
Chapter 1

Elements of general topology.

Schedule. Definition of topology and topological space, induced topology, subspace of topological space, discrete and anti-discrete topologies,
metric spaces and metric topology, standard topology on Euclidean space, base of topology, cover of set and subset, Zariski topology, Sorgenfrey
topology, subbase of topology, disjoint union of topological spaces, Cartesian product of topological spaces, Tychonoff or product topology,
quotient topology and quotient space, Vietoris topology, continuous mapping, homeomorphism, embedding, convergence of sequences, closure,
interior, boundary, dense subsets, separability, separated or Hausdorff topological space, connected and disconnected topological spaces, connected
components, path-connected topological spaces, open cover, subcover, compact and sequentially compact topological spaces, bounded metric spaces,
hyperspaces.

In this chapter we present an introduction to general topology.

1.1 Basic facts of general topology

For a set X, let 2X denote the collection of all subsets of X. If A ⊂ 2X is a family of subsets of X, then ∪A and ∩A
denote the union and the intersection of the elements from A, respectively. If A is an indexed family, i.e., A = {Ai}i∈I ,
then we use ∪i∈IAi and ∩i∈IAi for the union and the intersection. If different elements of A do not intersect each
other (such family A is called disjoint), then we write tA instead of ∪A, to emphasize that A is disjoint; similarly,
we write ti∈IAi instead of ∪i∈IAi for indexed families. We can define ti∈IAi also in the case when some differen
Ai intersect each other, in particular, when they coincide. In this situation we simply consider Ai for different i as
nonintersecting sets. This can be done in a formal way if we change the elements ai ∈ Ai to (ai, i) and identify Ai

with the set
{
(ai, i)

}
ai∈Ai

.

Definition 1.1. A set τ = {Uα}α∈A ⊂ 2X is called a topology on X if τ satisfies the following properties:

(1) ∅, X ∈ τ ;

(2) for any A ⊂ τ we have ∪A ∈ τ (the union of arbitrary collection of elements from τ belongs to τ);

(3) for any finite A ⊂ τ it holds ∩A ∈ τ (the intersection of arbitrary finite collection of elements from τ belongs
to τ).

Definition 1.2. A set X with a given topology τ ⊂ 2X is called a topological space. It is also convenient to denote
the topological space X as the pair (X, τ). Also, speaking about the topological space X, we will often denote the
topology defined on it by τX , without specifically mentioning it every time.

The elements of X are usually called points, and the elements of τ are called open sets. A set F ⊂ X is called
closed if its complement is open.

Problem 1.1. Show that the family of all closed subsets of a topological space X contains ∅ and X, and that the
intersection of any collection of closed subsets, as well as the union of any finite collection of closed subsets are some
closed sets.

Take an arbitrary Y ⊂ X and consider the family τY := {U ∩ Y : U ∈ τX}.

Problem 1.2. Prove that τY is a topology on Y .

Definition 1.3. The τY is called the topology on Y induced from X. The Y with the topology τY is usually called a
subspace of the topological space X.
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Generally speaking, there are many different topologies on each set X, and the inclusion relation generates a partial
order on the set of all such topologies. The smallest topology in this order consists of two elements: τa = {∅, X}. It
is called anti-discrete. The largest topology consists of all subsets: τd = 2X . It is called discrete. If T is a collection
of topologies defined on the same set X, then ∩T is a topology as well; it is smaller than each topology τ ∈ T ; for
any topology τ ′ on X that is smaller than all topologies from T it holds τ ′ ⊂ ∩T .

The most important for us example of topology will be generated by metrics. Namely, suppose that for a set X a
function ρ : X ×X → R is given, which has the following properties:

(1) for any x, y ∈ X it holds ρ(x, y) ≥ 0, and ρ(x, y) = 0 iff x = y (positive definiteness);

(2) for any x, y ∈ X we have ρ(x, y) = ρ(y, x) (symmetry);

(3) for any x, y, z ∈ X it holds ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangle inequality).

Then ρ is called a metric, and the set X with the metric ρ is called a metric space. It is also convenient to denote the
metric space X as the pair (X, ρ). Each Y ⊂ X endowed with the restriction of ρ to Y × Y is called a subspace of X.

Example 1.4. In calculus, the standard example of a metric space is the arithmetic space Rn with the Euclidean
metric defined on it: for x = (x1, . . . , xn) and y = (y1, . . . , yn) it holds ρ(x, y) =

√∑n
i=1(xi − yi)2. This metric is

called Euclidean. We will also call Euclidean the arithmetic space itself, endowed with the Euclidean metric.

Let X be a metric space with a metric ρ. For every x ∈ X and r > 0 we put

Ur(x) :=
{
y ∈ X : ρ(x, y) < r

}
and call an open ball of radius r > 0 and center x. Using the metric ρ, we construct the natural topology τρ, called
the metric topology : we assign the subset U ⊂ X to open sets of the metric topology τρ if and only if U is either
empty, or U is a union of open balls. Equivalent definition: U ∈ τρ if and only if for any point x ∈ U there exists
r > 0 such that Ur(x) ⊂ U (together with each point the set U contains some open ball with the center at this point).

Problem 1.3. Prove that the family τρ is a topology.

Remark 1.5. Unless otherwise stated, on the real line R and, more generally, on the arithmetic space Rn, we consider
the topologies generated by the Euclidean metric (see. Example 1.4). This topology is called standard.

1.2 Base and subbase

The construction of metric topology described above leads to the following important notion. Similar to linear algebra,
where to describe a linear space it is enough to choose a family of vectors that, using linear combinations, generates
the whole space, to define a topology, one can also select a subfamily of open sets and generate the topology by means
of set-theoretic operations.

Definition 1.6. A family β ⊂ τ is called a base of the topology τ if every nonempty open set U ∈ τ is representable
as a union of some elements from β.

Thus, by the definition of metric topology, its base is the family of all open balls.

Remark 1.7. Note that a given topology can have many different bases. For example, not all balls can be selected
as the base of the metric space, but only, say, of radii not exceeding 1, or of only rational radii, or of only radii of the
form 1/n, etc. On the Euclidean line, for example, only rational numbers can be selected as centers.

We note two important properties of the topology base on the set X:

(1) each point x ∈ X is contained in some element from the base (otherwise the set X cannot be obtained as the
union of some elements from the base);

(2) a nonempty intersection of any two elements of the base is representable as the union of some elements from
the base (otherwise this intersection will not belong to the topology).

It turns out that these two properties completely characterize the families that are the bases of some topologies.
Before formulating the corresponding criterion, we introduce a definition of cover, which will be useful to us both here
and hereinafter.
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Definition 1.8. A family A ⊂ 2X is called a cover of the set X if X = ∪A. A family A ⊂ 2X is called a cover of
Y ⊂ X if Y ⊂ ∪A.

It is clear that each base of a topological space X is a cover of X.

Problem 1.4. Prove that a family β ⊂ 2X is a base of some topology τ on X if and only if β is a cover of X, and for
any intersecting B1, B2 ∈ β their intersection B1 ∩ B2 is the union of some elements from β. Moreover, each family
satisfying these properties, generates a unique topology.

Notice that a collection β of open sets in a topological space X which satisfies the conditions of Problem 1.4 may
generate a topology τ different from τX . What do we need to add for to be sure that τ = τX? The answer can be
obtained from the following more general result that is often used in proving the coincidence of topologies.

Problem 1.5. Let some topologies τ1 and τ2 with bases β1 and β2 be given on a set X. Then τ1 = τ2 if and only if
for any x ∈ X the following condition is fulfilled: for any B2 ∈ β2, x ∈ B2, there is B1 ∈ β1 for which x ∈ B1 ⊂ B2,
and vice versa, for any B1 ∈ β1, x ∈ B1, there exists B2 ∈ β2 for which x ∈ B2 ⊂ B1. In particular, for a topological
space X, a collection β of open sets satisfying the conditions of Problem 1.4 is a base of the topology τX if and only
if for each open set U ∈ τX and any point x ∈ U there exists some B ∈ β such that x ∈ B ⊂ U .

Recall that two sets are called equivalent if there exists a bijection between them. The equivalence classes of sets
are called cardinalities or cardinal numbers. The cardinality of a set X will be denoted by #X.

Example 1.9. Let X be an infinite set of cardinality n, and m be an infinite cardinal number, with m ≤ n. Consider
a family F of all F ⊂ X such that #F < m, and let βm = {X \ F : F ∈ F}. Then βm is a base of some topology τ ,
which we call the Zariski topology of the weight m.

Problem 1.6. Prove that the family βm from Example 1.9 is a base of some topology.

Example 1.10. As we noted above, on the Euclidean line we can take the family of all intervals as the base of the
standard topology. Another interesting example of topology is obtained if, instead of intervals, we take all possible
half-intervals of the form [a, b). The corresponding topology is called the arrow topology or the Sorgenfrey topology.

Remark 1.11. The Sorgenfrey topology contains the standard topology of the line, since each interval (a, b) can be
represented as a union of half-intervals [a+ 1/n, b), n ∈ N.

Problem 1.7. Show that the collection of all possible half-intervals of the form [a, b) ⊂ R form a base of some
topology that contains the standard topology.

If, to generate a topology, we allowed also to use finite intersections, then the generating family can, generally
speaking, be reduced.

Definition 1.12. A family σ ⊂ τ is called a subbase of the topology τ if the set of all finite intersections of elements
from σ forms a base of the topology τ .

It is clear that, like the base, each subbase of a topological space X is a cover of X.

Problem 1.8. Prove that a family σ ⊂ 2X is a subbase of some topology on X if and only if σ is a cover of X.
Moreover, each cover of X generates a unique topology.

Example 1.13. The family of all subsets of the real line R, each of which is an open ray, forms a subbase of the
standard topology and is not a base of this topology.

1.3 Standard constructions of topologies

This section provides examples of standard constructions that allow to build new examples of topological spaces from
existing ones.

Construction 1.1. Let σ be an arbitrary family of subsets of a set X, and Tσ be the family of all topologies on X
containing σ. Then τ := ∩Tσ is the smallest topology containing σ. If σ is a cover of X, then σ is a subbase of τ .

Construction 1.2 (Disjoint union). Let A = {Xi}i∈I be a family of topological spaces. We define a topology on
tA = ti∈IXi, setting its base to be equal to ti∈IτXi

. The set ti∈IXi with the corresponding topology is called the
disjoint union of the topological spaces Xi.
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Construction 1.3 (Cartesian product). Let A = {Xi}i∈I be an arbitrary family of topological spaces. The set of
all mappings w : I → ti∈IXi such that w(i) ∈ Xi for every i ∈ I is called the Cartesian product of the spaces Xi and
is denoted by W :=

∏
A =

∏
i∈I Xi. In particular, if all Xi are equal to the same space X, then W = XI , where the

latter, recall, denotes the set of all mappings from I to X. For convenience, we will often write wi instead of w(i),
and we will call this value the i-th coordinate of the point w ∈

∏
i∈I Xi.

We define a topology on W , choosing as its subbase the family of all products
∏

i∈I Ui, Ui ∈ τXi , in which only
one Ui can differ from Xi. The corresponding base consists of

∏
i∈I Ui, Ui ∈ τXi

, in which only a finite number of Ui

can differ from Xi. This topology is called the product topology or the Tychonoff topology.
In the case when I is a finite set, say, I = {1, . . . , n}, then the Cartesian product of the spaces Xi is denoted by

X1 × · · · ×Xn. In particular, in this way one can define the standard topology on the n-dimensional arithmetic space
Rn.

Problem 1.9. Show that the standard topology of the Euclidean space Rn coincides with the topology of the
Cartesian product R× · · · × R of real lines endowed with the standard topology.

Example 1.14. Sorgenfrey space is the Cartesian product of the Sorgenfrey lines from Example 1.10 and is used in
general topology to illustrate numerous exotic possibilities.

Construction 1.4 (Quotient topology). Let X be a topological space, and ν be some equivalence relation on X.
Denote by X/ν the set of classes of this equivalence. For each x ∈ X denote by [x] ∈ X/ν the ν-equivalence class
containing x, and let π : X → X/ν, π : x 7→ [x], be the canonical projection. Then the family of all U ⊂ X/ν such
that π−1(U) ∈ τX forms a topology called the quotient topology. The set X/ν endowed with the quotient topology is
called the quotient space.

Construction 1.5 (Vietoris topology). Let X be an arbitrary topological space. For each finite collection of open
sets U1, . . . , Un ∈ τX we put

〈U1, . . . , Un〉 = {Y ⊂ X : Y ⊂ ∪n
i=1Ui and Y ∩ Ui 6= ∅ for all i = 1, . . . , n}.

Note that if at least one of Ui is empty, then 〈U1, . . . , Un〉 = ∅.

Problem 1.10. Show that the families

σ =
{
〈U〉 : U ∈ τX

}
∪
{
〈X,U〉 : U ∈ τX

}
and β =

{
〈U1, . . . , Un〉 : U1, . . . , Un ∈ τX

}
form respectively a subbase and the corresponding base of some topology on 2X .

The topology on 2X defined in Problem 1.10 is called the Vietoris topology.

Remark 1.15. Usually, Vietoris topology is defined on the family of all nonempty closed subsets of a topological
space.

Problem 1.11. Prove that each construction of these section provides a topology.

1.4 Continuous mappings

As a rule, all considered mappings between topological spaces are consistent with topologies. Such mappings are
called continuous. We give three equivalent definitions of continuity.

Definition 1.16. A neighborhood of a point x ∈ X of a topological space X is an arbitrary open set U ⊂ X containing
x. A neighborhood of a subset Z of a topological space X is an arbitrary open set U ⊂ X containing Z.

Remark 1.17. For convenience, we denote an arbitrary neighborhood of a point x ∈ X by Ux.

Definition 1.18. A mapping f : X → Y between topological spaces is continuous at x ∈ X if for any neighborhood
Uf(x) there exists a neighborhood Ux such that f(Ux) ⊂ Uf(x). The mapping f , continuous at all points x ∈ X, is
called continuous.

Definition 1.19. A mapping f : X → Y between topological spaces is continuous if for any open set U ⊂ Y its
preimage f−1(U) ⊂ X is open (the preimage of each open set is open).
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Definition 1.20. A mapping f : X → Y between topological spaces is continuous if for any closed set F ⊂ Y its
preimage f−1(F ) ⊂ X is closed (the preimage of each closed set is closed).

Problem 1.12. Prove that the definitions 1.18, 1.19, and 1.20 are equivalent.

Problem 1.13. Let f : X → Y be a mapping of topological spaces and σ a subbase of the topology on the space Y .
Prove that f is continuous if and only if f -preimage of each element from the subbase σ is open in X.

Remark 1.21. When we speak of the continuity of a function f : X → R or, more generally, of a vector-valued
mapping f : X → Rn from a topological space X, then, unless otherwise stated, on R and Rn we consider the
standard topologies (see. Remark 1.5).

Problem 1.14. Show that the identity mapping and the composition of continuous mappings are continuous.

Problem 1.15. Let X be a topological space, and Z ⊂ X be its subspace. Show that the inclusion mapping
i : Z → X, i(z) = z for each point z ∈ Z, is continuous.

Problem 1.16. Let X, Y be topological spaces, W ⊂ Y be a subspace of Y , and f : X → W be a continuous
mapping. Let g : X → Y be a mapping coinciding with f : for each x ∈ X it holds f(x) = g(x). Prove that the
mapping g is continuous.

Let f : X → Y be an arbitrary mapping of sets. Choose arbitrary subsets Z ⊂ X andW ⊂ Y such that f(Z) ⊂W .
Then the restriction f |Z,W of the mapping f to Z and W is the mapping g : Z → W that coincides on the domain
with the mapping f , i.e., for any x ∈ Z it holds f(x) = g(x).

Problem 1.17. Let f : X → Y be a continuous mapping of topological spaces, Z ⊂ X, W ⊂ Y , f(Z) ⊂W . Then the
restriction f |Z,W : Z → W is also continuous as the mapping of the topological spaces Z and W with the topologies
induced on them from X and Y , respectively.

Problem 1.18. Let {Xi}i∈I be a cover of a topological space X by open subsets Xi, and f : X → Y a mapping to
a topological space Y . Show that f is continuous if and only if all the restrictions f |Xi

are continuous. In particular,
this holds when X = ti∈IXi is the disjoint union of some topological spaces. Will this result remain true if we replace
{Xi} with a cover of X by arbitrary sets?

Problem 1.19. Let X = ti∈IXi be the disjoint union of some topological spaces and f : X → Y be a map into a
topological space Y . Show that f is continuous if and only if all its restrictions f |Xi

are continuous.

Problem 1.20. Let {Xi}i∈I be a family of topological spaces and X =
∏

i∈I Xi. We define the canonical projection
πi : X → Xi by setting πi(x) = xi. Prove that the product topology on X is the smallest of those topologies in which
all the projections πi are continuous.

Problem 1.21. Let {Yi}i∈I be a family of topological spaces, Y =
∏

i∈I Yi, and fi : X → Yi be mappings from
some topological space X. We construct the mapping F :=

∏
i∈I fi : X → Y by associating with each point x ∈ X

the element y ∈ Y defined as follows: yi = fi(x). Prove that the mapping F is continuous if and only if all fi are
continuous.

Problem 1.22. Let A ⊂ Rn be an arbitrary subset, (x1, . . . , xn) the Cartesian coordinates on Rn, f : A → Rm a
continuous mapping, (y1, . . . , ym) the Cartesian coordinates on Rm, and yi = yi(x1, . . . , xn) the coordinate functions
of the mapping f . Prove that the mapping f is continuous if and only if all the coordinate functions yi = yi(x1, . . . , xn)
are continuous.

Problem 1.23. Describe all continuous functions on a topological space with Zariski topology.

1.5 Homeomorphisms, embeddings

An important particular case of continuous mapping is a homeomorphism.

Definition 1.22. A mapping f : X → Y of topological spaces is called a homeomorphism if it is bijective, and
both the maps f and f−1 are continuous. Topological spaces between which there is a homeomorphism are called
homeomorphic.
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Remark 1.23. A homeomorphism, being a bijection, identifies not only points of spaces, but also identifies topologies,
establishing a one-to-one correspondence between them. For clarity, we can imagine that the homeomorphism f :
X → Y is a replacement for the names of points in the space X: the point x ∈ X is “renamed” to f(x), without
changing the topology. From these considerations it follows that all topological properties of homeomorphic spaces
are the same.

The next exercise follows directly from Problem 1.17.

Problem 1.24. Let f : X → Y be a homeomorphism, and Z ⊂ X,W = f(Z). Prove that the restriction f |Z,W : Z →
W is also a homeomorphism.

An injective mapping f : X → Y of topological spaces is called an embedding of X into Y if the restriction f |X,f(X)

is a homeomorphism.

Problem 1.25. Show that every embedding is continuous. Give an example of a continuous injective mapping of
topological spaces that is not an embedding.

1.6 Convergence of sequences

A sequence in a set X is an arbitrary mapping x : N → X from the set of natural numbers N = {1, 2, . . .}. For
convenience, the points x(n) are usually denoted by xn. Also, for brevity, it is customary to say that a sequence of
points xn is given.

Definition 1.24. A sequence of points xn in a topological space X is called convergent if, for some x ∈ X, called a
limit of this sequence, the following holds: for any neighborhood Ux there exists N ∈ N such that for all n ≥ N we
have xn ∈ Ux. If the sequence is not convergent, then it is called divergent.

Problem 1.26. Let ω be a character not contained in N. We define a topology on the set N̄ = N ∪ {ω}, taking as
a base all points from N, as well as all sets of the form {n ≥ N} ∪ {ω}, N ∈ N. Show that a sequence x : N → X
converges if and only if the mapping x can be extended to a continuous mapping on N̄.

Problem 1.27. Show that a continuous mapping f : X → Y of topological spaces takes convergent sequences to
convergent ones. Show that if X is a metric space, then every mapping g : X → Y that takes convergent sequences
into convergent ones is continuous. Give an example of a topological space X and a mapping h : X → Y into a
topological space Y , which takes convergent sequences into convergent ones, but is not continuous nonetheless.

Problem 1.28. Let x1, x2, . . . be a sequence of points in a metric space X. Suppose that for some point x ∈ X
each neighborhood of x intersects the set {xi}∞i=1 \ {x}. Prove that the sequence x1, x2, . . . contains a convergent
subsequence. Prove that if a sequence of points in a metric space does not contain any convergent subsequence, then
for each x ∈ X there exists r > 0 such that the open ball Ur(x) does not contain points of this sequence other than x.

1.7 Closure, interior, boundary, dense subsets, separability

Let Y be a subset of a topological space X. A point x ∈ X is called an adherent point, or a closure point, or a contact
point for Y if every neighborhood of x intersects Y . The set of all adherent points of the set Y is called its closure

and is denoted by Y .

Problem 1.29. Prove that the closure of a set Y ⊂ X is the smallest closed subset of X containing Y , i.e., Y is the
intersection of all closed sets containing Y .

A subset of Y of a topological space X is called everywhere dense in X if Y = X.

Example 1.25. The set of all rational numbers, like the set of all irrational numbers, are everywhere dense in the
real line.

Problem 1.30. Let the topology of Zariski of weight m be given on an infinite set X. Then a subset Y ⊂ X is
everywhere dense in X if and only if #Y ≥ m.

A topological space is called separable if it contains an everywhere dense sequence.
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Example 1.26. Each finite space is separable. The Euclidean space Rn is also separable: as an everywhere dense
sequence we can take arbitrary numbered set of all points with rational coordinates. Each space with a countable
Zariski topology is separable. Sorgenfrey space (Example 1.14) is separable.

Problem 1.31. Show that in metric space, separability is equivalent to having a countable base. Extract from
this that every subset of a separable metric space is separable. Show that an open subset of an arbitrary separable
topological space is separable. Give an example of a separable topological space containing an non-separable subset
(use the Sorgenfrey plane).

A point x from a subset Y of a topological space X is called interior for Y if some neighborhood of x is contained
in Y . The family of all interior points of the set Y is called its interior and is denoted by IntY .

Problem 1.32. Show that the interior IntY is the largest open subset of X contained in Y .

Problem 1.33. Prove that a subset Y of the topological space X is closed if and only if Y = Y , and is open if and
only if Y = IntY .

A point x ∈ X of a topological space X is called a boundary point for a subset Y ⊂ X if each neighborhood of x
intersects both Y and its complement X \ Y . The set of all boundary points of the set Y is called its boundary and
is denoted by ∂Y .

Problem 1.34. Prove that the boundary ∂Y is a closed subset of X, and

∂Y = Y \ IntY = Y ∩X \ Y .

1.8 Separated spaces

There are a number of separation axioms that generate various classes of topological spaces. We will not dwell on
this in detail here, but formulate only one axiom of separation, which will be useful to us in the future.

A topology on a set X, as well as the topological space X itself, is called Hausdorff or separated if any two points
of X have disjoint neighborhoods.

Example 1.27. Each discrete topology is Hausdorff. Each metric space is Hausdorff. If the set X consists of more
than one point, then the anti-discrete topology is not Hausdorff. Also, the Zariski topology is not a Hausdorff topology
(see Example 1.9).

Problem 1.35. Show that in a Hausdorff topological space every point is closed. Give an example of a non-Hausdorff
topological space in which all points are closed.

Problem 1.36. Show that the disjoint union and the Cartesian product of Hausdorff topological spaces are also
Hausdorff.

Problem 1.37. Show that in a Hausdorff topological space the limit of a convergent sequence is uniquely defined.
Give an example of a topological space in which each sequence converges to each point.

Problem 1.38. Describe what sequences in a space with Zariski topology are convergent, and what limits each
convergent sequence has.

1.9 Connected spaces

We say that a set X is partitioned into subsets {Xi}i∈I if X = ti∈IXi.
A topological space (its topology) is called disconnected if it can be partitioned into two nonempty open (equiv-

alently, closed) sets. If such a partition does not exist, then the topological space is called connected. A subset of a
topological space is connected (disconnected), if such is the topology induced on it. In other words, a subset Y of a
topological space X is disconnected if there exist U, V ∈ τX such that Y ⊂ U ∪ V , and both intersections Y ∩ U and
Y ∩ V are nonempty and do not intersect each other.

Problem 1.39. Prove that each segment [a, b] ⊂ R is connected.

Problem 1.40. Prove that the closure of a connected subset of a topological space is connected.
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Problem 1.41. Let {Ai}i∈I be a family of connected pairwise intersecting subsets of a topological space X, then the
set ∪i∈IAi is connected.

Problem 1.42. Show that the image of a connected topological space under a continuous mapping is also connected.

Problem 1.43. Prove that every continuous function on a connected topological space takes all intermediate values.

The maximum (by inclusion) connected subset of a topological space is called a connected component of this space.

Problem 1.44. Show that each connected component is closed, and that each topological space is uniquely partitioned
into its connected components. If such a partition is finite, then connected components are also open. Give an example
of a topological space in which some connected components are not open.

1.10 Path-connected spaces

A curve in a topological space X is an arbitrary continuous map γ : [a, b] → X. It is said that the curve γ joins the
points γ(a) and γ(b).

A topological space X is called path-connected if any two of its points can be connected by a curve.

Problem 1.45. Prove that a path-connected topological space is connected. Give an example of a connected space
that is not path-connected.

1.11 Compact and sequentially compact spaces

A subcover of a cover is a subfamily of a cover, which itself is a cover. A cover of a topological space composed of
open sets is called open.

Definition 1.28. A topological space X is called compact if a finite subcover can be found in any of its open covers.

Remark 1.29. To define a cover for a subset Y of a topological space X, it is more convenient to modify Defini-
tion 1.28, rather than reduce it to the corresponding concept for the induced topology. Namely, an open cover of Y
is a family {Ua}a∈A of open subsets of X such that Y ⊂ ∪a∈AUa. Other definitions do not change.

Problem 1.46. Show that a finite union of compact subsets of a topological space is compact.

Problem 1.47. Prove the following statements:

(1) the image under a continuous mapping from a compact topological space is compact;

(2) a closed subset of a compact topological space is compact;

(3) a compact subset of a Hausdorff topological space is closed;

(4) a continuous bijective mapping from a compact topological space to a Hausdorff space is a homeomorphism;

(5) give an example of an infinite topological space in which all subsets are compact. Note that in such a space
there are compact subsets that are not closed;

(6) give an example of a continuous bijective mapping of topological spaces that is not a homeomorphism.

Problem 1.48 (Alexander subbase theorem). Let X be a topological space and σ its subbase. Prove that X is
compact if and only if each cover of X by elements of the subbase σ has a finite subcover.

Problem 1.49 (Tychonoff’s theorem). Prove that the Cartesian product
∏

i∈I Xi of topological spaces Xi, endowed
with Tychonoff topology, is compact if and only if all Xi are compact.

Problem 1.50. Prove that each segment [a, b] ⊂ R is compact.

A subset of a metric space is called bounded if it is contained in some ball.

Problem 1.51. Prove that a subset of a Euclidean space is compact if and only if it is closed and bounded.
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Problem 1.52. Prove that every compact metric space is bounded. Prove that a continuous function on a compact
topological space is bounded and takes its largest and smallest values.

Definition 1.30. A topological space is called sequentially compact if every sequence of its points has a convergent
subsequence.

Problem 1.53. Prove that every sequentially compact metric space is bounded. Prove that a continuous function
on a sequentially compact topological space is bounded and takes its largest and smallest values.

Remark 1.31. Note that compactness and sequential compactness in the case of general topological spaces are
not related to each other: there are spaces that have one of these properties and do not have the other. Since the
examples are quite complicated, we will omit them here. However, everything is much simpler for metric spaces, see
Theorem 2.20 in Chapter 2.

1.12 Hyperspaces

A family of various subsets of a topological or metric space endowed with a certain topology or metric is called a
hyperspace. In Construction 1.5 above, we defined the Vietoris topology on the set 2X of all subsets of a topological
space X. Thus, 2X is a special case of hyperspace.

Here are a few more examples of hyperspaces (in all these spaces, the topology is induced from 2X in the standard
way):

• by P0(X) ⊂ 2X we denote the set of all nonempty subsets of X;

• by CL(X) ⊂ P0(X) we denote the set of all nonempty closed subsets of X;

• by C(X) ⊂ CL(X) the set of all nonempty closed connected subsets of X;

• by Cn(X) ⊂ CL(X) the set of all nonempty closed subsets of X having at most n components;

• by C∞(X) ⊂ CL(X) the set of all nonempty closed subsets of X, each of which has finitely many components;

• by K(X) ⊂ P0(X) the set of all nonempty compact subsets of X;

• by Fn(X) ⊂ K(X) the set of all nonempty at most n-point subsets of X;

• by F∞(X) ⊂ K(X) the set of all nonempty finite subsets of X.

There are numerous, usually obvious, connections between these spaces. For example, if the space X is Hausdorff,
then K(X) ⊂ CL(X); if X is Hausdorff and compact, then K(X) = CL(X).

A connected nonempty compact Hausdorff topological space is called a continuum. If the space X is Hausdorff,
then K(X) ∩ C(X) is the set of all continua. In some literature, for example, in [2], this space is denoted by C(X).

Problem 1.54. Let X = {a, b}. We define the following topology on X as follows: τ =
{
∅, X, {a}

}
. Find out what

the space CL(X) is.

Definition 1.32. A topological space is called a space of class T0 if, for any two different points of this space, at
least one of them has a neighborhood that does not contain the second point.

Problem 1.55. Prove that the space CL(X) is always a space of class T0.

Problem 1.56. A topological space is called a space of class T1 if, for any two different points of this space, each of
them has a neighborhood that does not contain the remaining point.

Problem 1.57. Prove that if X is a space of class T1, then CL(X) is also a space of class T1. Give an example that
demonstrates that the converse is not true.

Problem 1.58. Prove that the space P0(X) belongs to the class T1 if and only if the space X is discrete.
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Exercises to Chapter 1
Exercise 1.1. Show that the family of all closed subsets of a topological space X contains ∅ and X, and that the
intersection of any collection of closed subsets, as well as the union of any finite collection of closed subsets are some
closed sets.

Exercise 1.2. Let X be a topological space and Y ⊂ X. Consider the family τY := {U ∩ Y : U ∈ τX}. Prove that
τY is a topology on Y .

Exercise 1.3. For a metric space (X, ρ) define τρ ⊂ 2X as the collection consisting of the empty set and all possible
unions of open balls. Prove that the family τρ is a topology.

Exercise 1.4. Prove that a family β ⊂ 2X is a base of some topology τ on X if and only if β is a cover of X, and for
any intersecting B1, B2 ∈ β their intersection B1 ∩ B2 is the union of some elements from β. Moreover, each family
satisfying these properties, generates a unique topology.

Exercise 1.5. Let some topologies τ1 and τ2 with bases β1 and β2 be given on a set X. Then τ1 = τ2 if and only iff
for any x ∈ X the following condition is fulfilled: for any B2 ∈ β2, x ∈ B2, there is B1 ∈ β1 for which x ∈ B1 ⊂ B2,
and vice versa, for any B1 ∈ β1, x ∈ B1, there exists B2 ∈ β2 for which x ∈ B2 ⊂ B1. In particular, for a topological
space X, a collection β of open sets satisfying the condition of Exercise 1.4 is a base of the topology τX if and only if
for each open set U ∈ τX and any point x ∈ U there exists some B ∈ β such that x ∈ B ⊂ U .

Exercise 1.6. Let X be an infinite set of cardinality n, and m be an infinite cardinal number, with m ≤ n. Consider
a family F of all F ⊂ X such that #F < m, and let βm = {X \ F : F ∈ F}. Prove that the family βm is a base of
some topology.

Exercise 1.7. Show that the collection of all possible half-intervals of the form [a, b) ⊂ R form a base of some
topology that contains the standard topology.

Exercise 1.8. Prove that a family σ ⊂ 2X is a subbase of some topology on X if and only if σ is a cover of X.
Moreover, each cover of X generates a unique topology.

Exercise 1.9. Show that the standard topology of the Euclidean space Rn coincides with the topology of the Cartesian
product R× · · · × R of real lines endowed with the standard topology.

Exercise 1.10. Let X be an arbitrary topological space. For each finite collection U1, . . . , Un ∈ τX we put

〈U1, . . . , Un〉 = {Y ⊂ X : Y ⊂ ∪n
i=1Ui, and Y ∩ Ui 6= ∅ for all i = 1, . . . , n}.

Show that the families

σ =
{
〈U〉 : U ∈ τX

}
∪
{
〈X,U〉 : U ∈ τX

}
and β =

{
〈U1, . . . , Un〉 : U1, . . . , Un ∈ τX

}
form respectively a subbase and the corresponding base of some topology on 2X .

Exercise 1.11. Prove that each construction from the section “Standard constructions of topologies” provides a
topology.

Exercise 1.12. Prove that the definitions 1.18, 1.19, and 1.20 are equivalent.

Exercise 1.13. Let f : X → Y be a mapping of topological spaces and σ be a subbase of the topology on the space
Y . Prove that f is continuous if and only if f -preimage of each element from the subbase σ is open in X.

Exercise 1.14. Show that the identity mapping and the composition of continuous mappings are continuous.

Exercise 1.15. LetX be a topological space, and Z ⊂ X be its subspace. Show that the inclusion mapping i : Z → X,
i(z) = z for each point z ∈ Z, is continuous.

Exercise 1.16. Let X, Y be topological spaces, W ⊂ Y be a subspace of Y , and f : X → W be a continuous
mapping. Let g : X → Y be a mapping coinciding with f : for each x ∈ X it holds f(x) = g(x). Prove that the
mapping g is continuous.



Exercises to Chapter 1. 12

Exercise 1.17. Let f : X → Y be a continuous mapping of topological spaces, Z ⊂ X, W ⊂ Y , f(Z) ⊂W . Then the
restriction f |Z,W : Z → W is also continuous as the mapping of the topological spaces Z and W with the topologies
induced on them from X and Y , respectively.

Exercise 1.18. Let {Xi}i∈I be a cover of a topological space X by open subsets Xi, and f : X → Y a mapping to a
topological space Y . Show that f is continuous if and only if all the restrictions f |Xi

are continuous. In particular,
this holds when X = ti∈IXi is the disjoint union of some topological spaces. Will this result remain true if we replace
{Xi} with a cover of X by arbitrary sets?

Exercise 1.19. Let X = ti∈IXi be the disjoint union of some topological spaces and f : X → Y be a map into the
topological space Y . Show that f is continuous if and only if all its restrictions f |Xi are continuous.

Exercise 1.20. Let {Xi}i∈I be a family of topological spaces and X =
∏

i∈I Xi. We define the canonical projection
πi : X → Xi by setting πi(x) = xi. Prove that the product topology on X is the smallest of those topologies in which
all the projections πi are continuous.

Exercise 1.21. Let {Yi}i∈I be a family of topological spaces, Y =
∏

i∈I Yi, and fi : X → Yi are mappings from
some topological space X. We construct the mapping F :=

∏
i∈I fi : X → Y by associating with each point x ∈ X

the element y ∈ Y defined as follows: yi = fi(x). Prove that the mapping F is continuous if and only if all fi are
continuous.

Exercise 1.22. Let A ⊂ Rn be an arbitrary subset, (x1, . . . , xn) the Cartesian coordinates on Rn, f : A → Rm a
continuous mapping, (y1, . . . , ym) the Cartesian coordinates on Rm, and yi = yi(x1, . . . , xn) the coordinate functions
of the mapping f . Prove that the mapping f is continuous if and only if all the coordinate functions yi = yi(x1, . . . , xn)
are continuous.

Exercise 1.23. Describe all continuous functions on a topological space with Zariski topology.

Exercise 1.24. Let f : X → Y be a homeomorphism, and Z ⊂ X, W = f(Z). Prove that the restriction f |Z,W : Z →
W is also a homeomorphism. Show that the letters b, c, f, g, i, h, o are pairwise non-homeomorphic.

Exercise 1.25. Show that every embedding is continuous. Give an example of a continuous injective mapping of
topological spaces that is not an embedding.

Exercise 1.26. Let ω be a character not contained in N. We define a topology on the set N̄ = N ∪ {ω}, taking as
a base all points from N, as well as all sets of the form {n ≥ N} ∪ {ω}, N ∈ N. Show that a sequence x : N → X
converges if and only if the mapping x can be extended to a continuous mapping on N̄.

Exercise 1.27. Show that a continuous mapping f : X → Y of topological spaces takes convergent sequences to
convergent ones. Show that if X is a metric space, then every mapping g : X → Y that takes convergent sequences
into convergent ones is continuous. Give an example of a topological space X and a mapping h : X → Y into a
topological space Y , which takes convergent sequences into convergent ones, but is not continuous nonetheless.

Exercise 1.28. Let x1, x2, . . . be a sequence of points in a metric space X. Suppose that for some point x ∈ X
each neighborhood of x intersects the set {xi}∞i=1 \ {x}. Prove that the sequence x1, x2, . . . contains a convergent
subsequence. Extract from this that if a sequence of points in a metric space does not contain any convergent
subsequence, then for each x ∈ X there exists r > 0 such that the open ball Ur(x) does not contain points of this
sequence other than x.

Exercise 1.29. Prove that the closure of a set Y ⊂ X is the smallest closed subset of X containing Y , i.e., Y is the
intersection of all closed sets containing Y .

Exercise 1.30. Let the topology of Zariski of weight m be given on an infinite set X. Then a subset Y ⊂ X is
everywhere dense in X if and only if #Y ≥ m.

Exercise 1.31. Show that in metric space, separability is equivalent to having a countable base. Extract from
this that every subset of a separable metric space is separable. Show that an open subset of an arbitrary separable
topological space is separable. Give an example of a separable topological space containing an non-separable subset
(use the Sorgenfrey plane).

Exercise 1.32. Show that the interior IntY is the largest open subset of X contained in Y .
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Exercise 1.33. Prove that a subset Y of the topological space X is closed if and only if Y = Y , and is open if and
only if Y = IntY .

Exercise 1.34. Prove that the boundary ∂Y is a closed subset of X, and

∂Y = Y \ IntY = Y ∩X \ Y .

Exercise 1.35. Show that in a Hausdorff topological space every point is closed. Give an example of a non-Hausdorff
topological space in which all points are closed.

Exercise 1.36. Show that the disjoint union and the Cartesian product of Hausdorff topological spaces are also
Hausdorff.

Exercise 1.37. Show that in a Hausdorff topological space the limit of a convergent sequence is uniquely defined.
Give an example of topological space in which each sequence converges to each point.

Exercise 1.38. Describe what sequences in a space with Zariski topology are convergent, and what limits each
convergent sequence has.

Exercise 1.39. Prove that each segment [a, b] ⊂ R is connected.

Exercise 1.40. Prove that the closure of a connected subset of a topological space is connected.

Exercise 1.41. Let {Ai}i∈I be a family of connected pairwise intersecting subsets of a topological space X, then the
set ∪i∈IAi is connected.

Exercise 1.42. Show that the image of a connected topological space under a continuous mapping is also connected.

Exercise 1.43. Prove that every continuous function on a connected topological space takes all intermediate values.

Exercise 1.44. Show that each connected component is closed, and that each topological space is uniquely partitioned
into its connected components. If such a partition is finite, then connected components are also open. Give an example
of a topological space in which some connected components are not open.

Exercise 1.45. Prove that a path-connected topological space is connected. Give an example of a connected space
that is not path-connected.

Exercise 1.46. Show that a finite union of compact subsets of a topological space is compact.

Exercise 1.47. Prove the following statements:

(1) the image under a continuous mapping from a compact topological space is compact;

(2) a closed subset of a compact topological space is compact;

(3) a compact subset of a Hausdorff topological space is closed;

(4) a continuous bijective mapping from a compact topological space to a Hausdorff space is a homeomorphism;

(5) give an example of an infinite topological space in which all subsets are compact. Note that in such a space
there are compact subsets that are not closed;

(6) give an example of a continuous bijective mapping of topological spaces that is not a homeomorphism.

Exercise 1.48 (Alexander subbase theorem). Let X be a topological space and σ its subbase. Prove that X is
compact if and only if each cover of X by elements of the subbase σ has a finite subcover.

Exercise 1.49 (Tychonoff’s theorem). Prove that the Cartesian product
∏

i∈I Xi of topological spaces Xi, endowed
with Tychonoff topology, is compact if and only if all Xi are compact.

Exercise 1.50. Prove that each segment [a, b] ⊂ R is compact.

Exercise 1.51. Prove that a subset of a Euclidean space is compact if and only if it is closed and bounded.
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Exercise 1.52. Prove that every compact metric space is bounded. Prove that a continuous function on a compact
topological space is bounded and takes its largest and smallest values.

Exercise 1.53. Prove that every sequentially compact metric space is bounded. Prove that a continuous function
on a sequentially compact topological space is bounded and takes its largest and smallest values.

Notation. The following matrix groups consist of real matrices of size n × n and are considered as subsets of Rn2

with the induced topology (their rows or columns are written out one after another and form vectors): O(n) consists
of all orthogonal matrices (orthogonal group); SO(n) consists of all orthogonal matrices with determinant 1 (special
orthogonal group); GL(n) consists of all nondegenerate matrices (general linear group); SL(n) consists of all matrices
with determinant 1 (special linear group).

Exercise 1.54. Find out which of the following matrix groups are connected, which are compact:

O(n), SO(n), GL(n), SL(n).

Exercise 1.55. Let X = {a, b}. We define the following topology on X: τ =
{
∅, X, {a}

}
. Find out what the space

CL(X) is.

Definition 1.33. A topological space is called a space of class T0 if, for any two different points of this space, at
least one of them has a neighborhood that does not contain the second point.

Exercise 1.56. Prove that the space CL(X) is always a space of class T0.

Definition 1.34. A topological space is called a space of class T1 if, for any two different points of this space, each
of them has a neighborhood that does not contain the remaining point.

Exercise 1.57. Prove that if X is a space of class T1, then CL(X) is also a space of class T1. Give an example that
demonstrates that the converse is not true.

Exercise 1.58. Prove that the space P0(X) belongs to the class T1 if and only if the space X is discrete.


