
Chapter 4

Extreme graphs and networks.

Schedule. Simple graphs, finite graphs, vertices, edges, isomorphism of graphs, adjacency, incidence, neighborhood of a vertex, subgraph, spanning
subgraph, complete graph, subgraph generated by vertices, subgraph generated by edges, walk, degenerate and non-degenerated walks, open and
closed walks, trail, path, circuit, cycle, connected graph, components of a graph, forest, tree, weighted graph, the weight of a subgraph, the weight
of trail, the weight of walk, operations on graphs, union, disjoint union, intersection, difference, deleting edges, deleting vertices, quotient graphs,
quotient by an edge, splitting a vertex, splitting of a vertex, graphs in metric spaces, the length of an edge, the length of a graph, the length of
minimum spanning tree, minimum spanning tree, the length of Steiner minimal tree, Steiner minimal tree, the length of minimal filling, minimal
filling, mst-spectrum of finite metric space, calculation of mst-spectrum in terms of partitions, graphs with boundaries, boundary (fixed) vertices,
interior (movable) vertices, networks, parameterizing graphs of networks, boundary of a network, the length of a network, splitting and splitting
off for networks, full Steiner tree, Steiner minimal trees existence in boundedly compact metric spaces.

In this section, we collect information about various kinds of extreme graphs and networks. We will consider two
types of such graphs: minimal spanning trees and shortest trees, also called Steiner minimal trees.

4.1 Necessary information from graph theory

We will consider only simple graphs, so in what follows by a graph we mean a pair G = (V,E) consisting of two sets
V and E, respectively called the set of vertices and the set of edges of the graph G; the elements from V are called
vertices, and from E are called edges of the graph G. The set E is a subset of the family of two-element subsets of
V . If V and E are finite sets then the graph G is called finite.

It is convenient to use the following notation:

• if {v, w} ∈ E is an edge of the graph G, then we will write it in the form vw or wv; we will also say that the
edge vw joins the vertices v and w, and that v and w are the vertices of the edge vw;

• if the sets V and E are not explicitly indicated, and only the notation for the graph G is introduced, then the
set of vertices of this graph is usually written as V (G), and the set of edges is denoted by E(G).

Recall some concepts from the graph theory. Graphs G = (V,E) and H = (W,F ) are called isomorphic if there
exists a bijective map f : V → W such that uv ∈ E if and only if f(u)f(v) ∈ F . Such a mapping f is called an
isomorphism of the graphs G and H. Isomorphic graphs are often identified and, therefore, are not distinguished.

Two vertices v, w ∈ V (G) are called adjacent if vw ∈ E(G). Two different edges e1, e2 ∈ E(G) are called adjacent
if they have a common vertex, i.e., if e1 ∩ e2 6= ∅. Each edge vw ∈ E(V ) and its vertex, i.e., v or w, are incident to
each other. The set of vertices of a graph G adjacent to a vertex v ∈ V is called the neighborhood of the vertex v and
denoted by Nv. The cardinal number of edges incident to a vertex v is called the degree of the vertex v and is denoted
by deg v, so deg v = #Nv.

A subgraph of a graph G = (V,E) is each graph H = (W,F ) provided that W ⊂ V and F ⊂ E. The fact that a
graph H is a subgraph of a graph G will be written as H ⊂ G. IfW = V then the subgraph H ⊂ G is called spanning.

On the set of all graphs whose vertex sets lie in a given set V , the inclusion relation ⊂ defines a partial order. The
smallest element in this order is the empty graph (∅, ∅); the greatest one is called the complete graph on V , which we
denote by K(V ): in K(V ) each pair of vertices are joined by an edge. This partial order induces the one on the set
of all subgraphs of a graph G = (V,E): now the smallest element is again the empty graph (∅, ∅), but the greatest
one is G.

For each W ⊂ V we define the subgraph G(W ) of the graph G generated by W : its set of vertices coincides with
W , and its set of edges consists of all e ∈ E that connect the vertices from W . In other words, G(W ) is maximal
among subgraphs of G whose vertex sets coincides with W .
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Now, we define a similar construction by interchanging vertices and edges. Namely, for F ⊂ E we define the
subgraph G(F ) of the graph G generated by F : its set of edges coincides with F , and its set of vertices is the collection
of all vertices of G incident to edges from F . In what follows we also apply this construction.

A finite sequence γ = (v0 = v, v1, . . . , vk = w) of vertices of a graph G is called a walk of length k joining v and
w if for every i = 1, . . . , k the vertices vi−1 and vi are adjacent, and the edges ei = vi−1vi are called the edges of the
walk γ. A walk containing at least one edge is called nondegenerate, and not containing is called degenerate. The
walt is called closed if v0 = vn, and it is called open otherwise. A trail is a walk with no repeated edges. A path is
an open trail with no repeated vertices. A circuit is a closed trail. A cycle is a circuit with no repeated vertices.

A graph G is called connected, if each pair of its vertices are joined by a walk. Maximal (by inclusion) connected
subgraphs of a graph G are called components of G. A graph without cycles is called a forest, and a connected forest
is called a tree.

A weighted graph is a graph G = (V,E) equipped with a weight function ω : E → [0,∞) (sometimes it is useful to
consider more general weight functions, for instance, with possibility of negative values or ∞). Sometimes we denote
such weighted graph as (V,E, ω) or (G,ω). The weight ω(H) of a subgraph H ⊂ G is the sum of the weights of edges
from this subgraph: ω(H) =

∑
e∈E(H) ω(e). We can extend this definition to trails, in particular, to paths, circuits

and cycles, considering them as subgraphs of G. In the case of the walk γ = (v0 = v, v1, . . . , vk = w), its weight is
defined as the sum of weights of its consecutive edges: ω(γ) =

∑n
i=1 ∈ (vi−1vi). For graphs without weight functions

these notions are defined as well by assigning the weight 1 to each edge by default.

Remark 4.1. As in the case of metric spaces, we sometimes won’t explicitly denote the weight function. Instead of
that, when we speak about weighted graph G, the weights of all the objects x related to such G we denote by |x|, for
example, for e ∈ E by |e| we mean the weight of this edge, and H ⊂ G by |H| we mean the weight of H, etc.

4.1.1 Some operations on graphs

Let H1 = (W1, F1) and H2 = (W2, F2) be subgraphs of a graph G. Then the following subgraphs are defined:

• the union H1 ∪H2 = (W1 ∪W2, F1 ∪ F2);

• the disjoint union: if W1 ∩W2 = ∅, then to emphasize this fact, instead of H1 ∪H2 we write H1 tH2;

• the intersection H1 ∩H2 = (W1 ∩W2, F1 ∩ F2);

• the difference H1 \H2 = H1(W1 \W2).

Remark 4.2. We can define the operations described above on any graphs Hi, not only on subgraphs of a graph.
To reduce these definitions to the previous ones, we consider Hi as subgraphs of the graph K(W1 ∪W2).

Problem 4.1. Show that each forest is the disjoint union of trees that are components of this forest.

If G = (V,E) is a graph, and F is a set possibly intersecting E, then the operation of deleting the set of edges F
from the graph G produces the graph G \e F := (V,E \ F ). If F = {e} then instead of G \e {e} we will write G \e e.
The operation of deleting a set of vertices W from the graph G produces the graph G \vW := G(V \W ). If W = {w}
then instead of G \v {w} we will write G \v w. If it is clear that F refers to edges, or W refers to vertices, we write
simplified G \ F or G \W , respectively.

Using the operation of deleting edges, we define the complement of a graph G = (V,E) or, in other words, the
graph dual to G to be the graph Ḡ = K(V ) \E. Thus, the dual graph Ḡ has the same set of vertices V , and its edges
are exactly those edges of the complete graph on V that were absent in the original graph G.

Another useful operation for us produces a quotient graph G = (V,E): let ∼ be an equivalence relation on V , and
V = ti∈IVi the partition into classes of this equivalence. We put V/∼= {Vi}, and as E/∼ we take the set of pairs
ViVj , Vi 6= Vj for which there exist vi ∈ Vi, vj ∈ Vj , such that vivj ∈ E. By the quotient graph G/∼ we call the graph
(V/∼ , E/∼ ). An important particular case of this operation creates the quotient of G by an edge e = vw ∈ E: the
result is the graph G/∼ for the equivalence relation identifying the vertices v and w. We denote this quotient graph
by G/e.

The following notation and concepts are also useful: the equivalence class containing a given vertex v will be
denoted by [v]; the mapping π : V → V/∼ , π : v 7→ [v], is called the canonical projection.

Problem 4.2. Let G = (V,E) be a connected graph, and ∼ an arbitrary equivalence relation on the set V . Show
that the graph G/∼ is connected.
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Problem 4.3. Let G = (V,E) be an arbitrary tree, and ∼ be an equivalence relation on the set V such that for each
class Vi of this equivalence the subgraph G(Vi) is a tree. Show that then G/∼ is a tree.

In some cases, the following operations are inverse to the quotient by an edge. We define two such operations:
splitting a vertex of degree greater than or equal to 4, and splitting off some vertex of degree 1 from a vertex of degree
greater than or equal to 2.

So, let G = (V,E) be a graph, v ∈ V , deg v ≥ 4. We partition the neighborhood Nv of the vertex v into two sets
V1 and V2, each of which contains at least two vertices. Consider the graph G \ v, add to its vertex set V \ {v} two
elements w1 and w2 not contained in V \ {v}, and, to the set of edges, all pairs of the form w1v1, v1 ∈ V1, w2v2,
v2 ∈ V2, as well as the pair w1w2. We call the obtained graph the result of splitting the vertex v, and the edge w1w2

the splitting edge. It is clear that the graph obtained from G by the composition of splitting a vertex and the quotient
by the corresponding splitting edge, is isomorphic to G (just in this sense, the splitting is inverse to the quotient
operation).

To determine the splitting off a vertex of degree 1 from v, add to V an element w not contained in V , and add
the edge vw to E. The obtained graph is called the result of splitting off the vertex w from the vertex v, and the edge
wv is called the splitting edge. It is clear that the quotient by the splitting edge is isomorphic to the original graph
(in this sense, splitting off is also inverse to the quotient operation).

4.2 Graphs and optimization problems

Let G = (V,E) be an arbitrary graph. We say that the graph G is defined in a metric space X if V ⊂ X. For every
such graph, the length |e| of its edge e = vw is defined as the distance |vw| between the ending vertices v and w of
these edge, as well as the length |G| of the graph G itself as the sum of the lengths of all its edges. More generally, one
can replace the metric space X with a weighted complete graph

(
K(X), ω

)
; another possibility — to consider some

weighted graph (H,ω) with V (H) = X (not necessarily the complete one), such that G is a subgraph of H. Let us
note that each metric space (X, ρ) can be considered as a weighted complete graph, namely, as

(
K(X), ρ

)
.

4.2.1 Minimum spanning tree problem

Let M be a metric space. We consider M as a weighted complete graph K(M), and denote by T (M) the set of all
spanning trees in K(M). Then we put

mst(M) = inf
T∈T (M)

|T |

and call it the length of minimum spanning tree on M . Each T ∈ T (M) with |T | = mst(M) is call a minimum
spanning tree on M . The set of all minimum spanning trees on M is denoted by MST(M).

Remark 4.3. If M is finite, them MST(M) 6= ∅. For infinite M the situation is rather more difficult, see [1] and [2].

Example 4.4. If all nonzero distances inM are the same, then every spanning tree inK(M) is minimal, so MST(M) =
T (M).

If #M = 3, then each minimum spanning tree is obtained from the complete graph K(M) by deleting the longest
edge (if there are several, then any of them).

Problem 4.4. Let M be a finite metric space. Partition M into nonempty subsets M1 and M2, and let vi ∈Mi were
chosen in such a way that |v1v2| = |M1M2|. Prove that there exists a minimum spanning tree T ∈ MST(M) such
that v1v2 ∈ E(T ).

Remark 4.5. The problem of finding a minimum spanning tree can be naturally generalized. Let M be a set.
Consider a connected weighted graph H with V (H) =M , and denote by T (H) the set of all spanning subtrees of H.
Then we put

mst(H) = inf
T∈T (H)

|T |

and call it the weight of minimum spanning tree in H. If there exists T ∈ T (H) such that |T | = mst(H) then we
call such T a minimum spanning tree in H. The set of all minimum spanning trees in H is denoted by MST(H).
If M is a metric space, and H = K(M) the corresponding weighted complete graph, then mst(H) = mst(M) and
MST(H) = MST(M).

Note that there are a number of fast algorithms that solve the problem of finding a minimum spanning tree in a
finite weighted connected graph. The most popular of them are Kruskal [5] and Prim [6] algorithms.
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4.2.2 Steiner minimal tree problem

Now we generalize the notion of minimum spanning tree. To do that, we consider M as a subset of another metric
spaces X, then we will minimize mst(V ) over all M ⊂ V ⊂ X. Namely, we put

smtX(M) = inf
{
mst(V ) :M ⊂ V ⊂ X

}
and call it the length of Steiner minimal tree on M . Each T ∈ T (V ) for M ⊂ V ⊂ X is called a shortest tree on M or
a Steiner minimal tree on M if |T | = smtX(M). The set of all Steiner minimal trees on M is denoted by SMTX(M).
If it is clear or not important what X the set M belongs to, we simply write smt(M) and SMT(M) omitting X.

Remark 4.6. The following terminology is convenient when we study Steiner minimal trees or minimum spanning
trees: if G = (V,E) is a graph such that V ⊂ X, then we say that G is a graph in the space X. If M ⊂ V then we
say that G joins M ; if M = V then we say that G spans M . Thus, looking for minimum spanning trees we minimize
the length of the trees spanning M , and for Steiner minimal trees we deal with the trees in the space X joining M .

Remark 4.7. The classical problem of finding a shortest tree is formulated for the Euclidean plane X = R2. The
case #M = 3 arose as early as 1643 in works of Fermat [7]. For an arbitrary finite number of points on the Euclidean
plane, the problem was posed by Jarńık and Kössler in 1934 [8]. Courant and Robbins [9] mistakenly called the
problem of finding a shortest tree on the Euclidean plane the Steiner problem. Due to popularity of the book [9], this
title has been fixed. The Steiner problem can be solved by Melzak’s algorithm [10] and its many improvements, see
for example [11] and [12]. As shown in [13], the Steiner problem is algorithmically complex (NP -complete).

Remark 4.8.

(1) Generally speaking, the set SMT(M) can be empty, also for finite M , however, the value smt(M) is always
defined.

(2) The set SMTX(M) and the value smtX(M) depend not only on the distances between points from M , but
also on the geometry of the ambient space X: isometric M lying in different metric spaces X can be joined by
Steiner minimal trees of different lengths. Some details on the theory of Steiner minimal trees can be found, for
example, in [3] or [4].

Problem 4.5. Find all Steiner minimal trees for 3-point boundaries in the Euclidean plane. How many such trees
exist for different boundaries?

Problem 4.6. Find all Steiner minimal trees for the vertices of a square in the Euclidean plane. How many such
trees exist?

Problem 4.7. Find all Steiner minimal trees for 3-point boundaries in the plane with ℓ1-metric defined by the norm∥∥(x, y)∥∥ = |x|+ |y|. How many such trees exist for different boundaries?

Problem 4.8. Construct an example of a complete metric space and of some its finite subset M , such that there is
no a Steiner minimal tree joining M .

4.2.3 One-dimensional minimal filling problem

We now fix a finite metric space M . We will embed it isometrically into various metric spaces X, and minimize
smtX(M) over all such embeddings. To overcome the Cantor paradox, we put

mf(M) = inf
{
r | there exists an isometric embedding ν : M → X with smtX

(
ν(M)

)
≤ r

}
and call it the length of minimal filling of M . Each tree G ∈ SMTX

(
ν(M)

)
such that |G| = mf(M) is called a minimal

filling of M . The set of all minimal fillings of M is denoted by MF(M).

Remark 4.9. Each graph G in a metric space X can be naturally considered as a weighted graph with the weight
function assigning to the edges their lengths. Thus, each minimal filling is a weighted graph. The triangle inequality
in X leads to the fact that the distances between points in M are majorized by the length of pathes in G connecting
these points.
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All this motivates an alternative equivalent definition of minimal fillings. Namely, let G = (V,E, ω) be a weighted
connected graph. Recall that in Construction 2.7 we introduced the corresponding pseudometric dω on V as follows:
for arbitrary v, w ∈W we put

dω(v, w) = inf
{
ω(γ) : γ is a walk joining v and w

}
.

Let M be a metric space. A connected weighted graph G = (V,E, ω) joining M is called a filling of M if for any
v, w ∈M we have |vw| ≤ dω(v, w).

Problem 4.9. Prove that for any metric space M it holds

mf(M) = inf
{
ω(G) : G is a filling of M

}
.

The following results were obtained in [15].

Problem 4.10. Prove that for any finite metric space M there exists a minimal filling.

Problem 4.11. Let M be a finite metric space with equal non-zero distances. Describe all minimal filling of M .

Remark 4.10. The multidimensional problem on minimal fillings was formulated by M.Gromov [14]. One-dimensional
minimal filling as a stratified version of the Gromov’s problem was studied by Ivanov and Tuzhilin [15].

4.3 mst-spectrum of a finite metric space

In this section we consider only finite metric spaces M , i.e., #M <∞.
To start with, we note that the minimum spanning tree, generally speaking, is not uniquely defined. For G ∈

MST(M), by σ(G) we denote the vector whose elements are the lengths of the edges of the tree G sorted in descending
order. The following result is well known, however, we present its proof for completeness.

Proposition 4.11. For any G1, G2 ∈ MST(M) it holds σ(G1) = σ(G2).

Proof. Recall the standard algorithm for converting one minimum spanning tree to another [5].
Let G1 6= G2, Gi = (M,Ei), then E1 6= E2 and #E1 = #E2, therefore, there exists e ∈ E2 \E1. The graph G1 ∪ e

has a cycle C containing the edge e. There is no longer edge in the C cycle than e, because otherwise G1 6∈ MST(M).
The forest G2 \ e consists of two trees whose vertex sets we denote by V ′ and V ′′. Clearly, M = V ′ t V ′′. The cycle
C contains an edge e′ 6= e joining a vertex from V ′ with a vertex from V ′′. This edge does not lie in E2, otherwise
G2 would contain a loop. Therefore, e′ ∈ E1 \ E2.

The graph G2 ∪ e′ also contains some cycle C ′. By the choice of e′, the cycle C ′ also has the edge e. Similarly
to the above, the length of the edge e is less than or equal to the length of the edge e′, otherwise G2 6∈ MST(M).
Therefore, |e| = |e′|.

Replacing the edge e′ in G1 with e, we get a tree G′
1 of the same length, i.e., it is a minimum spanning tree as well,

and G′
1 and G2 have one common edge more than the trees G1 and G2. Thus, in a finite number of steps, we rebuild

the tree G1 into the tree G2, passing through minimum spanning trees. It remains to notice that σ(G′
1) = σ(G1),

therefore, σ(G1) = σ(G2).

Proposition 4.11 motivates the following definition.

Definition 4.12. For any finite metric space M , by σ(M) we denote σ(G) for an arbitrary G ∈ MST(M) and call it
the mst-spectrum of the space M .

Construction 4.1. For a set M and a cardinal number k ≤ #M , by Dk(M) we denote the family of all possible
partitions of the set M into k of its nonempty subsets. Now let M be a metric space and D = {Mi}i∈I ∈ Dk(M).
Put α(D) = inf

{
|MiMj | : i 6= j

}
.

Theorem 4.13. Let M be a finite metric space and σ(M) = (σ1, . . . , σn−1). Then

σk = max
{
α(D) : D ∈ Dk+1(M)

}
.

Proof. Let G = (M,E) ∈ MST(M) and the set E be ordered so that |ei| = σi. Denote by D = {M1, . . . ,Mk+1} the
partition of the set M into the sets of vertices of the trees G \ {ei}ki=1.
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Lemma 4.14. We have α(D) = |ek|.

Proof. Indeed, we choose arbitrary Mi and Mj , i 6= j, in them we take points Pi and Pj , respectively, and let γ be
the unique path in G, joining Pi and Pj . Then γ contains some edge ep, 1 ≤ p ≤ k. However, due to the minimality
of the tree G, we have |PiPj | ≥ |ep| ≥ mini |ei| = |ek|, thus |MiMj | ≥ |ek|, so α(D) ≥ |ek|. On the other hand, if i
and j are chosen so that ek joins Mi and Mj , then we get α(D) ≤ |MiMj | = |ek|.

Now consider an arbitrary partition D′ = {M ′
1, . . . ,M

′
k+1}.

Lemma 4.15. We have α(D′) ≤ α(D).

Proof. By virtue of Lemma 4.14, it suffices to show that α(D′) ≤ |ek|. Denote by E′ the set consisting of all edges
ep ∈ E, for each of which there are M ′

i and M ′
j , i 6= j, such that ep joins M ′

i and M ′
j . Since G is connected, the

set E′ consists of at least k edges; otherwise, the set of indices {1, . . . , k + 1} is split into two nonempty subsets
I and J such that the sets ∪i∈IM

′
i and ∪j∈JM

′
j that generate the partition M are not joined by any edge from

E. On the other hand, if some M ′
i and M ′

j , i 6= j, are joined by an edge e′ ∈ E′, then |M ′
iM

′
j | ≤ |e′|, hence

α(D′) = min |M ′
iM

′
j | ≤ mine′∈E′ |e′| ≤ |ek|.

Lemma 4.15 completes the proof of the theorem.

4.4 Networks

To study Steiner minimal trees and minimal fillings, it is sometimes more convenient to work with so-called networks
instead of the graphs in metric spaces. For example, if we investigate deformations of such graphs perturbing the
positions of some their vertices, it may happen that after such a perturbation some vertices coincide, however we
would like to preserve the structure of the graph by considering the coinciding vertices as different ones. To achieve
this, we suppose that the graph is given apart of the metric space, and “the positions of its vertices in the space” are
provided by a mapping from the vertex set of the graph to this space. Such mappings are called networks.

Remark 4.16. Let us discuss three additional observations.

(1) In the optimization problems we usually deal with connected graphs, thus the domain of each network will be
the vertex set of a connected graph, more often, of a tree.

(2) We usually investigate boundary-value problems, that is why we need to partition the vertices into boundary
and all remaining (nonboundary) ones.

(3) We usually minimize the length of a graph. If a graph G in a metric space contains a nonboundary vertex of
degree 1 or 2, we can simplify G preserving its connectedness, boundary, and not increasing its length. In the
case of degree 1 nonboundary vertex, we can simply remove the edge incident to this vertex. In the case of
degree 2 nonboundary vertex, we can change the both edges incident to this vertex by the unique edge joining
the remaining vertices of these edges. That is why we usually assume that each boundary contains all the
vertices of degree 1 and 2.

Remark 4.17. Indeed, we could also destroy possible cycles in the graph we optimize, and thus we might restrict
ourselves with trees. However, in what follows we will see that such restriction leads us to some inconvenience, that
is why we do not limit ourselves with trees only, but develop the corresponding theory for general connected graphs.

Now we are ready to give formal definitions.
We will assume that in each graph G there is a certain set of vertices ∂G ⊂ V (G) containing all vertices of degree

1 and 2 (the set ∂G can be empty), which is called the boundary of the graph G, and the vertices from ∂G are called
boundary ones. The remaining vertices of the graph G are called interior ones. Sometimes the boundary vertices are
also called fixed, while the interior vertices are called movable.

Let G = (V,E) be a connected graph with some boundary ∂G. A network of the type G in a metric space X is an
arbitrary mapping Γ: V → X. The G is also called the parameterizing graph of Γ. In what follows, we will transfer
to the networks all the terminology from the graph theory related to their parameterizing graphs.

Let Γ: V → X be a network parameterized by a connected graph G = (V,E) with a boundary ∂G ⊂ V . Then

(1) the restrictions of Γ to the vertices and the edges of G are called the vertices and the edges of Γ, respectively;
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(2) the restriction of Γ to ∂G is called the boundary of Γ and is denoted by ∂Γ;

(3) for each vw ∈ E the value
∣∣Γ(v)Γ(w)∣∣ is called the length of the edge Γ: {v, w} → X;

(4) the sum of the lengths of all edges of Γ is called the length of Γ and is denoted by |Γ|.

Example 4.18. Let G = (V,E) be a connected graph in a metric space X joining M ⊂ X, i.e., M ⊂ V ⊂ X, such
thatM contains all the vertices of G of degree 1 and 2. Put ∂G =M , and define a network Γ: V → X as the inclusion
mapping Γ: v 7→ v. Thus, Γ is a network in X of the type G, and |Γ| = |G|.

Example 4.19. Let X be a metric space, G = (V,E) a connected graph with ∂G = M ⊂ X. Let Γ: V → X be a
network whose restriction to M is the inclusion: Γ(v) = v for all v ∈M . Suppose that the mapping Γ is injective. By
identifying each vertex v ∈ V with its image Γ(v) ∈ X, we can consider G as a graph in X, so the length |G| of G is
defined. Then, with this identification, we have |Γ| = |G|.

Definition 4.20. As in Example 4.19, given a metric space X, let G = (V,E) be a connected graph with ∂G =M ⊂
X, and Γ: V → X be a network whose boundary ∂Γ: M → X is the inclusion: ∂Γ(v) = v for all v ∈M . For such Γ
we say that Γ joins the subset M of the space X (we do not assume here that Γ is injective outside M).

4.4.1 Networks and quotients

Now let V ′ be a set, ∼ an equivalence relation on V ′, and suppose that V = V ′/∼ . Denote by π : V ′ → V the
canonical projection. Let G′ = (V ′, E′) be a connected graph such that G = G′/∼ and ∂G = π(∂G′). Let Γ: V → X
be a network of the type G with the boundary ∂Γ: ∂G → X, then the composition Γ′ = Γ ◦ π : V ′ → X is correctly
defined and is a network in X of the type G′ with the boundary ∂Γ′ = ∂Γ ◦ π|∂G′ .

Problem 4.12. Show that

(1) |Γ′| ≥ |Γ|;

(2) if G′ is a tree, V = {V ′
i }, and G′(V ′

i ) ⊂ G′ is a tree for each i, then G is also a tree and |Γ′| = |Γ|;

(3) give an example in which G′ is a tree, G is not a tree, and |Γ′| = |Γ|;

(4) give an example in which G′ and G are trees, and |Γ′| > |Γ|.

4.4.2 Splitting and splitting off for networks

In this section we extend the operations of “splitting a vertex” and “splitting off from a vertex” which we defined
above, to the case of graphs with boundaries and the corresponding networks. These operations enable us to simplify
the structures of networks in consideration.

In Section 4.1 we defined splitting a vertex of degree greater than or equal to 4, and splitting off a vertex of degree
1 from a vertex of degree greater than or equal to 2. For graphs with boundary, we refine these definitions.

We will split only interior vertices, while the resulting vertices will again be classified as interior; we will only split
off from boundary vertices, and if we split off a vertex w from the boundary vertex v, then we assign the vertex v to
interior one, and w to boundary one. The both these operations can be naturally defined for networks.

A graph G with a boundary is called non-splittable if no vertex can be split off from any boundary vertex, and no
interior vertex can be split. For a finite graph G, we define the degree p(G) of non-splitting, setting it equal to the
sum of deg v − 3 over all interior vertices v of G. It is easy to see that the G, for which the degrees of all boundary
vertices are 1, is not splittable if and only if p(G) = 0.

The next lemma will be the key point in the proof of Theorem 4.23.

Lemma 4.21. For each finite graph G = (V,E) with a boundary ∂G there exists a finite graph G′ = (V ′, E′) with a
boundary ∂G′, and an equivalence relation ∼ on V ′, such that G = G′/∼ and the following properties hold :

(1) all boundary vertices of G′ have degree 1;

(2) all interior vertices of G′ have degree 3;

(3) for connected G, the graph G′ is connected ;
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(4) for a tree G, the graph G′ is a tree;

(5) the ∼-class of each boundary vertex of G′ is a singleton;

(6) the canonical projection mapping π : V ′ → V corresponding to ∼ is a bijection between ∂G′ and ∂G;

(7) if G (and G′) is a tree, then for each v ∈ V , W = π−1(v), the graph G′(W ) ⊂ G′ is a tree.

Proof. To start with, we split off a vertex of degree 1 from each boundary vertex of G. As a result, we obtain a
graph with all boundary vertices of degree 1. In this graph, we will successively split all its interior vertices of degree
greater than or equal to 4. It is easy to see that the degree of non-splitting of this graph decreases by 1 for each
splitting, therefore, in a finite number of steps, we arrive to a non-splittable graph G′ = (V ′, E′). We denote by ∼ the
equivalence relation on V ′, which is obtained from the trivial equivalence relation on V (whose all equivalence classes
are singletons) according to the following rule: for each splitting off and splitting, the resulting pair of vertices is
equivalent to all those ones to which the original vertex was equivalent, and to each other. It is clear that G′/∼= G.
It remains to notice that those splittings preserve the connectivity and do not create cycles.

4.5 Steiner minimal trees existence

As we already mentioned in Problem 4.8, some metric spaces, also under assumption of completeness, may contain
finite subsets which can not be joined by a Steiner minimal tree. In this section we prove that Steiner minimal trees
always exist in boundedly compact metric spaces. To do that, we first need to reduce this problem to minimization of
a finite number of continuous functions. To construct these functions, we show that it suffices to minimize the lengths
of networks whose types can be chosen from some finite collection.

A tree G, and a network Γ of the type G in a metric space X, both joining a set M ⊂ X, are called full Steiner
trees if all their boundary vertices have degree 1 and all their interior vertices have degree 3. Let us stress that the
boundary ∂Γ of this network is the inclusion M ⊂ X.

Remark 4.22. If the graph G from Lemma 4.21 is a tree then the graph G′ from this lemma is a full Steiner tree.

Theorem 4.23. Let X be an arbitrary metric space and M be a finite subset of X. Then smt(M) is equal to the
infimum of the lengths of all full Steiner trees Γ joining M .

Proof. Recall that
smt(M) = inf

{
|G| : G is a tree in X with ∂G =M

}
.

As we mentioned in Remark 4.16, it suffices to consider only trees G whose vertices of degree 1 and 2 belong to M .
In what follows, we will minimize over such trees only.

Problem 4.13. Prove that any finite tree G with n ≥ 2 boundary vertices contains at most n − 2 interior vertices.
The equality holds exactly in the case when G is a full Steiner tree.

Problem 4.13 states that in calculation of smt(M) we can consider only finite trees G with the boundary M . This
enables us to use Lemma 4.21, according to which for every G there exists a full Steiner tree G′ and an equivalence
relation ∼ on V (G′) such that G = G′/∼ . Let π : V (G′) → V (G) be the corresponding canonical projection, then
this π, being considered as a mapping from V (G′) to X, is a full Steiner tree joining M . Since G and G′ are trees,
then by Lemma 4.21 each equivalence class generates a subtree of G′, thus, by Problem 4.12, we have |π| = |G|, that
completes the proof.

To list, up to a natural isomorphism, all the full Steiner trees from Theorem 4.23, we construct a model set of
such trees. By a model full Steiner tree we mean a full Steiner tree G = (V,E) with V = {1, 2, . . . , 2n − 2} and
∂G = {1, . . . , n}. Two model full Steiner trees are called equivalent if there is an isomorphism between them that
is identical on the boundary {1, . . . , n}. Thus, equivalent trees differ from each other by the numbering of their
interior vertices. We denote by Bn the set of all model full Steiner trees with n boundary vertices considered up
to the introduced equivalence. In other words, we construct Bn by choosing in each equivalence class an arbitrary
representative.

Now let X be a metric space and M be a finite subset of X consisting of n points. We enumerate the points from
M in an arbitrary way, i.e., consider some bijection φ : {1, . . . , n} → M . Choose an arbitrary G ∈ Bn, and consider
a network Γ of the type G for which ∂Γ = φ. Then all such networks differ only in the “positions” of their interior
vertices. The set of such networks is denoted by [G,φ].
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It is clear that all networks from Theorem 4.23 are obtained from the networks just described by identification,
concordant with φ, of the set {1, . . . , 2n−2} with the sets of vertices of the graphs parameterizing the former networks.
Thus, we have proved the following result.

Corollary 4.24. Let X be an arbitrary metric space and M ⊂ X be a finite subset of X. Then

smt(M) = inf
{
|Γ| : Γ ∈ [G,φ], G ∈ Bn

}
.

Remark 4.25. Note that the set Bn by which we minimize in Corollary 4.24 is finite, and the set [G,φ], by which
minimization is also carried out, can be infinite. In some cases, it is easy to prove that the infimum in [G,φ] is attained
for every G, which immediately implies that SMT(M) 6= ∅ because Bn is finite.

Recall that a metric space is called boundedly compact if each of its closed balls is compact. Equivalent condition:
a subset is compact if and only if it is closed and bounded.

We will present a technical result that is rather simple, but necessary in the future. Let f : X → R be some
function defined on a metric space. We fix an arbitrary point p ∈ X and for r ≥ 0 we set Fp(r) = infx∈X\Br(p) f(x).

Problem 4.14. Suppose that Fp(r) → ∞ as r → ∞. Prove that at any point q ∈ X it holds Fq(r) → ∞ as r → ∞.

From Problem 4.14, the correctness of the following definition immediately follows. We say that a function
f : X → R, defined on a metric space, blows up at infinity if the corresponding function Fp(r) tends to infinity as
r → ∞ for some and, therefore, for every choice of the point p ∈ X.

Proposition 4.26. Let f : X → R be a continuous function defined on a boundedly compact metric space X. Suppose
that f blows up at infinity, then f is bounded below and attains its infimum.

Proof. Indeed, since the corresponding function Fp(r) blows up at infinity, for some r0 it holds f(x) ≥ 0 for all
x ∈ X \Br0(p). On the other hand, the function f is bounded below on the closed ball Br0(p) due to its compactness.
Thus, the lower boundedness of the function f is proved.

Let f0 = infx∈X f(x), and r be such that for all x ∈ X \ Br(p) we have f(x) ≥ f0 + 1. This means that the
infimum of the function f is attained on the ball Br(p), and, due to the compactness of this ball, there exists a point
x0 ∈ Br(p) for which f(x0) = f0.

Theorem 4.27. Let X be a boundedly compact metric space. Then for every nonempty finite M ⊂ X we have
SMT(M) 6= ∅.

Proof. We use Corollary 4.24. If #M = n, then we choose an arbitrary enumeration φ : {1, . . . , n} →M , as well as an
arbitrary model full Steiner tree G ∈ Bn. Then each network Γ ∈ [G,φ] is uniquely determined by the positions of its
interior vertices, i.e., by the “vector” z =

(
Γ(n+ 1), . . . ,Γ(2n− 2)

)
∈ Xn−2. The function ℓ(z) = |Γ| is continuous as

the sum of continuous functions. In addition, this function blows up at infinity, therefore, by virtue of Proposition 4.26,
it attains its infimum. Also, there are a finite number of such functions in the formula from Corollary 4.24, so the
infimum from this formula is attained at a minimum point of one of these functions.
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Exercises to Chapter 4
Exercise 4.1. Show that each forest is a disjoint union of trees that are components of this forest.

Exercise 4.2. Let G = (V,E) be a connected graph, and ∼ an arbitrary equivalence relation on the set V . Show
that the graph G/∼ is connected.

Exercise 4.3. Let G = (V,E) be an arbitrary tree, and ∼ be an equivalence relation on the set V such that for each
class Vi of this equivalence the subgraph G(Vi) is a tree. Show that then G/∼ is a tree.

Exercise 4.4. Let M be a finite metric space. Partition M into nonempty subsets M1 and M2, and let vi ∈Mi were
chosen in such a way that |v1v2| = |M1M2|. Prove that there exists a minimum spanning tree T ∈ MST(M) such
that v1v2 ∈ E(T ).

Exercise 4.5. Find all Steiner minimal trees for 3-point boundaries in the Euclidean plane. How many such trees
exist for different boundaries?

Exercise 4.6. Find all Steiner minimal trees for the vertices of a square in the Euclidean plane. How many such
trees exist?

Exercise 4.7. Find all Steiner minimal trees for 3-point boundaries in the plane with ℓ1-metric defined by the norm∥∥(x, y)∥∥ = |x|+ |y|. How many such trees exist for different boundaries?

Exercise 4.8. Construct an example of a complete metric space and of some its finite subset M , such that there is
no a Steiner minimal tree joining M .

Hint. Consider on the set X = {0, 1, 2, . . .} the distance function |mn| = 1 + 1
m+n , m 6= n. Prove that it is

a complete metric. Consider the space X3 with the complete metric generated by the norm ‖ · ‖∞. Put M =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Prove that SMT(M) = ∅.

Exercise 4.9. Prove that for any metric space M it holds

mf(M) = inf
{
ω(G) : G is a filling of M

}
.

Exercise 4.10. Prove that for any finite metric space M there exists a minimal filling.

Exercise 4.11. Let M be a finite metric space with equal non-zero distances. Describe all minimal fillings of M .

Exercise 4.12. Let G = (V,E) be a connected graph in a metric space X joining M ⊂ X, i.e., M ⊂ V ⊂ X. Put
∂G = M , and define a network Γ: V → X as the embedding mapping Γ: v 7→ v. Let V ′ be a set, ∼ an equivalence
relation on V ′, and suppose that V = V ′∼ . Denote by π : V ′ → V the canonical projection. Let G′ = (V ′, E′) be a
connected graph such that G = G′/∼ . Then the composition Γ′ = Γ ◦ π : V ′ → X is a network in X of the type G′.
Show that

(1) |Γ′| ≥ |Γ|;

(2) if G′ = (V ′, E′) is a tree, and for each class V ′
i of the equivalence ∼ the subgraph G′(V ′

i ) ⊂ G′ is a tree, then G
is also a tree and |Γ′| = |Γ|;

(3) give an example in which G′ is a tree, G is not a tree, and |Γ′| = |Γ|;

(4) give an example in which G′ and G are trees, and |Γ′| > |Γ|.

Exercise 4.13. Prove that any finite tree G with n ≥ 2 boundary vertices contains at most n − 2 interior vertices.
The equality holds exactly in the case when G is a full Steiner tree.

Exercise 4.14. Let f : X → R be some function defined on a metric space. We fix an arbitrary point p ∈ X and for
r ≥ 0 we set Fp(r) = infx∈X\Br(p) f(x). Suppose that Fp(r) → ∞ for r → ∞. Prove that at any point q ∈ X it holds
Fq(r) → ∞ as r → ∞.


