
Chapter 3

Curves in Metric Spaces.

Schedule. Curves in a topological space, parameter of a curve, reparametrization, polygonal line in a metric space, its edges, the length of the
edge, the length of the polygonal line, the length of a curve in a metric space, rectifiable curves, properties of the length functional, intrinsic
metric, generalized intrinsic pseudometric, maximal and minimal generalized pseudometrics, minimum of generalized intrinsic pseudometrics,
quotients of generalized intrinsic pseudometric spaces, Hopf-Rinow condition, Hopf-Rinow theorem Part 1, convergence and uniform convergence in
terms of the corresponding product spaces, limits of sequences of Lipschitz mappings, arc-length and uniform curves, reparametrizations, uniform
reparametrizations, Arzela-Ascoli theorem, shortest curves and geodesics, existences theory for shortest curves, geodesic metric space, midpoints
and ε-midpoints, existence of shortest curves in term of midpoints, intrinsic metrics and ε-midpoints.

In this section we discuss some results related to the geometry of curves in metric spaces.
Recall that a curve in a topological space X is any continuous mapping γ : [a, b] → X from a segment [a, b] ⊂ R

with the standard topology; the variable t ∈ [a, b] is called the parameter of the curve γ, and the curve γ is sometimes
written in the form γ(t).

Each homeomorphism φ : [c, d] → [a, b] generates a new curve γ ◦ φ : [c, d] → X, about which we say that it is
obtained from γ by replacement φ of the parameter t with the parameter s ∈ [c, d]. Moreover, if there is no misunder-
standing, instead of the curve (γ ◦ φ)(s) we simply write γ(s). Such replacement φ is also called a reparametrization.

Note that each reparametrization is a strictly monotonic continuous function. If the function φ grows, then we
say that φ reverses the direction, otherwise that it changes the direction.

3.1 Rectifiable curves

Let X be a metric space. A finite sequence L = (A0, . . . , An) of points in the space X we called a polygonal line in
X; moreover, the pairs (Ai−1, Ai) will be called edges of the polygonal line L, and the numbers |Ai−1Ai| the lengths
of these edges. The sum of the lengths of all these edges we call the length of the polygonal line L and denote by |L|.

Let γ : [a, b] → X be an arbitrary curve. For each partition ξ = (a = t0 < t1 < · · · < tm = b), consider the
corresponding polygonal line Lγ(ξ) =

(
γ(t0), . . . , γ(tm)

)
(such polygonal lines will be called inscribed in the curve γ),

then the value
|γ| = sup

{∣∣Lγ(ξ)
∣∣ : ξ is a partition of the segment [a, b]

}
is called the length of the curve γ. A curve γ is called rectifiable if |γ| <∞.

Let us give some examples of rectifiable curves.

Example 3.1. Each C-Lipschitz curve γ : [a, b] → X is rectifiable, because for any partition ξ of the segment [a, b]
we have |Lγ(ξ)| ≤ C(b− a) and, therefore, |γ| ≤ C(b− a) <∞.

Denote by Ω(X) the family of all curves in a metric space X, and by Ω0(X) ⊂ Ω(X) the subfamily of all rectifiable
curves. Note that on Ω(X) and on Ω0(X) there are defined

(1) the restriction of each curve γ : [a, b] → X to each subsegment [c, d] ⊂ [a, b];

(2) the gluing γ1 · γ2 of those pairs of curves γ1 : [a, b] → X, γ2 : [b, c] → X for which γ1(b) = γ2(b), namely,
(γ1 · γ2) : [a, c] → X is the curve whose restrictions to [a, b] and [b, c] coincide with γ1 and γ2, respectively;

(3) the reparametrization and equivalence identifying curves that differ by parameterization.

The following proposition describes some properties of the length of a curve.
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Proposition 3.2. Let X be an arbitrary metric space. Then

(1) generalized triangle inequality: if γ ∈ Ω(X) joins the points x, y ∈ X, then |γ| ≥ |xy|;

(2) additivity: if γ = γ1 · γ2 is the gluing of curves γ1, γ2 ∈ Ω(X) then |γ| = |γ1|+ |γ2|;

(3) continuity: for any γ ∈ Ω0(X), γ : [a, b] → X, the function f(t) =
∣∣γ|[a,t]∣∣ is continuous;

(4) independence from parameter: for each γ ∈ Ω(X), γ : [a, b] → X, and reparametrization φ : [c, d] → [a, b],
it holds |γ| = |γ ◦ φ|;

(5) consistency with topology: for each x ∈ X, ε > 0, y ∈ X \ Uε(x), and a curve γ ∈ Ω(X) joining x and y,
it holds |γ| ≥ ε;

(6) lower semicontinuity: for any sequence γn ∈ Ω0(X) that converges pointwise to some γ ∈ Ω0(X), we have

|γ| ≤ lim inf
n→∞

|γn|.

Proof. Only the items (3) and (6) are nontrivial, we prove them.
(3) Choose an arbitrary t ∈ [a, b] and show that for any ε > 0 there is δ > 0 such that for all s ∈ [a, b]∩ (t−δ, t+δ)

the inequality
∣∣f(t)− f(s)

∣∣ < ε holds. Put ℓ = |γ|. By definition, there exists a partition ξ of the segment [a, b] such

that ℓ− ε/2 <
∣∣Lγ(ξ)

∣∣ ≤ ℓ. If t 6∈ ξ, add it to ξ (we denote the resulting partition by the same letter). It is clear that

for the resulting partition, ℓ− ε/2 <
∣∣Lγ(ξ)

∣∣ ≤ ℓ is still satisfied.
For δ1 we take the distance from t to the nearest element of the partition ξ, other than t. Since subdivisions of the

partition ξ can change the length of the polygonal line Lγ(ξ) only within (ℓ−ε/2, ℓ], then for each s ∈ [a, b]∩(t−δ1, t+δ1)
the length ℓts =

∣∣f(t)−f(s)∣∣ of the fragment of the curve γ between points γ(t) and γ(s) differs from
∣∣γ(t)γ(s)∣∣ by less

than ε/2. On the other hand, since the map γ is continuous, there exists δ2 > 0 such that for all s ∈ [a, b]∩(t−δ2, t+δ2)
we have

∣∣γ(t)γ(s)∣∣ < ε/2. It remains to put δ = min{δ1, δ2}.
(6) Choose an arbitrary ε > 0 and show that for sufficiently large n the inequality |γ| ≤ |γn| + ε holds, thus

|γ| ≤ lim infn→∞ |γn|+ ε and, due to the arbitrariness of ε, we get what is required.
So, let ε > 0 be fixed. Choose a partition ξ = (a = t0 < t1 < · · · < tm = b) of the segment [a, b] such that

|γ| −
∣∣Lγ(ξ)

∣∣ < ε/2. There is N such that for any n > N and all i the inequality
∣∣γ(ti)γn(ti)∣∣ < ε

4m holds. This
immediately implies that ∣∣γ(ti−1)γ(ti)

∣∣ < ∣∣γn(ti−1)γn(ti)
∣∣+ ε

2m
,

therefore
∣∣Lγ(ξ)

∣∣ < ∣∣Lγn
(ξ)

∣∣+ ε/2. Thus,

|γ| <
∣∣Lγ(ξ)

∣∣+ ε/2 < |Lγn
(ξ)|+ ε/2 + ε/2 ≤ |γn|+ ε,

as required.

Problem 3.1. Prove the remaining items of Proposition 3.2.

Problem 3.2. Will the items (3) and (6) of Proposition 3.2 remain true if we change Ω0(X) to Ω(X)?

Problem 3.3. Show that a piecewise smooth curve in Rn is Lipschitzian with a Lipschitz constant equal to the
maximum modulus of the velocity vector of the curve, therefore every such curve is rectifiable.

Let X be a metric space in which any two points are connected by a rectifiable curve. Then for any x, y ∈ X the
quantity

din(x, y) = inf
{
|γ| : γ is a curve joining x and y

}
is finite.

Problem 3.4. Let X be a metric space in which any two points are connected by a rectifiable curve.

(1) Prove that din is a metric.

(2) Denote by τ the metric topology of X w.r.t. the initial metric on X, by τin the metric topology w.r.t. din, by
Xin the set X with metric din and topology τin. Show that τ ⊂ τin. In particular, if a mapping γ : [a, b] → Xin

is continuous, then the mapping γ : [a, b] → X is continuous as well.
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(3) Construct an example when τ 6= τin.

(4) Prove that for each rectifiable curve γ : [a, b] → X the mapping γ : [a, b] → Xin is continuous.

(5) Denote by |γ|in the length of a curve γ : [a, b] → Xin. Show that for each curve γ : [a, b] → X which is also
a curve in Xin, it holds |γ| = |γ|in. Thus, the sets of rectifiable curves for X and Xin coincide, and each
non-rectifiable curve in X is either a non-rectifiable one in Xin, or the mapping γ : [a, b] → Xin is discontinuous.

(6) Construct an example of continuous mapping γ : [a, b] → X such that the mapping γ : [a, b] → Xin is not
continuous. Notice that the curve γ : [a, b] → X can not be rectifiable.

Definition 3.3. If din coincides with the original metric, then the original metric is called intrinsic. A metric space
with an intrinsic metric is also called intrinsic.

Problem 3.5. Let X be a metric space in which any two points are connected by a rectifiable curve. Prove that the
metric din is intrinsic.

Example 3.4. Let S1 be the standard circle on the Euclidean plane R2.

(1) If for x, y ∈ S1 we put d(x, y) equal to the distance in R2 between these points, then the metric d on S1 is not
intrinsic.

(2) If, for d(x, y), we choose the length of the smaller of the two arcs of the circle S1 into which x and y divide it,
then the resulting metric will be intrinsic.

Remark 3.5. If we allow generalized pseudometrics, then we can define din and intrinsic metric not only for those
metric spaces where each pair of points is connected by a rectifiable curve, but for generalized pseudometric spaces
too. To do that, we need only put inf ∅ = ∞, where inf is applied to subsets of [0,∞]. Thus, if x, y ∈ X cannot be
joined by a curve, then we get din(x, y) = ∞. The same holds for x and y joined by non-rectifiable curves only.

Recall that in the previous chapter we introduced the equivalence relation ∼1 such that x ∼1 y if and only if
the generalized distance between these points equals ∞. Applying this equivalence to the generalized din, we get a
partition of the space X into metrics subspaces with finite din.

3.2 Maximal and minimal pseudometrics, quotients

In Chapter 2 we defined maximal pseudometric, see Construction 2.12, and we demonstrated its relation with quotient
distance. Now, let us define maximal and minimal pseudometrics for arbitrary families of generalized pseudometrics.
Also, we apply these generalizations to investigation of intrinsic distances.

Construction 3.1 (Maximal and minimal pseudometric for arbitrary family of pseudometrics). Let X be a set, and
D an arbitrary nonempty family of generalized pseudometrics on X. Then we consider the standard partial order on
the set of all generalized pseudometrics on X, namely, d1 ≤ d2 if d1(x, y) ≤ d2(x, y) for all x, y ∈ X. By means of this
partial order, we define inf D and supD in the standard way.

Put dD(x, y) = supd∈D d(x, y), then the same proof as for Lemma 2.16 can be carried out to obtain that dD is a
generalized pseudometric and dD = supD, thus, supD exists for any nonempty D. We call dD the maximal generalized
pseudometric for the family D. Notice that Construction 2.12 is a particular case of the present one: db = supDb.

Now, let us put b(x, y) = infd∈D d(x, y). This b is not necessarily a generalized pseudometric (construct an
example), however, the db = supDb is, and we denote it by dD.

Proposition 3.6. Under above notations, dD = inf D, and, thus, inf D exists for any nonempty D.

Proof. Since for any d′ ∈ Db and d ∈ D we have d′ ≤ b ≤ d, then dD ≤ D, i.e., dD is a lower bound for D.
Now, let d′ be an arbitrary lower bound for D, then d′ ≤ b and, therefore, d′ ∈ Db. Thus d

′ ≤ dD.

We call dD the minimal generalized pseudometric for the family D.
Also, we can define supD and inf D for empty family D: the first is the zero pseudometric, and the last is the

generalized pseudometric equal ∞ for any pair of distinct points.

Below we will use the following result.
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Problem 3.6. Let ρ1 ≤ ρ2 be generalized pseudometrics on a set X, and Y be a topological space. Prove that each
mapping f : Y → X, continuous w.r.t. ρ2, is also continuous w.r.t. ρ1, in particular, if γ is a curve in (X, ρ2), then γ
is also a curve in (X, ρ1); moreover, if ρ′1 and ρ′2 denote the corresponding generalized intrinsic pseudometrics, then
ρ′1 ≤ ρ′2.

Proposition 3.7. Let X be a set, and D an arbitrary family of intrinsic generalized pseudometrics on X. Then
dD = inf D is intrinsic.

Proof. We put b(x, y) = infd∈D d(x, y), ρ = dD = db, and denote by ρ′ ≥ ρ the generalized intrinsic pseudometric
corresponding to ρ′. Since ρ ≤ d for all d ∈ D, and all d are intrinsic, then ρ′ ≤ d for all d ∈ D due to Problem 3.6.
Thus, ρ′ ≤ b and, therefore, ρ′ ∈ Db. However, ρ is maximal for the class Db, so ρ ≥ ρ′ and we get ρ = ρ′.

In the previous chapter we considered the construction of quotient spaces. What can we say about the quotient
space if the distance function of the initial one is intrinsic?

Proposition 3.8. Let X be a generalized pseudometric space whose distance function is intrinsic, and ∼ an arbitrary
equivalence on X. Then the generalized pseudometric of X/∼ is intrinsic as well.

Proof. Define d : X ×X → [0,∞] by setting d(x, y) = 0 if x ∼ y, and d(x, y) = ∞ otherwise. It is easy to see that
d is a generalized pseudometric. Thus, the space (X, d) is partitioned into subspaces Xi such that |XiXj | = ∞ for
i 6= j, and the distance between points of each Xi vanishes. Thus, the topology on each Xi is anti-discrete, so each
mapping [a, b] → Xi is continuous, i.e., it is a curve, and such curve has zero length. This implies that the distance
function of X is intrinsic.

Let ρ be the original distance function of X. Let us put D = {ρ, d}, then ρ∼ = inf D, because min{ρ, d} equals
the function b∼ from the definition of the quotient space. It remains to apply Proposition 3.7.

Problem 3.7. Let X be an arbitrary set covered by a family {Xi}i∈I of generalized pseudometric spaces. Denote
the distance function on Xi by ρi, and consider the set D of all generalized pseudometrics d on X such that for any i
and x, y ∈ Xi it holds d(x, y) ≤ ρi(x, y). Extend each ρi to the whole X by setting ρ′i(x, y) = ∞ if at least one of x, y
does not belong to Xi, and ρ

′
i(x, y) = ρ(x, y) otherwise (it is easy to see that each ρ′i is a generalized pseudometric).

Denote by D′ the set of all such ρ′i. Prove that supD = inf D′, and if all ρi are intrinsic, then supD is intrinsic as
well.

Problem 3.8. Let D be a collection of generalized pseudometrics defined on the same set X, and Xd for d ∈ D
denote the generalized pseudometric space (X, d). Put W = td∈DXd and denote by ρ the generalized pseudometric
of W . Define on W an equivalence relation ∼ by identifying those points xd ∈ Xd and xd′ ∈ Xd′ which correspond to
the same point x of the set X. The equivalence class of these points xd and xd′ we denote by [x]. Denote by ρ∼ the
quotient generalized pseudometric on W/∼. Define the mapping φ : W/∼→ X as φ : [x] → x, then φ is bijective, and
ρ∼ can be considered as a generalized pseudometric on X. Prove that ρ∼ = inf D.

Problem 3.9. Let ρ1 and ρ2 be intrinsic metrics on a set X. Suppose that these metrics generate the same topology,
and that each x ∈ X has a neighborhood Ux such that the restrictions of ρ1 and ρ2 to Ux coincide. Prove that
ρ1 = ρ2. Show that the condition “ρ1 and ρ2 are intrinsic” is essential.

3.3 Hopf–Rinow condition

General metric spaces can be geometrically very different from Rn. For example, in discrete spaces, balls of nonzero
radius can coincide with their centers. In particular, the distance from an arbitrary point to such a ball will be equal
to the distance from this point to the center. In spaces with an internal metric, this does not occur.

Theorem 3.9 (Hopf–Rinow condition). Let X be a space with an intrinsic metric, x, y ∈ X, x 6= y, and 0 < r ≤ |xy|.
Then ∣∣yUr(x)

∣∣ = |xy| − r.

Remark 3.10. For general metric spaces X, Theorem 3.9 does not hold. For example, if X = {x, y}, |xy| = 1, and
r = 0.5, then Ur(x) = {x},

∣∣yUr(x)
∣∣ = 1 6= |xy| − r = 0.5.
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Proof of Theorem 3.9. For any point z ∈ Ur(x) we have |yz| ≥ |yx| − |zx| > |xy| − r, therefore
∣∣yUr(x)

∣∣ ≥ |xy| − r.
Let us prove that the converse inequality also holds.

For each 0 < ε < r we consider a rectifiable curve γ : [0, 1] → X, x = γ(0) and y = γ(1), for which |γ| ≤ |xy|+ε. We
define a continuous function f(t) =

∣∣xγ(t)∣∣, f(0) = 0, f(1) = |xy|, and choose an arbitrary t0 such that f(t0) = r− ε.
We denote by γ1 the part of the curve γ between 0 and t0, and by γ2 the remaining part of the curve γ. Then |γ1| ≥ r−ε
by Item (1) of Proposition 3.2, so |γ2| ≤ |xy| − r + 2ε and, by the same proposition,

∣∣γ(t0)y∣∣ ≤ |γ2| ≤ |xy| − r + 2ε.

However, γ(t0) ∈ Ur(x), therefore
∣∣yUr(x)

∣∣ ≤ |xy| − r + 2ε. Since ε is arbitrary, we obtain what is required.

Remark 3.11. The Hopf–Rinow condition can also be satisfied in spaces whose metric is not intrinsic, for example,
in the metric space Q of all rational numbers (with the standard distance function).

We give some corollaries from Theorem 3.9. First we give a necessary definition.
Let X be a metric space, x ∈ X, r ≥ 0. Note that a closed ball Br(x) is a closed set, but, generally speaking,

different from the closure of the open ball Ur(x): if, as in the above example, X consists of two points x and y at
the distance 1, then U1(x) = {x}, B1(x) = {x, y}, U1(x) = {x} 6= B1(x). However, if the metric of the space X is
intrinsic, then Theorem 3.9 immediately implies the following result.

Corollary 3.12. Let X be a space with an intrinsic metric. Then Br(x) = Ur(x).

Proof. A point y is adherent for a ball Ur(x) if and only if |yUr(x)| = 0, thus |xy| ≤ r, i.e., y ∈ Bx(r) and, therefore,
Ur(x) ⊂ Br(x). Let us prove the reverse inclusion.

Let y ∈ Br(x). If |xy| < r, then y ∈ Ur(x) ⊂ Ur(x). If |xy| = r, then, by Theorem 3.9, we have |yUr(x)| =
|xy| − r = 0, thus y ∈ Ur(x).

The following result will be used in the proof of the first part of Hopf–Rinow Theorem.

Corollary 3.13. Let X be a space with intrinsic metric and ε > 0. Then for each ε-net S in the ball Br(x) ⊂ X and
any δ′ > δ > 0 we have Br+δ(x) ⊂ ∪s∈SUε+δ′(s), i.e., S is (ε+ δ′)-net for Br+δ(x).

Proof. For any point y ∈ Br+δ(x) we have |xy| ≤ r + δ, therefore either y ∈ Ur(x) and, thus, |yUr(x)| = 0, or, by
Theorem 3.9,

∣∣yUr(x)
∣∣ ≤ δ holds. Thus, for any δ′ > δ there exists z ∈ Ur(x) ⊂ Br(x) such that |yz| < δ′. On the

other hand, there exists s ∈ S for which Uε(s) 3 z, whence |sy| ≤ |sz| + |zy| < ε + δ′, therefore y ∈ Uε+δ′(s), as
required.

3.4 Local compactness

Definition 3.14. A metric space X is called locally compact if for every point x ∈ X there exists ε > 0 such that
the closed ball Bε(x) is compact.

Problem 3.10. Prove that a metric space X is locally compact if and only if for each point x ∈ X there exists a
neighborhood with compact closure.

Remark 3.15. Unlike compactness, local compactness, even in combination with the intrinsic metric, does not
guarantee the completeness of the metric space. An obvious example is an open ball in Euclidean space. Another
example is the Euclidean space with a point removed.

Theorem 3.16 (Hopf-Rinow, Part 1). Let X be a locally compact space with intrinsic metric. Then the space X is
complete if and only if every closed ball in X is compact.

Proof. Suppose first that each closed ball is compact. We prove the completeness. Consider an arbitrary fundamental
sequence x1, x2, . . .. Then there exists r such that all xn are contained in Br(x1). By Theorem 2.24, the ball Br(x1)
is complete, therefore the sequence x1, x2, . . . converges to some point x ∈ Br(x) ⊂ X, as required.

Now let the space X be complete. On X we define a function ρ : X → [0,∞] as follows:

ρ(x) = sup{r > 0 : the ball Br(x) is compact}.

Lemma 3.17. Suppose that there exists a point x0 ∈ X such that ρ(x0) = ∞. Then each ball Br(x) is compact and,
therefore, ρ is identically equal to ∞.
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Proof. For every x and r > 0, the ball Br(x) is contained in some compact ball Br′(x0), therefore, since the set Br(x)
is closed, the ball Br(x) is also compact.

Thus, it suffice to prove that there exists a point x0 ∈ X such that ρ(x0) = ∞. Assume the contrary, i.e., that the
function ρ is everywhere finite.

Lemma 3.18. The function ρ is 1-Lipschitz and, therefore, continuous.

Proof. Otherwise, there exists x, y ∈ X such that
∣∣ρ(x)− ρ(y)

∣∣ > |xy|. To be definite, assume that ρ(x) ≥ ρ(y), thus
ρ(x) > ρ(y) + |xy|, and if ε > 0 is chosen in such a way that ρ(x) > ρ(y) + 2ε + |xy|, then Bρ(y)+ε(y) ⊂ Bρ(x)−ε(x),
however, Bρ(x)−ε(x) is compact, thus Bρ(y)+ε(y) is compact as well, a contradiction with definition of ρ(y).

Lemma 3.19. Under the assumptions made, the ball Bρ(x)(x) is compact for every x.

Proof. Since the ball Bρ(x)(x) is a closed subset of the complete space X, this ball is also complete. Therefore, by
Theorem 2.24, it suffices to prove that for each ε > 0 this ball contains a finite ε-net.

To do that, we choose 0 < r < ρ(x) such that δ := ρ(x)− r < ε/2, then the ball Br(x) is compact, thus it contains
a finite (ε/2)-net S. By Corollary 3.13, the set S is (ε/2 + ε/2)-net for the ball Br+δ(x) = Bρ(x)(x).

Since ρ is a continuous function, its restriction to the compact set Bρ(x)(x) attains its minimum and, thus, this
minimum is positive. We denote this minimum by ε, then, by Lemma 3.19, all the balls Bε(y), y ∈ Bρ(x)(x) are
compact. Let S be a finite (ε/2)-net in Bρ(x)(x), and 0 < δ < ε/2, then, by Corollary 3.13, the set S is (ε/2+ε/2)-net
for the ball Bρ(x)+δ(x). In particular, Bρ(x)+δ(x) is contained in the set ∪s∈SBε(s) which is compact as a finite union
of compact sets. Therefore, Bρ(x)+δ(x) is compact that contradicts to definition of the function ρ.

Definition 3.20. A metric space in which every closed ball is compact is called proper or boundedly compact.

Corollary 3.21. A metric space with an intrinsic metric is boundedly compact if and only if it is locally compact and
complete.

Problem 3.11. Show that a metric spaces is boundedly compact if and only if its compact subsets are exactly those
subsets that are closed and bounded.

3.5 Lipschitz, convergence and uniform convergence

In this section, we state and prove a few useful technical results regarding the convergence of Lipschitz mappings.
Let fn : X → Y be a family of arbitrary mappings from a set X to a metric space Y . We say that the sequence fn

converges pointwise to a mapping f : X → Y if for each x ∈ X the sequence fn(x) converges to f(x). The sequence fn
converges uniformly to a mapping f : X → Y if for any ε > 0 there exists N such that for every n ≥ N the inequality∣∣f(x)fn(x)∣∣ < ε holds for all x ∈ X.

Remark 3.22. Let us introduce the convergences described above by representing the mappings fn as points of the
set

∏
x∈X Y , which, recall, we defined as the family Y X of all mappings from X to Y . Now we model the pointwise

and uniform convergences by means of some topologies.
We start with the case of pointwise convergence. We define on Y X =

∏
x∈X Y the Tychonoff’s topology, see

Construction 1.3.

Problem 3.12. Show that convergence in the Tychonoff topology of points fn to a point f is equivalent to pointwise
convergence of the mappings fn to the mapping f .

To model uniform convergence, we first give some definitions. A mapping f : X → Y is called bounded if its image
f(X) is a bounded subset of Y . The family of all bounded mappings from X to Y we denote by B(X,Y ). We define
the following distance function on B(X,Y ): |fg| = supx∈X

∣∣f(x)g(x)∣∣.
Problem 3.13. Prove that the distance function defined above on B(X,Y ) is a metric, and that the convergence
in this metric of a sequence fn ∈ B(X,Y ) to a point f ∈ B(X,Y ) is equivalent to the uniform convergence of the
mappings fn to the mapping f .

For arbitrary fn and f we can also define such convergence by considering |fg| = supx∈X

∣∣f(x)g(x)∣∣ as generalized
metric.
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Problem 3.14. Prove that the generalized distance function |fg| = supx∈X

∣∣f(x)g(x)∣∣ defined on Y x is a generalized
metric, and that the convergence in this generalized metric of a sequence fn ∈ Y X to a point f ∈ Y X is equivalent to
the uniform convergence of the mappings fn to the mapping f .

Proposition 3.23. Let X be compact, and Y be arbitrary metric spaces, and let fn : X → Y be a sequence of C-
Lipschitz mappings converging pointwise to some mapping f : X → Y . Then f is a C-Lipschitz mapping, and the
sequence fn converges to f uniformly.

Proof. To verify that the mapping f is C-Lipschitz, it is sufficient to pass to the limit in the inequality
∣∣fn(x)fn(x′)∣∣ ≤

C · |xx′| for arbitrary fixed x, x′ ∈ X.
We now prove uniform convergence. Choose an arbitrary ε > 0 and show that there exists N such that for all

n > N and all x ∈ X we have
∣∣f(x)fn(x)∣∣ < ε.

Put δ = ε/(3C), and let {xi} ⊂ X be a finite δ-net. We choose N such that for all n > N and all i the inequality∣∣f(xi)fn(xi)∣∣ < ε/3 holds.
Fix an arbitrary x ∈ X. There is i such that |xxi| < δ. Since fn and f are C-Lipschitz, we conclude that∣∣fn(x)fn(xi)∣∣ ≤ C · |xxi| < ε/3 and, similarly,

∣∣f(x)f(xi)∣∣ < ε/3, therefore∣∣f(x)fn(x)∣∣ ≤ ∣∣f(x)f(xi)∣∣+ ∣∣f(xi)fn(xi)∣∣+ ∣∣fn(xi)fn(x)∣∣ < ε/3 + ε/3 + ε/3 = ε,

as required.

The following version of the previous statement is useful in studying curves.

Corollary 3.24. Let X be a metric space, and γn : [a, b] → X be a sequence of C-Lipschitz curves converging pointwise
to a mapping γ : [a, b] → X. Then γ is a C-Lipschitz curve, and the sequence γn converges to γ uniformly.

The proposition below can be proved similarly to Proposition 3.23.

Proposition 3.25. Let X be compact, Y be an arbitrary metric spaces, and fn : X → Y be a sequence of C-Lipschitz
mappings. Suppose that for some everywhere dense subset Z ⊂ X the sequence fn|Z converges pointwise. Then the
sequence fn converges pointwise to some mapping f : X → Y and, therefore, by Proposition 3.23, this convergence is
uniform, and the mapping f is C-Lipschitz.

Corollary 3.26. Let γn : [a, b] → X be a sequence of C-Lipschitz curves in a metric space X. Suppose that for some
everywhere dense subset Z ⊂ [a, b] the sequence of mappings γn|Z converges pointwise. Then the sequence of curves
γn converges pointwise to some curve γ : [a, b] → X and, therefore, by virtue of Corollary 3.24, this convergence is
uniform, and the curve γ is C-Lipschitz.

3.6 Arc-length and uniform curves

Definition 3.27. A curve γ(s) and its parameter s ∈ [a, b] are called natural or arc-length, if for any a ≤ s1 ≤ s2 ≤ b
it holds

∣∣γ|[s1,s2]∣∣ = s2 − s1. A curve γ(t) and its parameter t ∈ [a, b] are called uniform, if there exists λ ≥ 0 such

that for any a ≤ t1 ≤ t2 ≤ b it holds
∣∣γ|[t1,t2]∣∣ = λ(t2 − t1); the value λ is called the velocity or the speed of uniform γ.

Remark 3.28. Let γ(t), t ∈ [a, b], be uniform curve.

(1) If a 6= b, then its velocity λ is uniquely determined by the equation |γ| = λ(b− a). In particular, |γ| = 0, i.e., γ
is a constant mapping if and only if λ = 0.

(2) If a = b, then λ can be arbitrary. However, it is natural to consider this case as the limiting one for constant
mappings γ, where λ = 0. So, to be definite, we make the following agreement: if a = b then λ = 0.

Thus, under the above agreement, the velocity of a uniform curve γ vanishes if and only if γ is a constant mapping.
We call such curves degenerate, and all the remaining curves nondegenerate. So, each degenerate curve is uniform.

Remark 3.29. The following simple observations concern the relations between arc-length and uniform curves.

(1) Each arc-length curve is uniform.

(2) A degenerate curve γ(s), s ∈ [a, b], is arc-length if and only if a = b; in this case the arc-length curve has zero
velocity.
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(3) A degenerate curve γ(t), t ∈ [a, b], with a < b is uniform but not arc-length.

(4) A nondegenerate uniform curve is arc-length if and only if its velocity equals 1.

Proposition 3.30. If a curve γ(t), t ∈ [a, b], is uniform with the velocity λ, then the mapping γ is λ-Lipschitz.

Proof. For any a ≤ t1 ≤ t2 ≤ b we have ∣∣γ(t1)γ(t2)∣∣ ≤ ∣∣γ|[t1,t2]∣∣ = λ(t2 − t1).

Remark 3.31. The following types of curves γ : [a, b] → X cannot be reparameterized to arc-length curves:

(1) not rectifiable γ (otherwise, b = ∞);

(2) γ = const when a 6= b;

(3) more general, γ containing stops, i.e., when there exists [α, β] ⊂ [a, b], α 6= β, such that γ|[α,β] = const.

Curves that do not contain stops are called non-stop ones.

Problem 3.15. Let γ be a curve in a metric space. Prove that

(1) nondegenerate γ can be reparameterized to an arc-length or, more generally, to a uniform one if and only if γ
is rectifiable and non-stop;

(2) degenerate γ can be reparameterized to an arc-length one if and only if its domain is singleton (indeed, such γ
is arc-length itself and, thus, it need not a reparametrization);

(3) degenerate γ is always uniform.

In [1] it is proposed to extend the class of reparametrizations, namely, to consider monotone (not necessarily
strictly monotone) surjective mappings between the domains of the curves. It turns out that with this definition of
reparametrization, it is possible to introduce an arc-length parameter on any rectifiable curve.

Definition 3.32. We say that curves γ : [a, b] → X and γ̄ : [c, d] → X are obtained from each other by a monotone
reparametrization if either there exists a monotone surjective mapping φ : [c, d] → [a, b] such that γ̄ = γ ◦ φ, or there
exists a monotone surjective mapping ψ : [a, b] → [c, d] such that γ = γ̄ ◦ ψ.

Remark 3.33. It is easy to see that monotone reparametrization does not change the length.

Problem 3.16. Prove that a curve γ in a metric space can be monotonically reparameterized to an arc-length or,
more generally, a uniform one if and only if γ is rectifiable.

The reparameterized curve is unique upto the choice of its domain and direction. In arc-length case one can
choose any segment of the length |γ|. In the uniform case the domain can be arbitrary nondegenerate segment for
nondegenerate γ, and arbitrary segment for degenerate γ.

Remark 3.34. An instructive example is a curve that is a parametrization of the segment [0, 1] ⊂ R by the Cantor
staircase. The Cantor staircase is a graph of a function f : [0, 1] → [0, 1], the construction of which we will now
describe.

At the points 0 and 1, we set the value of the function f equal to 0 and 1, respectively. Next, we divide the
segment [0, 1] into three equal parts and on the middle interval we set f equal to 1/2. The remaining two segments
are again divided into three equal parts each, and on the middle intervals we assume that the function f is equal
to the arithmetic mean of its values at the nearest intervals where it is defined. Thus, on the left-most interval, the
function f is equal to 1/4, and on the right-most interval it is equal to 3/4. Continuing this process to infinity, we
define a function f on an everywhere dense subset of the segment [0, 1], which is the complement to the Cantor set.
Extend f to the remaining points of the segment [0, 1] by continuity (make sure that this can be done).

We now consider the Cantor staircase as a curve f : [0, 1] → R on the Euclidean line. Note that the subset of the
segment [0, 1], on which the point of this curve changes its position, is the Cantor set that has measure zero. So, this
curve stops almost everywhere, however, its length equals 1 and it can be reparameterized to an arc-length curve.
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3.7 Arzela-Ascoli Theorem

Developing the ideas from Section 3.5, we formulate and prove a variant of the famous Arzela–Ascoli theorem. First
we give necessary definitions.

Definition 3.35. Let γn : [an, bn] → X be a sequence of curves in a metric space X. We say that this sequence
converges (uniformly converges) to a curve γ : [a, b] → X if there exist curves γ̄n : [c, d] → X and γ̄ : [c, d] → X
obtained from γn and γ, respectively, by monotone reparametrization, such that the mappings γ̄n converge (uniformly
converge) to the mapping γ̄.

Theorem 3.36 (Arzela–Ascoli). Let X be a compact metric space, and γn be a sequence of curves in X. Suppose
that the lengths of the curves γn are uniformly bounded, i.e., there exists a real number C such that |γn| ≤ C for all
n. Then in this sequence there is a subsequence that converges uniformly to a curve whose length is at most C.

Proof. In virtue of Problem 3.16, the curves γn can be monotonically reparameterized to uniform curves γ̄n : [0, 1] → X
with speeds at most C. It follows from Remark 3.33 and Proposition 3.30 that all the curves γ̄n are C-Lipschitz.

Choose a countable everywhere dense subset Z ⊂ [0, 1], Z = {zi}∞i=1. The sequence
(
γ̄n(z1)

)∞
n=1

has a convergent

subsequence
(
γ1n(z1)

)∞
n=1

; the sequence
(
γ1n(z2)

)∞
n=1

has a convergent subsequence
(
γ2n(z2)

)∞
n=1

, etc. Then the sequence(
γnn(zk)

)∞
n=1

=
(
γ̄ni(zk)

)∞
i=1

convergence for any k (Cantor diagonal process). Let us put f(zk) = limi→∞ γ̄ni(zk),
then γ̄ni

|Z → f .
By Corollary 3.26, the mappings γ̄ni

: [0, 1] → X converge uniformly to some C-Lipschitz curve γ̄ : [0, 1] → X. By
Item (6) of Proposition 3.2, we have |γ̄| ≤ lim infni→∞ |γ̄ni

| ≤ C, as required.

3.8 Existence of shortest curves

We apply the previous results to investigation of curves of smallest length.

Definition 3.37. A rectifiable curve in a metric space is called shortest if its length is equal to the infimum of the
lengths of all the curves joining its ends.

Remark 3.38. If X is a space with an intrinsic metric, then a curve γ in X joining x and y is shortest if and only if
|xy| = |γ|.

The following proposition is obvious.

Proposition 3.39. A curve in a metric space is shortest if and only if each of its parts is a shortest curve.

Problem 3.17. Prove that an arc-length curve γ : [a, b] → X in a space X with an intrinsic metric is shortest if and
only if γ is an isometric embedding.

Definition 3.40. A curve γ : [a, b] → X in a metric space X is called locally shortest if for each t ∈ [a, b] there exists
an interval (α, β) ⊂ R containing t such that γ|[a,b]∩[α,β] is a shortest curve.

Definition 3.41. A uniform locally shortest curve is called a geodesic.

Arzela-Ascoli theorem, together with a few other previous propositions, implies the following result.

Corollary 3.42. Any two points x and y of a compact metric space X that are joined by a rectifiable curve are also
joined by a shortest curve.

Proof. Let ℓ be the infimum of the lengths of the curves joining x and y. There is a sequence γn for which |γn| → ℓ
and, thus, the lengths of γn are uniformly bounded. Theorem 3.36 implies that the sequence γn contains a subsequence
γni

which uniformly converging to some curve γ. By Item (6) of Proposition 3.2, we have |γ| ≤ lim infi→∞ |γni
| = ℓ,

however, by the minimality of ℓ, it holds |γ| ≥ ℓ, therefore |γ| = ℓ and, thus, γ is a shortest curve.

Remark 3.43. Corollary 3.42 remains true if we change compact X to a boundedly compact one (verify this).

Definition 3.44. A metric on X is called strictly intrinsic if any two points in X are joined by a curve whose length
is equal to the distance between these points. A metric space with strictly intrinsic metrics is called strictly intrinsic
or geodesic.

Taking into account the Hopf–Rinow theorem, we obtain the following

Corollary 3.45. Each complete locally compact space with an intrinsic metric is a geodesic space.
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3.9 Shortest curves and midpoints

Definition 3.46. A point z of a metric space is called a midpoint between or for points x and y of this space if
|xz| = |yz| = 1

2 |xy|.

Theorem 3.47. Let X be a complete metric space. Suppose that for each pair of points x, y ∈ X there is a midpoint.
Then X is a geodesic space.

Proof. Choose two arbitrary points x and y from X. We show that these points can be joined by a curve γ : [0, 1] → X,
for which |γ| = |xy|.

We will sequentially determine the map γ for various points of the segment [0, 1]. Put γ(0) = x and γ(1) = y.
Next, let γ(1/2) be a midpoint between x and y; γ(1/4) be a midpoint between γ(0) and γ(1/2), and γ(3/4) be a
midpoint between γ(1/2) and γ(1). Continuing this process, we define γ at all binary rational points of the segment
[0, 1], i.e., at all points of the form m/2n, where 0 ≤ m ≤ 2n is an integer, and n = 0, 1, . . .. Note that the set of
all binary rational points of the segment [0, 1] is everywhere dense in [0, 1]. In addition, it is easy to show that the
constructed mapping γ is |xy|-Lipschitz. The proof of the following technical lemma is left as an exercise.

Lemma 3.48. Let Z be an everywhere dense subset of a metric space X, and f : Z → Y be some C-Lipschitz mapping
into a complete metric space Y . Then there exists a unique continuous mapping F : X → Y extending f . Moreover,
the mapping F is also C-Lipschitz.

Problem 3.18. Prove Lemma 3.48.

So, using Lemma 3.48, we extend by continuity the mapping γ onto the entire segment [0, 1], and we again denote
the resulting |xy|-Lipschitz curve by γ. As noted in Example 3.1, it holds |γ| ≤ |xy|(1 − 0) = |xy|, from where, by
virtue of Item (1) of Proposition 3.2, we have |γ| = |xy| and, therefore, γ is a shortest curve.

Remark 3.49. In a complete metric space, the property of a metric to be intrinsic is not sufficient for midpoints
and shortest curves between any points to exist. Consider a countable family of segments [0, 1 + 1/n], n ∈ N, each
with the standard metric, and glue all their zeros at one point A, and at another point B we glue all the other ends
1+1/n. If x and y belong to different segments, say to [0, 1+1/n] and [0, 1+1/m], then we set the distance between
x and y equal to min(x + y, 1 − x + 1/n + 1 − y + 1/n) (i.e., the intrinsic circle metric is considered on each pair of
glued segments). Then the distance between A and B is 1 and is not reached on any curve. In addition, there is no
midpoints between A and B.

Definition 3.50. A point z of a metric space X is called an ε-midpoint between or for points x and y of this space
if
∣∣|xz| − 1

2 |xy|
∣∣ ≤ ε and

∣∣|yz| − 1
2 |xy|

∣∣ ≤ ε.

Theorem 3.51. Let X be a complete metric space. Suppose that for each pair of points x, y ∈ X and each ε > 0,
there is an ε-midpoint. Then the metric of X is intrinsic.

Proof. The proof is similar with the one of Theorem 3.47, however, now we find not strict midpoints, but approximate
ones, making sure that the total “spread” is not large (we use the fact that

∑∞
i=1 ε/2

i = ε).

There are also converse obvious statements, even without assuming the completeness of the ambient space.

Proposition 3.52. In a space with an intrinsic (strictly intrinsic) metric, for any two points and any ε > 0 there is
an ε-midpoint (a midpoint), respectively.

Problem 3.19. Prove Proposition 3.52.
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Exercises to Chapter 3
Exercise 3.1. Let X be an arbitrary metric space and Ω(X) the family of all curves in X. Verify that

(1) if γ ∈ Ω(X) joins the points x, y ∈ X, then |γ| ≥ |xy|;

(2) if γ = γ1 · γ2 is the gluing of curves γ1, γ2 ∈ Ω(X) then |γ| = |γ1|+ |γ2|;

(3) for each γ ∈ Ω(X), γ : [a, b] → X, and reparametrization φ : [c, d] → [a, b], it holds |γ| = |γ ◦ ψ|;

(4) for each x ∈ X, ε > 0, y ∈ X \ Uε(x) and the curve γ ∈ Ω(X) joining x and y, |γ| ≥ ε holds;

(5) is it true that for any γ ∈ Ω(X), γ : [a, b] → X, the function f(t) =
∣∣γ|[a,t]∣∣ is continuous?

(6) is it true that for any sequence γn ∈ Ω(X) converging pointwise to some γ ∈ Ω(X), we have

|γ| ≤ lim inf
n→∞

|γn|?

Exercise 3.2. Show that the piecewise smooth curve in Rn is Lipschitzian with a Lipschitz constant equal to the
maximum modulus of the velocity vector of the curve, therefore each such curve is rectifiable.

Exercise 3.3. Let X be a metric space in which any two points are connected by a rectifiable curve.

(1) Prove that din is a metric.

(2) Denote by τ the metric topology of X w.r.t. the initial metric on X, by τin the metric topology w.r.t. din, by
X∈ the set X with metric din and topology τin. Show that τ ⊂ τin. In particular, if a mapping γ : [a, b] → Xin

is continuous, then the mapping γ : [a, b] → X is continuous as well.

(3) Construct an example when τ 6= τin.

(4) Prove that for each rectifiable curve γ : [a, b] → X the mapping γ : [a, b] → Xin is continuous.

(5) Denote by |γ|in the length of a curve γ : [a, b] → Xin. Show that for each curve γ : [a, b] → X which is also
a curve in Xin, it holds |γ| = |γ|in. Thus, the sets of rectifiable curves for X and Xin coincide, and each
non-rectifiable curve in X is either a non-rectifiable one in Xin, or the mapping γ : [a, b] → Xin is discontinuous.

(6) Construct an example of continuous mapping γ : [a, b] → X such that the mapping γ : [a, b] → Xin is not
continuous. Notice that the curve γ : [a, b] → X can not be rectifiable.

Exercise 3.4. Let X be a metric space in which any two points are connected by a rectifiable curve. Prove that the
metric din is intrinsic.

Exercise 3.5. Let ρ1 ≤ ρ2 be generalized pseudometrics on a set X, and Y be a topological space. Prove that each
mapping f : Y → X, continuous w.r.t. ρ2, is also continuous w.r.t. ρ1, in particular, if γ is a curve in (X, ρ2), then γ
is also a curve in (X, ρ1); moreover, if ρ′1 and ρ′2 denote the corresponding generalized intrinsic pseudometrics, then
ρ′1 ≤ ρ′2.

Exercise 3.6. Let X be an arbitrary set covered by a family {Xi}i∈I of generalized pseudometric spaces. Denote
the distance function on Xi by ρi, and consider the set D of all generalized pseudometrics d on X such that for any i
and x, y ∈ Xi it holds d(x, y) ≤ ρi(x, y). Extend each ρi to the whole X by setting ρ′i(x, y) = ∞ if at least one of x, y
does not belong to Xi, and ρ

′
i(x, y) = ρ(x, y) otherwise (it is easy to see that each ρ′i is a generalized pseudometric).

Denote by D′ the set of all such ρ′i. Prove that supD = inf D′, and if all ρi are intrinsic, then supD is intrinsic as
well.

Exercise 3.7. Let D be a collection of generalized pseudometrics defined on the same set X, and Xd for d ∈ D
denote the generalized pseudometric space (X, d). Put W = td∈DXd and denote by ρ the generalized pseudometric
of W . Define on W an equivalence relation ∼ by identifying those points xd ∈ Xd and xd′ ∈ Xd′ which correspond to
the same point x of the set X. The equivalence class of these points xd and xd′ we denote by [x]. Denote by ρ∼ the
quotient generalized pseudometric on W/∼. Define the mapping φ : W/∼→ X as φ : [x] → x, then φ is bijective, and
ρ∼ can be considered as a generalized pseudometric on X. Prove that ρ∼ = inf D.
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Exercise 3.8. Let ρ1 and ρ2 be intrinsic metrics on a set X. Suppose that these metrics generate the same topology,
and that each x ∈ X has a neighborhood Ux such that the restrictions of ρ1 and ρ2 to Ux coincide. Prove that
ρ1 = ρ2. Show that the condition “ρ1 and ρ2 are intrinsic” is essential.

Exercise 3.9. Prove that a metric space X is locally compact if and only if for each point x ∈ X there exists a
neighborhood with compact closure.

Exercise 3.10. Show that a metric spaces is boundedly compact if and only if its compact subsets are exactly those
subsets that are closed and bounded.

Exercise 3.11. Let X be an arbitrary set and Y an arbitrary metric space. Consider the collection of sets of the
form

∏
x∈X V (x) ⊂

∏
x∈X Y , where

{
V (x)

}
x∈X

is the family of nonempty open subsets of Y such that for all x ∈ X,

except for their finite number, V (x) = Y . Show that the family defined in this way forms a basis of a topology, and
the convergence in this topology of points fn to a point f is equivalent to pointwise convergence of the mappings fn
to the mapping f .

Exercise 3.12. Let X be an arbitrary set and Y an arbitrary metric space. A mapping f : X → Y is called bounded
if its image f(X) is a bounded subset of Y . The family of all bounded mappings from X to Y we denote by B(X,Y ).
We define the following distance function on B(X,Y ): |fg| = supx∈X

∣∣f(x)g(x)∣∣. Prove that the distance function
defined above is a metric, and that the convergence in this metric of a sequence fn ∈ B(X,Y ) to some f ∈ B(X,Y )
is equivalent to uniform convergence of the mappings fn to the mapping f .

Exercise 3.13. Let X be an arbitrary set and Y an arbitrary metric space. Define the following generalized distance
function on Y X : |fg| = supx∈X

∣∣f(x)g(x)∣∣. Prove that the generalized distance function defined above is a generalized
metric, and that the convergence in this generalized metric of a sequence fn ∈ Y X to some f ∈ Y X is equivalent to
uniform convergence of the mappings fn to the mapping f .

Exercise 3.14. Let γ be a curve in a metric space. Prove that

(1) nondegenerate γ can be reparameterized to an arc-length or, more generally, to a uniform one if and only if γ
is rectifiable and non-stop;

(2) degenerate γ can be reparameterized to an arc-length one if and only if its domain is singleton (indeed, such γ
is arc-length itself and, thus, it need not a reparametrization);

(3) degenerate γ is always uniform.

Exercise 3.15. Prove that a curve γ in a metric space can be monotonically reparameterized to an arc-length or,
more generally, a uniform one if and only if γ is rectifiable.

The reparameterized curve is unique upto the choice of its domain and direction. In arc-length case one can
choose any segment of the length |γ|. In the uniform case the domain can be arbitrary nondegenerate segment for
nondegenerate γ, and arbitrary segment for degenerate γ.

Exercise 3.16. Prove that an arc-length curve γ : [a, b] → X in a space X with an intrinsic metric is shortest if and
only if γ is an isometric embedding.

Exercise 3.17. Let Z be an everywhere dense subset of a metric space X, and f : Z → Y be some C-Lipschitz map
into a complete metric space Y . Then there exists a unique continuous mapping F : X → Y extending f . Moreover,
the mapping F is also C-Lipschitz.

Exercise 3.18. Show that in a space with an intrinsic (strictly intrinsic) metric, for any two points and any ε > 0
there is an ε-midpoint (a midpoint), respectively.


