Faculty of Mechanics and Mathematics, Moscow State University

1. Let $f:[0,1] \rightarrow[0,1]$ and $g:[0,1] \rightarrow[0,1]$ be continuous functions such that $f(g(x))=g(f(x))$ for all $x \in[0,1]$. Suppose also that g is continuously differentiable in $(0,1)$ and $g^{\prime}(x) \leq 1$ if $x \in(0,1)$. Prove that there exists a point $t \in[0,1]$ such that $f(t)=g(t)=t$.
2. Fix vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{k}$. Denote by $\left(v_{1}, \ldots, v_{n}\right)$ the $k \times n$-matrix formed by the coordinates of v_{1}, \ldots, v_{n}. Prove that there exist m and $w_{1}, \ldots, w_{n} \in \mathbb{R}^{m}$ with the following two properties:
(i) $\left(w_{1}, \ldots, w_{n}\right)\left(v_{1}, \ldots, v_{n}\right)^{T}=0 \in \mathbb{R}^{m k}$;
(ii) for every l and any elements $u_{1}, \ldots, u_{n} \in \mathbb{R}^{l}$ such that $\left(u_{1}, \ldots, u_{n}\right)\left(v_{1}, \ldots, v_{n}\right)^{T}=0 \in$ $\mathbb{R}^{l k}$, there exists a linear map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ such that $T\left(w_{i}\right)=u_{i}$ for all $i=1, \ldots, n$.
3. Let $A=\left(a_{i j}\right)$ be a square $n \times n$-matrix with real entries. Suppose that for each subset $I \subseteq\{1, \ldots, n\}$ and the matrix $A_{I}:=\left(a_{k s}\right)_{k, s \in I}$ we have $A_{I}^{n}=0$. Prove that one can make the matrix A upper-triangular with zeroes at the principal diagonal by finitely many transformations of the following type: one transposes any two lines in the matrix and then transposes the columns with the same numbers.
4. Let $S A B C$ be a pyramid. Consider spheres X inscribed into the trihedral corner with the vertex S. Describe the set of the intersection points of the three planes tangent to X passing through lines $A B, B C, C A$ and not containing the pyramid faces. (S, A, B, C are fixed while X varies.)
5. For which
(a) odd n
(b) even n
can one color the vertices of the n-dimensional cube into n colors so that for each vertex all n neighboring vertices have different colors?

Mathematical olympiad 15.05.2010 for students

Faculty of Mechanics and Mathematics, Moscow State University

1. Let $f:[0,1] \rightarrow[0,1]$ and $g:[0,1] \rightarrow[0,1]$ be continuous functions such that $f(g(x))=g(f(x))$ for all $x \in[0,1]$. Suppose also that g is continuously differentiable in $(0,1)$ and $g^{\prime}(x) \leq 1$ if $x \in(0,1)$. Prove that there exists a point $t \in[0,1]$ such that $f(t)=g(t)=t$.
2. Fix vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{k}$. Denote by $\left(v_{1}, \ldots, v_{n}\right)$ the $k \times n$-matrix formed by the coordinates of v_{1}, \ldots, v_{n}. Prove that there exist m and $w_{1}, \ldots, w_{n} \in \mathbb{R}^{m}$ with the following two properties:
(i) $\left(w_{1}, \ldots, w_{n}\right)\left(v_{1}, \ldots, v_{n}\right)^{T}=0 \in \mathbb{R}^{m k}$;
(ii) for every l and any elements $u_{1}, \ldots, u_{n} \in \mathbb{R}^{l}$ such that $\left(u_{1}, \ldots, u_{n}\right)\left(v_{1}, \ldots, v_{n}\right)^{T}=0 \in$ $\mathbb{R}^{l k}$, there exists a linear map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ such that $T\left(w_{i}\right)=u_{i}$ for all $i=1, \ldots, n$.
3. Let $A=\left(a_{i j}\right)$ be a square $n \times n$-matrix with real entries. Suppose that for each subset $I \subseteq\{1, \ldots, n\}$ and the matrix $A_{I}:=\left(a_{k s}\right)_{k, s \in I}$ we have $A_{I}^{n}=0$. Prove that one can make the matrix A upper-triangular with zeroes at the principal diagonal by finitely many transformations of the following type: one transposes any two lines in the matrix and then transposes the columns with the same numbers.
4. Let $S A B C$ be a pyramid. Consider spheres X inscribed into the trihedral corner with the vertex S. Describe the set of the intersection points of the three planes tangent to X passing through lines $A B, B C, C A$ and not containing the pyramid faces. (S, A, B, C are fixed while X varies.)

5. For which
 (a) odd n
 (b) even n

can one color the vertices of the n-dimensional cube into n colors so that for each vertex all n neighboring vertices have different colors?

