Mathematical olympiad 15.05.2010 for students

Faculty of Mechanics and Mathematics, Moscow State University

1. Let $f: [0,1] \to [0,1]$ and $g: [0,1] \to [0,1]$ be continuous functions such that f(g(x)) = g(f(x)) for all $x \in [0,1]$. Suppose also that g is continuously differentiable in (0,1) and $g'(x) \leq 1$ if $x \in (0,1)$. Prove that there exists a point $t \in [0,1]$ such that f(t) = g(t) = t.

2. Fix vectors $v_1, \ldots, v_n \in \mathbb{R}^k$. Denote by (v_1, \ldots, v_n) the $k \times n$ -matrix formed by the coordinates of v_1, \ldots, v_n . Prove that there exist m and $w_1, \ldots, w_n \in \mathbb{R}^m$ with the following two properties:

(i) $(w_1, \ldots, w_n)(v_1, \ldots, v_n)^T = 0 \in \mathbb{R}^{mk};$

(ii) for every l and any elements $u_1, \ldots, u_n \in \mathbb{R}^l$ such that $(u_1, \ldots, u_n)(v_1, \ldots, v_n)^T = 0 \in \mathbb{R}^{lk}$, there exists a linear map $T \colon \mathbb{R}^m \to \mathbb{R}^l$ such that $T(w_i) = u_i$ for all $i = 1, \ldots, n$.

3. Let $A = (a_{ij})$ be a square $n \times n$ -matrix with real entries. Suppose that for each subset $I \subseteq \{1, \ldots, n\}$ and the matrix $A_I := (a_{ks})_{k,s \in I}$ we have $A_I^n = 0$. Prove that one can make the matrix A upper-triangular with zeroes at the principal diagonal by finitely many transformations of the following type: one transposes any two lines in the matrix and then transposes the columns with the same numbers.

4. Let SABC be a pyramid. Consider spheres X inscribed into the trihedral corner with the vertex S. Describe the set of the intersection points of the three planes tangent to X passing through lines AB, BC, CA and not containing the pyramid faces. (S, A, B, C are fixed while X varies.)

5. For which (a) odd n (b) even n

can one color the vertices of the n-dimensional cube into n colors so that for each vertex all n neighboring vertices have different colors?

Mathematical olympiad 15.05.2010 for students

Faculty of Mechanics and Mathematics, Moscow State University

1. Let $f: [0,1] \to [0,1]$ and $g: [0,1] \to [0,1]$ be continuous functions such that f(g(x)) = g(f(x)) for all $x \in [0,1]$. Suppose also that g is continuously differentiable in (0,1) and $g'(x) \leq 1$ if $x \in (0,1)$. Prove that there exists a point $t \in [0,1]$ such that f(t) = g(t) = t.

2. Fix vectors $v_1, \ldots, v_n \in \mathbb{R}^k$. Denote by (v_1, \ldots, v_n) the $k \times n$ -matrix formed by the coordinates of v_1, \ldots, v_n . Prove that there exist m and $w_1, \ldots, w_n \in \mathbb{R}^m$ with the following two properties:

(i) $(w_1, \ldots, w_n)(v_1, \ldots, v_n)^T = 0 \in \mathbb{R}^{mk};$

(ii) for every l and any elements $u_1, \ldots, u_n \in \mathbb{R}^l$ such that $(u_1, \ldots, u_n)(v_1, \ldots, v_n)^T = 0 \in \mathbb{R}^{lk}$, there exists a linear map $T \colon \mathbb{R}^m \to \mathbb{R}^l$ such that $T(w_i) = u_i$ for all $i = 1, \ldots, n$.

3. Let $A = (a_{ij})$ be a square $n \times n$ -matrix with real entries. Suppose that for each subset $I \subseteq \{1, \ldots, n\}$ and the matrix $A_I := (a_{ks})_{k,s \in I}$ we have $A_I^n = 0$. Prove that one can make the matrix A upper-triangular with zeroes at the principal diagonal by finitely many transformations of the following type: one transposes any two lines in the matrix and then transposes the columns with the same numbers.

4. Let SABC be a pyramid. Consider spheres X inscribed into the trihedral corner with the vertex S. Describe the set of the intersection points of the three planes tangent to X passing through lines AB, BC, CA and not containing the pyramid faces. (S, A, B, C are fixed while X varies.)

5. For which (a) odd n (b) even n

can one color the vertices of the n-dimensional cube into n colors so that for each vertex all n neighboring vertices have different colors?