
Chapter 7

Gromov–Hausdorff space.

Schedule. Gromov–Hausdorff space (GH-space), distortions of a correspondence and its closure, calculating GH-distance in terms of closed
correspondences, compactness of the set of all closed correspondences for compact metric spaces, continuity of distortion for compact metric
spaces, optimal correspondences, existence of closed optimal correspondences for compact metric spaces, GH-space is geodesic, cover number and
packing number, there relations, total boundness of families of compact metric spaces in terms of cover and packing numbers, isometric embedding
of all compact metric spaces from a totally bounded family to the same compact subset of ℓ∞, completeness of GH-space, separability of GH-space,
mst-spectrum in terms of GH-distances to simplexes, Steiner problem in GH-space.

This section describes some geometrical and topological properties of the space consisting the isometry classes of
compact metric spaces, endowed with the Gromov–Hausdorff metric.

We denote by M the set of all compact metric spaces considered up to isometry (in other words, the set of
isometry classes of compact metric spaces). From Propositions 6.6 and 6.7 it follows that the distance dGH is a
metric on M. The metric space (M, dGH) is called the Gromov–Hausdorff space. Recall that by ∆1 we denoted a
one-point metric space. Note that M contains all finite metric spaces, in particular, ∆1 ∈ M. The results presented
in Examples 6.28–6.32 lead to the following geometric model of M, see Figure 7.1.

Figure 7.1: Gromov–Hausdorff space: general properties.

Indeed, according to Example 6.32, the operation of multiplying the metric by a number λ > 0 is a homothety of
the space M, centered in the one-point metric space ∆1, so M is a cone with the vertex ∆1. By Example 6.31, the
curves γ(t) := tX, X ∈ M, X 6= ∆1, are shortest between any of their points, so they are the generators of the cone.
Figure 7.1 also illustrates Examples 6.28 and 6.30.
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7.1 Existence of optimal correspondences between compact metric spaces

Let X and Y be arbitrary metric spaces.

Agreement 7.1. In what follows, when we work with the metric space X × Y , we always suppose that its distance
function is ∣∣(x, y)(x′, y′)∣∣ = max

{
|xx′|, |yy′|

}
,

and just this metric generates the Hausdorff distance on P0(X × Y ) and on all its subspaces, e.g., on R(X,Y ).

Problem 7.1. Prove that the product topology on X × Y coincides with the one generated by the metric from
Agreement 7.1.

Proposition 7.2. For arbitrary metric spaces X and Y , if σ̄ is the closure of σ ∈ P0(X × Y ), then dis σ̄ = disσ.

Proof. Since σ ⊂ σ̄ then we have disσ ≤ dis σ̄, hence in the case disσ = ∞ the result holds.
Now let disσ <∞. It remains to prove that disσ ≥ dis σ̄.
By definition, for each ε > 0 and any (x̄, ȳ), (x̄′, ȳ′) ∈ σ̄ there exist (x, y), (x′, y′) ∈ σ such that max

{
|x̄x|, |ȳy|

}
<

ε/6 and max
{
|x̄′x′|, |ȳ′y′|

}
< ε/6, thus

∣∣|x̄x̄′| − |xx′|
∣∣ < ε/3 and

∣∣|ȳȳ′| − |yy′|
∣∣ < ε/3. Therefore,∣∣|x̄x̄′| − |ȳȳ′|

∣∣ < ∣∣|xx′| − |yy′|
∣∣+ 2ε/3 ≤ disσ + 2ε/3.

Passing to the supremum in definition of dis σ̄, we conclude that dis σ̄ ≤ disσ + 2ε/3. Since ε is arbitrary, we have
dis σ̄ ≤ disσ.

Denote by Rc(X,Y ) the subset of R(X,Y ) consisting of all closed correspondences R. Clearly that for any
R ∈ R(X,Y ) its closure R̄ is also a correspondence, i.e., R̄ ∈ Rc(X,Y ). This fact, together with Proposition 7.2 and
Theorem 6.12, immediately implies

Corollary 7.3. For any metric spaces X and Y we have

dGH(X,Y ) =
1

2
inf

{
disR : R ∈ Rc(X,Y )

}
.

Now, let X and Y be compact metric spaces. Then X × Y is compact as well, and Rc(X,Y ) ⊂ H(X × Y ). By
Corollary 5.37, H(X × Y ) is compact.

Proposition 7.4. For X, Y ∈ M the set Rc(X,Y ) is closed in H(X × Y ), thus, Rc(X,Y ) is compact.

Proof. It suffices to show that for each σ ∈ H(X × Y ) \ Rc(X,Y ) some its neighborhood in H(X × Y ) does not
intersect Rc(X,Y ). Notice that σ 6∈ R(X,Y ) because H(X × Y ) consists of all closed nonempty subsets of X × Y ,
and Rc(X,Y ) equals to the set of all closed R ∈ R(X,Y ). Then either πX(σ) 6= X, or πY (σ) 6= Y , where πX and πY
are the canonical projections. To be definite, suppose that the first condition holds, i.e., there exists x ∈ X \ πX(σ).
Since σ is a closed subset of the compact X × Y , then it is compact itself, and therefore πX(σ) is compact in X,
thus, πX(σ) is closed. The latter implies that there exists an open ball Uε(x) such that Uε(x) ∩ πX(σ) = ∅. Let

U = U
H(X×Y )
ε/2 (σ), then for each σ′ ∈ U we have dH(σ, σ′) < ε/2, thus for any (a′, b′) ∈ σ′ there exists (a, b) ∈ σ such

that
∣∣(a, b), (a′, b′)∣∣ < ε/2. Since a ∈ πX(σ) then |xa| ≥ ε. On the other hand, |aa′| ≤

∣∣(a, b), (a′, b′)∣∣ < ε/2, therefore,
|xa′| > ε/2, i.e., a′ 6∈ Uε/2(x) and hence πX(σ′) ∩ Uε/2(x) = ∅. This implies that σ′ is not a correspondence, thus
σ′ 6∈ Rc(X,Y ) and U ∩Rc(X,Y ) = ∅.

Define a function f : (X×Y )× (X×Y ) → R as f(x, y, x′, y′) =
∣∣|xx′|− |yy′|

∣∣. Clearly that f is continuous. Notice
that for each σ ∈ P0(X × Y ) we have

disσ = sup
{
f(x, y, x′, y′) : (x, y), (x′, y′) ∈ σ

}
= sup f |σ×σ.

Proposition 7.5. If X, Y ∈ M, then the function dis : H(X × Y ) → R is continuous.

Proof. Since (X × Y ) × (X × Y ) is compact, then the function f is uniformly continuous, i.e., for any ε > 0 there
exists δ > 0 such that for every (x1, y1, x

′
1, y

′
1) and (x2, y2, x

′
2, y

′
2) with max

{
|x1x2|, |y1, y2|, |x′1x′2|, |y′1y′2|

}
< δ it holds∣∣f(x1, y1, x′1, y′1)− f(x2, y2, x

′
2, y

′
2)
∣∣ < ε.
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Thus, for any σ ∈ H(X×Y ) and any ε > 0 there exists δ > 0 such that for the open δ-neighborhood U = UX×Y
δ (σ) ⊂

X × Y of σ it holds
sup f |U×U ≤ sup f |σ×σ + ε.

By V we denote the open ball U
H(X×Y )
δ (σ) ⊂ H(X × Y ) of radius δ centered at σ. Since for any σ′ ∈ V we have

σ′ ⊂ U , then it follows that

disσ′ = sup f |σ′×σ′ ≤ sup f |U×U ≤ sup f |σ×σ + ε = disσ + ε.

Swapping σ and σ′, we get |disσ − disσ′| ≤ ε, and hence, the function dis is continuous.

Definition 7.6. A correspondence R ∈ R(X,Y ) is called optimal if dGH(X,Y ) = 1
2 disR. By Ropt(X,Y ) we denote

the set of all optimal correspondences between X and Y .

Theorem 7.7. For any X, Y ∈ M we have Ropt(X,Y ) ∩Rc(X,Y ) 6= ∅.

Proof. By Proposition 7.5, the function dis : Rc(X,Y ) → R is continuous, and by Proposition 7.4 the spaceRc(X,Y ) is
compact, thus the function dis attains its least value. The half of this value equals dGH(X,Y ), and each correspondence
R which this least value is attained at is optimal.

From Theorem 7.7 and Propositions 6.11 and 6.11, we immediately get

Corollary 7.8. For each nonisometric X, Y ∈ M there exist

(1) a correspondence R ∈ Rc(X,Y ) such that dGH(X,Y ) = 1
2 disR;

(2) an admissible metric ρ ∈ D(X,Y ) such that dGH(X,Y ) = ρH(X,Y );

(3) a metric space Z and isometric embeddings of X and Y into Z such that the Hausdorff distance between their
images equals dGH(X,Y ).

7.2 The Gromov–Hausdorff space is geodesic

Let X and Y be arbitrary metric spaces. We assume that the space X × Y is by default endowed with the metric∣∣(x, y)(x′, y′)∣∣ = max
{
|xx′|, |yy′|

}
.

Also, we introduce on X × Y the following 1-parametric family of metrics dt, t ∈ (0, 1):

dt
(
(x, y), (x′, y′)

)
= (1− t)|xx′|+ t|yy′|.

Problem 7.2. Prove that the topologies generated by all dt, and by | · | as well, coincide with the product topology
of X × Y .

Now we suppose that dGH(X,Y ) <∞, and R ∈ R(X,Y ) is any correspondence with disR <∞. By Rt, t ∈ [0, 1],
we denote the metric space (R, dt) if t ∈ (0, 1), and we put R0 = X, R1 = Y .

Proposition 7.9. The mapping t 7→ Rt is Lipschitzian with the Lipschitz constant 1
2 disR (w.r.t. the Gromov–

Hausdorff distance).

Proof. We have to show that 2dGH(Rs, Rt) ≤ |s − t|disR for arbitrary s, t ∈ [0, 1]. Let us start with the case
0 < s, t < 1. As always, we denote by id the identical mapping. Then

2dGH(Rs, Rt) ≤ dis id = sup

{∣∣∣ds((x, y), (x′, y′))− dt
(
(x, y), (x′, y′)

)∣∣∣ : (x, y), (x′, y′) ∈ R

}
=

= |s− t| sup
{∣∣|xx′| − |yy′|

∣∣ : (x, y), (x′, y′) ∈ R
}
= |s− t|disR.

Now we consider the case s = 0, 0 < t < 1. As a correspondence we take St ∈ R(R0, Rt) of the form

St =
⋃

(x,y)∈R

{(
x, (x, y)

)}
.
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Notice that such St does not depend on t as a set. We have

2dGH(R0, Rt) ≤ disSt = sup

{∣∣∣|xx′| − dt
(
(x, y), (x′, y′)

)∣∣∣ : (x, (x, y)), (x′, (x′, y′)) ∈ St

}
=

= t sup
{∣∣|xx′| − |yy′|

∣∣ : (x, (x, y)), (x′, (x′, y′)) ∈ St

}
= tdisR = |s− t|disR.

All remaining cases can be proved similarly.

Now, let X and Y be compact metric spaces, and R ∈ Rc(X,Y ). Then R is compact as well, and by Problem 7.2,
all metric spaces Rt are compact too. Thus, by Proposition 7.9, the mapping t 7→ Rt is a Lipschitz curve in M, and
it joins X and Y .

Theorem 7.10. Given X,Y ∈ M and R ∈ Ropt(X,Y )∩Rc(X,Y ), the curve γ : [0, 1] → M, γ : t 7→ Rt, is a shortest
geodesic with the speed dGH(X,Y ). In particular, the length of γ equals to dGH(X,Y ), thus, the space M is geodesic.

Proof. Choose arbitrary 0 ≤ s ≤ t ≤ 1, then, by Proposition 7.9, we have

(7.1) dGH(Rs, Rt) ≤
t− s

2
disR = (t− s) dGH(X,Y ),

thus, taking into account the triangle inequality, we get

dGH(X,Y ) ≤ dGH(X,Rs) + dGH(Rs, Rt) + dGH(Rt, Y ) ≤ dGH(X,Y ),

therefore, dGH(X,Rs) + dGH(Rs, Rt) + dGH(Rt, Y ) = dGH(X,Y ). If for some s and t the inequality in Formula (7.1)
is strict, then the previous equality is not satisfied, thus dGH(Rs, Rt) = (t− s) dGH(X,Y ). It remains to note that

|γ| = sup
0=t0<···<tn=1

n∑
i=1

dGH(Rti−1
, Rti) = dGH(X,Y ),

hence γ is shortest.

7.3 Cover number and packing number

Let X be an arbitrary metric space and ε > 0. The numerical characteristics of the pair (X, ε) defined below will be
used by us in the study of totally bounded families of compact metric spaces, in particular, in terms of these numbers,
the Gromov criterion for the precompactness of a family of compact metric spaces will be formulated.

Definition 7.11. The cover number

cov(X, ε) = inf
{
n ∈ N : ∃x1, . . . , xn ∈ X, X =

n⋃
i=1

Uε(xi)
}

(as usually, we put inf ∅ = ∞). In other words, the cover number is the minimum number of open balls of radius ε
that cover the space X.

The packing number

pack(X, ε) = sup
{
n ∈ N : ∃x1, . . . , xn ∈ X ∀ i 6= j Uε/2(xi) ∩ Uε/2(xj) = ∅

}
.

In other words, the packing number is the maximum number of open pairwise disjoint balls of radius ε/2 in the space
X.

Problem 7.3. Prove that

(1) a metric space X is bounded if only for some ε > 0 it holds cov(X, ε) <∞ (similarly, pack(X, ε) <∞);

(2) a metric space X is finite if and only if there exists n such that cov(X, ε) ≤ n for all ε > 0 (similarly, for
pack(X, ε));

(3) the functions f(ε) = cov(X, ε) and g(ε) = pack(X, ε) are monotonically decreasing.



7.4. Totally bounded families of compact metric spaces 84

Proposition 7.12. For any metric space X and any number ε > 0 we have

cov(X, ε) ≤ pack(X, ε) ≤ cov(X, ε/4).

Proof. First we prove the first inequality. If pack(X, ε) = ∞, then the inequality is automatically satisfied. Now
let pack(X, ε) < ∞ and x1, . . . , xn, n = pack(X, ε), be a largest set of points in X for which the balls Uε/2(xi) are
disjoint. Since this family is maximal, for any x ∈ X there exists xk such that Uε/2(x)∩Uε/2(xk) 6= ∅, i.e., |xxk| < ε.
Then the family {Uε(xi)}ni=1 covers X, so cov(X, ε) ≤ n = pack(X, ε).

Let us prove the second inequality. Again, if cov(X, ε/4) = ∞, then the inequality holds. Now let cov(X, ε/4) <
∞ and x1, . . . , xm, m = cov(X, ε/4), be the smallest set of points in X for which the balls Uε/4(xi) cover X.
Suppose that pack(X, ε) > cov(X, ε/4), then there exist x′1, . . . , x

′
n, n > cov(X, ε/4), such that the balls Uε/2(x

′
i)

are pairwise disjoint. On the other hand, for some i 6= j there exists k such that x′i, x
′
j ∈ Uε/4(xk), therefore,

xk ∈ Uε/2(x
′
i) ∩ Uε/2(x

′
j), so this intersection is not empty, a contradiction.

Corollary 7.13. Let X be an arbitrary metric space, then

(1) if pack(X, ε) <∞, then cov(X, ε) <∞;

(2) if cov(X, ε) <∞, then pack(X, 4ε) <∞.

Thus, cov(X, ε) <∞ for all ε > 0, if and only if pack(X, ε) <∞ for all ε > 0.

Proposition 7.14. Let X be an arbitrary metric space. Then the following statements are equivalent :

(1) cov(X, ε) <∞ for any ε > 0;

(2) pack(X, ε) <∞ for any ε > 0;

(3) the space X is totally bounded.

Proof. (1) ⇔ (2) This follows from Corollary 7.13.
(1) ⇔ (3) The condition cov(X, ε) < ∞ is equivalent to the existence of a finite cover {Uε(xi)}ni=1, which is

equivalent to the existence of a finite ε-net {xi}ni=1. Thus, the condition of Item (1) is equivalent to the total
boundedness of the space X.

Proposition 7.15. Let X, Y be metric spaces, δ > 0, and dGH(X,Y ) < δ, then

(1) cov(X, ε) ≥ cov(Y, ε+ 2δ),

(2) pack(X, ε) ≥ pack(Y, 2ε+ 4δ).

Proof. (1) The case cov(X, ε) = ∞ is obvious. Now let m := cov(X, ε) < ∞ and
{
Uε(xi)

}m

i=1
be a cover of X. By

Theorem 6.12, there exists R ∈ R(X,Y ) such that disR < 2δ. For each i, we choose an arbitrary yi ∈ R(xi) and
show that the set {yi}mi=1 is an (ε + 2δ)-net, thus cov(Y, ε + 2δ) ≤ m = cov(X, ε). So, we take arbitrary y ∈ Y and
choose any x ∈ R−1(y). Then for some j we have |xxj | < ε. Since disR < 2δ, then |yyj | < ε+ 2δ, as required.

(2) Since the case pack(Y, 2ε+4δ) = ∞ is trivial, we assume that n := pack(Y, 2ε+4δ) <∞ and let
{
Uε+2δ(yi)

}n

i=1
be a disjoint family of open balls in Y . Then for any i 6= j we have |yiyj | ≥ ε+2δ. For each i, we choose an arbitrary
xi ∈ R−1(yi). Since disR < 2δ, we have |xixj | > ε, therefore the family

{
Uε/2(xi)

}n

i=1
is disjoint and, thus,

pack(X, ε) ≥ n = pack(Y, 2ε+ 4δ).

7.4 Totally bounded families of compact metric spaces

We will be interested in when a particular family of compact metric spaces is totally bounded. We begin with the
following auxiliary statement, which will be needed below. For n ∈ N we denote byMn ⊂ M (M[n] ⊂ M) the set of all
metric spaces with at most (respectively, exact) n points. For D ≥ 0, by M(D) ⊂ M we denote the set of all compact
metric spaces whose diameters do not exceed D. We also put Mn(D) = Mn ∩M(D) and M[n](D) = M[n] ∩M(D).
It is clear that Mn = ∪k≤nM[k] and Mn(D) = ∪k≤nM[k](D).

Proposition 7.16. The space M[n](D) ⊂ M is totally bounded.
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Proof. Given X ∈ M[n](D), we consider all possible bijections ν : X → {1, . . . , n}, and for every such ν we construct

the distance matrix f(X, ν) = ρ = (ρij), where ρij =
∣∣ν−1(i)ν−1(j)

∣∣. Let T be the set of all such matrices. It is clear
that the mapping g : T → M[n](D) such that g : f(X, ν) 7→ X is surjective.

We define on T the distance function generated by the ℓ∞-norm, so T will be considered as a subset of Rn2

∞ . Since

for every i, j we have |ρij | ≤ D, the set T is bounded and, therefore, totally bounded as a subset of Rn2

∞ .
If X,X ′ ∈ M[n](D), ρ = f(X, ν) and ρ′ = f(X ′, ν′), then R = (ν′)−1 ◦ ν is a bijective correspondence between X

and X ′, and |ρρ′|∞ = disR ≥ 2dGH(X,X ′). Thus, the surjection g is Lipschitzian, therefore, M[n](D) = g(T ) is also
totally bounded.

Corollary 7.17. The space Mn(D) ⊂ M is totally bounded.

Problem 7.4. Prove that the set Mn(D) is compact, while M[n](D) for n > 1 is not.

Theorem 7.18. Let C be a nonempty subset of M. Then the following statements are equivalent.

(1) There is a number D ≥ 0 and a function N : (0,∞) → N such that for all X ∈ C we have diamX ≤ D and
pack(X, ε) ≤ N(ε).

(2) There is a number D ≥ 0 and a function N : (0,∞) → N such that for all X ∈ C we have diamX ≤ D and
cov(X, ε) ≤ N(ε).

(3) The space C with the metric dGH is totally bounded.

Proof. (3) ⇒ (1). Fix an arbitrary ε > 0. We have to find the corresponding D and N(ε). Since C is totally bounded,
for any δ > 0 there exists a finite δ-net C′ ⊂ C. Choose δ such that 4δ < ε. Since all the spaces lying in C′ are
totally bounded, by Proposition 7.14, their packing numbers are finite. In addition, their diameters are finite. Put
D′ = maxX′∈C′ diamX ′ and N ′(ε) = maxX′∈C′ pack(X ′, ε). For an arbitrary X ∈ C there exists X ′ ∈ C′ such that
dGH(X,X ′) < δ. It is easy to see that diamX ≤ diamX ′+2δ ≤ D′+2δ, so that we can put D = D′+2δ. In addition,
by Proposition 7.15, it holds pack(X, ε) ≤ pack(X ′, ε/2− 2δ) ≤ N ′(ε/2− 2δ), so we can put N(ε) = N ′(ε/2− 2δ).

(1) ⇔ (2). This immediately follows from Proposition 7.12.
(2) ⇒ (3). Fix some ε > 0, and for each X ∈ C consider a finite cover of the space X by at most n = N(ε) open

balls of radius ε. By F ε
X we denote the set of centers of these balls, then dGH(X,F ε

X) ≤ ε. In addition, F ε
X ∈ Mn(D),

therefore, by Corollary 7.17, the family Fε = {F ε
X}X∈C ⊂ Mn(D) is totally bounded. Since for any X ∈ C and any

ε′ > ε we have X ∈ UM
ε′ (F ε

X), then C ⊂ UM
ε′ (Fε). Since ε and ε′ are arbitrary, we conclude that C is also totally

bounded (verify that).

The following theorem allows us to realize all metric spaces from a totally bounded subset of M as subsets of some
compact subset of ℓ∞.

Theorem 7.19 (Gromov). For each totally bounded family C ⊂ M there exists a compact K ⊂ ℓ∞ such that every
X ∈ C is isometrically embedded into K.

Proof. The compact K is constructed as follows. By Theorem 7.18, there exist D ≥ 0 and N : (0,∞) → N such
that for all X ∈ C we have diamX ≤ D and cov(X, ε) ≤ N(ε). Choose an arbitrary decreasing sequence of positive
numbers E = {ε1, ε2, . . .} such that

∑∞
i=1 εi <∞. This sequence and the function N(ε) generate a sequence of natural

numbers Ni = N(εi). These two sequences, together with the number D, define the set FD,E ⊂ ℓ∞ as follows.

Construction 7.1. Put A = ∪∞
j=1

(
{1, . . . , N1} × · · · × {1, . . . , Nj}

)
. It is clear that A is a countable set. Let

ℓ∞(A) = {f : A → R : sup |f | < ∞}, then ℓ∞(A) is isometric to ℓ∞. For brevity, instead of f
(
(n1, . . . , nj)

)
we will

write f(n1, . . . , nj).
We now define the set FD,E , composing it from all f : A→ R that satisfy the following conditions:

(1) 0 ≤ f(n1) ≤ D for all 1 ≤ n1 ≤ N1;

(2)
∣∣f(n1, . . . , nj , nj+1)− f(n1, . . . , nj)

∣∣ ≤ εj for all elements (n1, . . . , nj , nj+1) ∈ A.

Lemma 7.20. The set FD,E defined above is a compact subset of ℓ∞(A).
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Proof. First, note that for each function f ∈ FD,E it holds supa∈A

∣∣f(a)∣∣ ≤ D+
∑∞

i=1 εi <∞, so f ∈ ℓ∞(A). Further,
since all the inequalities defining FD,E are non-strict, the set FD,E is closed in ℓ∞(A). Since ℓ∞(A) is complete, FD,E

is also complete. In addition, the diameter of FD,E is finite (it bounded by the number D + 2
∑∞

i=1 εi).
Put A[k] =

{
(n1, . . . , nk) ∈ A

}
and Ak = ∪k

j=1Aj . We denote by πk : ℓ∞(A) → ℓ∞(Ak) the canonical projection
that maps each function f : A→ R to its restriction on Ak ⊂ A, and let Fk = πk(FD,E). Note that Fk is a closed and
bounded subset of the finite-dimensional vector space ℓ∞(Ak), therefore Fk is compact.

Define the mapping ν : Fk → ℓ∞(A) by extending each function fk ∈ Fk to the entire set A as follows:

fk(n1, . . . , nk, nk+1, . . .) = fk(n1, . . . , nk).

It is clear that ν is isometric, therefore F ′
k = ν(Fk) is also a compact set.

Put ek = εk + εk+1 + . . ., then ek → ∅ as k → ∞. By Condition (2), we have FD,E ⊂ U
ℓ∞(A)
ek (F ′

k) for all k ≥ 2,
which implies the total boundedness of FD,E (verify that).

We now take the set FD,2E as K and show that each space X ∈ C can be isometrically embedded into this K. We
consider points of the form xa, a ∈ A, and again, for brevity, instead of x(n1,...,nj) we write xn1···nj

.

Take an arbitrary X ∈ C. Since cov(X, ε1) ≤ N(ε1) = N1, then X contains an ε1-net ∪N1
n1=1

{
xn1

}
, i.e., the family{

Uε1(xn1)
}N1

n1=1
forms a cover of X. Note that some points xn1 may coincide.

Further, since cov(X, ε2) ≤ N(ε2) = N2, then X contains an ε2-net ∪N2
n2=1

{
x′n2

}
, i.e., the family

{
Uε2(x

′
n2
)
}N2

n2=1

forms a cover of X. Fix n1 and choose only those balls Uε2(x
′
n2
) that satisfy |xn1

x′n2
| < ε1 + ε2. In this way we have

got at most N2 balls. Enumerate them and add some copies of them to obtain exactly N2 balls which we denote by

Uε2(xn1n2), n2 = 1, . . . , N2. So, we have got a cover
{
Uε2(xn1n2)

}N2

n2=1
of the ball Uε1(xn1). By construction, it holds

|xn1
xn1n2

| < ε1 + ε2 < 2ε1.
Continuing this process, at the j-th step we get the family of balls

{
Uεj (xa)

}
a∈A[j]

with |xn1···njxn1···njnj+1 | < 2εj .

It is easy to see that the set {xa}a∈A of centers of these balls is a countable everywhere dense subset of X (some
xa may coincide with each other). By Theorem 2.26, the space X can be isometrically embedded into ℓ∞(A) by
associating with each point x the function fx : A→ R defined as follows: fx(a) = |xxa|.

Lemma 7.21. For every x ∈ X we have fx ∈ FD,2E.

Proof. It is clear that 0 ≤ fx ≤ D, so that Item (1) from the definition of the set FD,2E is satisfied. Further, for each
(n1, . . . , nj , nj+1), the point xn1···njnj+1

lies in U2εj (xn1···nj
), so for every x ∈ X we have∣∣fx(n1, . . . , nj , nj+1)− fx(n1, . . . , nj)

∣∣ = ∣∣|xn1···njnj+1
x| − |xn1···nj

x|
∣∣ ≤ |xn1···njnj+1

xn1···nj
| < 2εj ,

therefore, Item (2) from the definition of the set FD,2E is also fulfilled.

Thus, the mapping x 7→ fx isometrically embeds X into K.

7.5 Some other properties of Gromov–Hausdorff space

In this section we apply the previous results to prove a few more properties of the Gromov–Hausdorff space M.

7.5.1 Completeness of Gromov–Hausdorff space

Theorem 7.19 implies the following result.

Theorem 7.22. The space M is complete.

Proof. Consider an arbitrary fundamental sequence {Xi}∞i=1 ⊂ M. Then {Xi}∞i=1 is a totally bounded subset of M.
By Theorem 7.19, there exists a compact set K ⊂ ℓ∞ into which all Xi can be isometrically embedded. Denote by
Yi the image of Xi. By Theorem 5.38, the space H(K) of all closed bounded subsets of K is also compact, therefore
the sequence Yi ∈ H(K) contains a convergent subsequence Yni . Let Y be the limit of this subsequence. Then Y is a
nonempty compact metric space and

dGH(Xni
, Y ) = dGH(Yni

, Y ) ≤ dH(Yni
, Y ) → 0 as i→ ∞,

therefore, Xni

GH−−→ Y and, since the sequence Xi is fundamental, we have Xi
GH−−→ Y .
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7.5.2 Separability of Gromov–Hausdorff space

Theorem 7.23. The space M is separable.

Proof. By Corollary 7.17, each space Mn(D) is totally bounded and, therefore, separable. Since Mn = ∪∞
k=1Mn(k),

then all Mn, as well as their union ∪∞
n=1Mn, are separable. This last union is the set of all finite metric spaces,

which, as noted in Example 6.27, is an everywhere dense subset of M, so that M is separable.

Recall that a complete separable metric space is called Polish. Thus, the following result holds.

Corollary 7.24. The space M is Polish.

By Problem 1.31, for a metric space, the separability is equivalent to having a countable base.

Corollary 7.25. The space M has a countable base.

7.6 Calculating mst-spectrum by means of Gromov–Hausdorff distances

Recall that by ∆n we denoted n-point metric space such that all its nonzero distances equal 1. Also, given λ > 0 and
any metric space X, if we multiply by λ all the distances in X, then the resulting metric space we denote by λX.

In the present section we show that the mst-spectrum of an arbitrary n-point metric space X can be represented
as a linear function on the Gromov–Hausdorff distances from this space to the λ∆2, . . . , λ∆n for λ ≥ 2 diamX.

Theorem 7.26. Let X be a finite metric space, σ(X) = (σ1, . . . , σn−1), λ ≥ 2 diamX. Then

σk = λ− 2dGH(λ∆k+1, X).

Proof. Choose any 1 ≤ k ≤ n− 1 and arbitrary irreducible correspondence R ∈ R0(λ∆k+1, X). By Proposition 6.22,
there exists partitions Rλ∆k+1

= {Zi}pi=1 and RX = {Xi}pi=1 of λ∆k+1 andX, respectively, such that R = ∪p
i=1Zi×Xi,

and min{#Zi,#Xi} = 1 for all i. By Proposition 6.23, it holds disR ≥ max{diamRλ∆k+1
,diamRX}. Thus, if for

some i we have #Zi > 1, then disR ≥ λ ≥ 2 diamX. Since k + 1 ≤ n, there exists R such that #Zi = 1 for all i.
For such R, again by Proposition 6.23, we have disR ≤ diamX. Therefore, infR∈R0(λ∆k+1,X) disR is achieved on a
correspondences of the latter type. The set of these correspondences we denote by R.

Now, if R ∈ R, then p = k + 1 and RX ∈ Dk+1(X). By Proposition 6.23, we have

disR = sup
{
diamRX , |XiXj |′ − λ, λ− |XiXj | : 1 ≤ i < j ≤ k + 1

}
=

= sup
{
λ− |XiXj | : 1 ≤ i < j ≤ k + 1

}
= λ− α(RX),

where the second equality holds because

max
{
|XiXj |′ − λ, diamRX

}
≤ diamX ≤ λ− diamX ≤ λ− |XiXj |

for any 1 ≤ i < j ≤ k + 1. Corollary 6.21, together with above considerations, gives us

2dGH(λ∆k+1, X) = min
R∈R

disR = min
R∈R

(
λ− α(RX)

)
= λ− max

D∈Dk+1(X)
α(D),

where the last equality holds because each D generates some R ∈ R.
It remains to use Theorem 4.13 which states that

σk = max
{
α(D) : D ∈ Dk+1(X)

}
,

thus, 2dGH(λ∆k+1, X) = λ− σk.

Corollary 7.27. Let X be a finite metric space and λ ≥ 2 diamX, then

mstX = λ(#X − 1)− 2

#X−1∑
k=1

dGH(λ∆k+1, X).
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7.7 Steiner problem in Gromov–Hausdorff space

In this section we prove the following

Theorem 7.28. Let M ⊂ M be a finite set such that each X ∈M is a finite metric space. Then SMT(M,M) 6= ∅,
i.e., for such M the Steiner problem has a solution.

Remark 7.29. For arbitrary finite M ⊂ M the problem is still open.

Proof. Let n = #M . In Section 4.5 we introduced model full Steiner trees, and we have shown how to use them for
calculating the length of a Steiner minimal tree. Recall the corresponding definitions in our case. A full Steiner tree
has the vertices of two types only: the ones of degree 1 which we call boundary, and the ones of degree 3 which we call
interior. In model full Steiner trees which we use to treat the problem for such M , the vertex set is {1, . . . , 2n− 2},
where {1, . . . , n} are reserved for the boundary vertices. We called two model full Steiner tree equivalent if there is
an isomorphism between them fixed on the boundary. By Bn we denoted the set of all model full Steiner trees with
n boundary vertices considered up to this equivalence.

Enumerate the points from M in an arbitrary way, i.e., we consider a bijection φ : {1, . . . , n} → M . Choose an
arbitrary G ∈ Bn, and consider a network Γ of the type G for which ∂Γ = φ. Then all such networks for given G
differ from each other only in the “positions” of their interior vertices, thus the set [G,φ] of such networks can be
identified with Mn−2. Then we proved (Corollary 4.24) that

smt(M,M) = inf
{
|Γ| : Γ ∈ [G,φ], G ∈ Bn

}
.

Choose an arbitrary G ∈ Bn and any Γ ∈ [G,φ]. We put Xi = Γ(i), then M = {X1, . . . , Xn}. For each
ij ∈ E(G) we choose an arbitrary Rij ∈ Ropt(Xi, Xj) in such a way that R−1

ji = Rij . Let Xk = {xik}
nk
i=1, then for any

k ∈ {1, . . . , n} and any 1 ≤ i ≤ nk we construct a network Γi
k : {1, . . . , 2n− 2} → t2n−2

j=1 Xj as follows: in each Xj we

choose one point x
rj
j =: Γi

k(j) such that

(1) xrkk = xik;

(2) for any pq ∈ E(G) we have (x
rp
p , x

rq
q ) ∈ Rpq

(verify that it is always possible to do). Consider the set T = {Γi
k} consisting of all Γi

k over all possible k and i.
For any j ∈ {1, . . . , 2n − 2} we put Vj = ∪T∈T {T (j)}, i.e., we gather in each Xj all points that are the images

of the vertices of the constructed networks. Let us note that all Vj have at most N :=
∑n

k=1 nk points, and for each
j ∈ {1, . . . , n} it holds Vj = Xj .

Further, for each p and q such that pq ∈ E(G) we denote by Rt
pq the set of all pairs (xp, xp) such that for some

T ∈ T we have xp = T (p) and xq = T (q), i.e., we gather all pairs forming the images of the edges of the constructed
networks. Thus, we obtained correspondences Rt

pq ∈ R(Vp, Vq) such that Rt
pq ⊂ Rpq, hence

dGH(Vp, Vq) ≤ disRt
pq ≤ disRpq = dGH(Xp, Xq).

Denote by Γt the network Γt : p 7→ Vp. Since Γt|{1,...,n} = φ and Γt has the type G, then Γt ∈ [G,φ]. Denote by
[G,φ]t the set of all such Γt. Since |Γt| ≤ |Γ|, then

smt(M,M) = inf
{
|Γt| : Γt ∈ [G,φ]t, G ∈ Bn

}
.

However, all Xi belong to MN , therefore, smt(M,M) = smt(M,MN ). Moreover, if we choose Γt such that all Vi,
i ≥ n + 1, coincide with Vk for some k ≤ n, then smt(M,MN ) ≤

∑
1≤p,q≤n dGH(Xp, Xq) =: D′. Thus, it suffices to

consider only Γt with |Γt| ≤ D′, in particular, for such Γt and any pq ∈ E(G) we have dGH(Vp, Vq) ≤ D′.
Let us put d = max{diamXk : k = 1, . . . , n}. Since for any X,Y ∈ M we have dGH(X,Y ) ≥ 1

2 |diamX−diamY |,
then for each Xp we have diamXp ≤ d+ 2(n− 2)D′ =: D (all these estimates are rather rough, however, we do not
need exact ones here). In account, we proved that all Xp belongs to MN (D). By Problem 7.4, the space MN (D) is
compact, that is why the continuous function ℓ : MN (D)n−2 → R, ℓ : (Xn+1, . . . , X2n−2) 7→ |Γt|, attains its minimum
at some Γt

0. It remains to notice that Bn is finite.
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Exercises to Chapter 7
Exercise 7.1. Prove that the product topology on X × Y coincides with the one generated by the metric from
Agreement 7.1.

Exercise 7.2. Prove that the topologies generated by all dt, and by | · | as well, coincide with the product topology
of X × Y .

Exercise 7.3. Prove that

(1) a metric space X is bounded if only for some ε > 0 it holds cov(X, ε) <∞ (similarly, pack(X, ε) <∞);

(2) a metric space X is finite if and only if there exists n such that cov(X, ε) ≤ n for all ε > 0 (similarly, for
pack(X, ε));

(3) the functions f(ε) = cov(X, ε) and g(ε) = pack(X, ε) are monotonically decreasing.

Exercise 7.4. Prove that the set Mn(D) is compact, while M[n](D) for n > 1 is not.


