2, is a totally bounded subset of M.
By Theorem [T9, there exists a compact set K C ¢, into which all X; can be isometrically embedded. Denote by
Y; the image of X;. By Theorem BZ38, the space H(K) of all closed bounded subsets of K is also compact, therefore
the sequence Y; € H(K) contains a convergent subsequence Y;,,. Let Y be the limit of this subsequence. Then Y is a
nonempty compact metric space and

dGH(Xn“Y) = dGH<Yn,”Y) < dH(Yni,Y) — 0 as i — o0,

therefore, X, GH y and, since the sequence X; is fundamental, we have X; Sy, O
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7.5.2 Separability of Gromov—Hausdorff space
Theorem 7.23. The space M is separable.

Proof. By Corollary [T, each space M, (D) is totally bounded and, therefore, separable. Since M,, = U2, M,,(k),
then all M,,, as well as their union U2, M,,, are separable. This last union is the set of all finite metric spaces,
which, as noted in Example 6224, is an everywhere dense subset of M, so that M is separable. O

Recall that a complete separable metric space is called Polish. Thus, the following result holds.
Corollary 7.24. The space M is Polish.
By Problem =31, for a metric space, the separability is equivalent to having a countable base.

Corollary 7.25. The space M has a countable base.

7.6 Calculating mst-spectrum by means of Gromov—-Hausdorff distances

Recall that by A,, we denoted n-point metric space such that all its nonzero distances equal 1. Also, given A > 0 and
any metric space X, if we multiply by A all the distances in X, then the resulting metric space we denote by AX.

In the present section we show that the mst-spectrum of an arbitrary n-point metric space X can be represented
as a linear function on the Gromov—Hausdorff distances from this space to the AAs, ..., AA,, for A > 2diam X.

Theorem 7.26. Let X be a finite metric space, 0(X) = (01,...,0n-1), A > 2diam X. Then
g = A— QdGH(/\Ak+1,X).

Proof. Choose any 1 < k <n — 1 and arbitrary irreducible correspondence R € RY(AAx41, X). By Proposition E23,
there exists partitions Rya, ., = {Zi}/_, and Rx = {X;}/_; of A Ap41 and X, respectively, such that R = UY_, Z; x X,
and min{#Z;, #X;} = 1 for all i. By Proposition EZ3, it holds dis R > max{diam Rya,,,,diam Rx}. Thus, if for
some i we have #7; > 1, then disR > A > 2diam X. Since k + 1 < n, there exists R such that #7; = 1 for all 4.
For such R, again by Proposition 623, we have dis R < diam X. Therefore, infpero(aa, ,,x) dis R is achieved on a
correspondences of the latter type. The set of these correspondences we denote by R.

Now, if R € R, then p =k + 1 and Rx € Dy11(X). By Proposition 623, we have

dis R = sup{diam Ry, | X;X;|' = A\ A= |[X;X;|:1<i<j<k+1} =
:sup{)\— XX, :1<i<j< k—l—l} =\—a(Rx),
where the second equality holds because
max{|Xin|’ — )\,diamRX} <diam X <A —diam X < X — | X, X}
forany 1 <i < j < k+ 1. Corollary B2, together with above considerations, gives us

2der(AMAg41,X) = min disR = %%(A —a(Rx)) =A— Deg,li?(X) a(D),

where the last equality holds because each D generates some R € R.
It remains to use Theorem B—T3 which states that

or =max{a(D): D € Dy1(X)},
thus, 2dgg (AAk+1,X) = X — o%. U

Corollary 7.27. Let X be a finite metric space and A > 2diam X, then

#X—1
mst X = A#X —1) =2 > dau(Mii1, X).
k=1
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7.7 Steiner problem in Gromov—Hausdorff space

In this section we prove the following

Theorem 7.28. Let M C M be a finite set such that each X € M is a finite metric space. Then SMT(M, M) # (),
i.e., for such M the Steiner problem has a solution.

Remark 7.29. For arbitrary finite M C M the problem is still open.

Proof. Let n = #M. In Section 23 we introduced model full Steiner trees, and we have shown how to use them for
calculating the length of a Steiner minimal tree. Recall the corresponding definitions in our case. A full Steiner tree
has the vertices of two types only: the ones of degree 1 which we call boundary, and the ones of degree 3 which we call
interior. In model full Steiner trees which we use to treat the problem for such M, the vertex set is {1,...,2n — 2},
where {1,...,n} are reserved for the boundary vertices. We called two model full Steiner tree equivalent if there is
an isomorphism between them fixed on the boundary. By B,, we denoted the set of all model full Steiner trees with
n boundary vertices considered up to this equivalence.

Enumerate the points from M in an arbitrary way, i.e., we consider a bijection ¢: {1,...,n} — M. Choose an
arbitrary G € B,,, and consider a network I' of the type G for which OI' = ¢. Then all such networks for given G
differ from each other only in the “positions” of their interior vertices, thus the set [G, ] of such networks can be
identified with M™~2. Then we proved (Corollary £=24) that

smt(M, M) =inf{|l'| : T € [G,¢], G € B, }.

Choose an arbitrary G € B, and any I' € [G,¢]. We put X; = I'(¢), then M = {X1,...,X,}. For each
ij € E(G) we choose an arbitrary R;; € Ropt(X;, X;) in such a way that R;l-l = R;j. Let Xj, = {«} }I'*,, then for any
ke {l,...,n} and any 1 <i < ny we construct a network ', : {1,...,2n — 2} — U?i}sz as follows: in each X; we
choose one point x;j =:T"i (j) such that

(1) = i
(2) for any pg € E(G) we have (z,,°,24") € Ry,

(verify that it is always possible to do). Consider the set 7 = {1"2} consisting of all 1"}‘€ over all possible k and 1.

For any j € {1,...,2n — 2} we put V; = Uper{T(j)}, i.e., we gather in each X; all points that are the images
of the vertices of the constructed networks. Let us note that all V; have at most N := >_}'_, nj points, and for each
je{l,...,n} it holds V; = X;.

Further, for each p and ¢ such that pq € E(G) we denote by R;,q the set of all pairs (z,,x,) such that for some
T € T we have z, = T(p) and 24 = T(q), i.e., we gather all pairs forming the images of the edges of the constructed
networks. Thus, we obtained correspondences R}, € R(V),Vy) such that Rl C Ry, hence

derr (Vy, Vy) < dis RY, < dis Rypq = deur (X, Xq)-

.....

Denote by I'* the network I'*: p — V. Since I'|f;
[G, ¢]" the set of all such T'. Since |T'*| < |T'|, then

n} = ¢ and T has the type G, then I'" € [G,¢]. Denote by

smt(M, M) = inf{|T*| : T* € [G, ¢]", G € B, }.

However, all X; belong to My, therefore, smt(M, M) = smt(M, My). Moreover, if we choose I'* such that all V;,
i > n+ 1, coincide with Vj, for some k < n, then smt(M, M) <37, -, dau(Xp, Xq) = D'. Thus, it suffices to
consider only I'* with |I'*| < D', in particular, for such I'" and any pq € E(G) we have dgp(Vy, Vy) < D'.

Let us put d = max{diam X, : k = 1,...,n}. Since for any X,Y € M we have dgy(X,Y) > 3|diam X —diam Y|,
then for each X, we have diam X,, < d + 2(n — 2)D’ =: D (all these estimates are rather rough, however, we do not
need exact ones here). In account, we proved that all X, belongs to My (D). By Problem (4, the space My (D) is
compact, that is why the continuous function £: My (D)""2 - R, £: (Xp11,. .., Xon_2) — ||, attains its minimum
at some I'f. It remains to notice that B,, is finite. O
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Exercises to Chapter 7

Exercise 7.1. Prove that the product topology on X X Y coincides with the one generated by the metric from
Agreement [

Exercise 7.2. Prove that the topologies generated by all d;, and by | - | as well, coincide with the product topology
of X xY.

Exercise 7.3. Prove that
(1) a metric space X is bounded if only for some ¢ > 0 it holds cov(X,e) < oo (similarly, pack(X,¢e) < o0);

(2) a metric space X is finite if and only if there exists n such that cov(X,e) < n for all € > 0 (similarly, for
pack(X, €));

(3) the functions f(e) = cov(X,¢) and g(e) = pack(X, ) are monotonically decreasing.

Exercise 7.4. Prove that the set M, (D) is compact, while M,(D) for n > 1 is not.



