A remark on nonsymmetric compact Riemann surfaces

By
Dietmar Garbe

Let G be a group of automorphisms of a compact Riemann surface of genus $g>1$. It is well known that G is a factor group of a Fuchsian group Γ of signature

$$
\left(h ; l_{1}, l_{2}, \ldots, l_{n}\right)
$$

that means a factor group of

$$
x_{1}^{l_{1}}=x_{2}^{l_{2}}=\cdots=x_{n}^{l_{n}}=\prod_{i=1}^{n} x_{i}=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]=1
$$

where $[a, b]=a b a^{-1} b^{-1}$. The kernel N is a group of signature $(g ;-)$.
We use the notation of Singerman [3]. G is called a K-automorphism group if Γ is of signature $\left(0 ; l_{1}, l_{2}, 2\right)$. There is a close connection between K-automorphism groups and regular maps. A Riemann surface is called nonsymmetric if it admits no anticonformal involution.

Singerman [3; Theorem 1] has shown that for every automorphism group G of a compact Riemann surface S for which Γ is not a triangle group ($0 ; l_{1}, l_{2}, l_{3}$) there exists an automorphism group $G_{1} \cong G$ of a nonsymmetric Riemann surface S_{1} homeomorphic to S. Thus it is of interest to study the nonsymmetric Riemann surfaces where Γ is a triangle group. They are rather exceptional. Singerman gives one of genus $g=17$ and some others of higher genus.

In this note we classify all K-automorphism groups of compact Riemann surfaces of genus 7. Together with earlier results of Coxeter-Moser, Sherk and the author (see [2]) one then knows all K-automorphism groups of genus $2 \leqq g \leqq 7$. Apart from isomorphic copies there exist exactly two nonsymmetric Riemann surfaces of genus $2 \leqq g \leqq 7$ whose group is a K-automorphism group. They belong to two surface kernels in $(0 ; 9,6,2)$ and are of genus 7. As P. Bergau told me, one of these has been known to him before.

Our enumeration is based on the methods described in [2]. Firstly one determines the arithmetical possibilities of $\left(0 ; l_{1}, l_{2}, 2\right) \rightarrow G$ by means of the Riemann-Hurwitz formula

$$
\begin{equation*}
2 g-2=|G|\left(\frac{1}{2}-\frac{1}{l_{1}}-\frac{1}{l_{2}}\right) \tag{1}
\end{equation*}
$$

By grouptheoretical reasoning one then decides wether there exist torsionfree normal subgroups of index $|G|$ in $\left(0 ; l_{1}, l_{2}, 2\right)$. We illustrate this procedure by proving:

Proposition. There exist exactly three classes of conformally equivalent compact Riemann surfaces of genus 7 whose automorphism group is of type $G \cong(0 ; 9,6,2) / N$ with torsionfree N. They are defined by the relations

$$
\begin{array}{ll}
x_{1}^{9}=x_{2}^{6}=x_{3}^{2}=x_{1} x_{2} x_{3}=1 ; & {\left[x_{1}, x_{2}^{2}\right]=x_{1}^{3}} \\
x_{1}^{9}=x_{2}^{6}=x_{3}^{2}=x_{1} x_{2} x_{3}=1 ; & {\left[x_{1}, x_{2}^{2}\right]=x_{1}^{-3} ;} \\
x_{1}^{9}=x_{2}^{6}=x_{3}^{2}=x_{1} x_{2} x_{3}=1 ; & {\left[x_{1}, x_{2}^{2}\right]=1} \tag{iii}
\end{array}
$$

(i) and (ii) belong to nonsymmetric Riemann surfaces. So they give irreflexible regular maps.

Proof. Using (1) we get $|G|=54$. The 3-Sylow subgroup S_{3} of G is normal. The corresponding normal subgroup in ($0 ; 9,6,2$) is defined by

$$
u=x_{1}, \quad v=x_{2} x_{1} x_{2}^{-1} \mid u^{9}=v^{9}=(u v)^{3}=1
$$

(Use Reidemeister-Schreier.) If S_{3} is abelian we have $x_{1} \rightleftarrows x_{2}^{2}$. Taking N as the normal closure of $\left[x_{1}, x_{2}^{2}\right]$ in $(0 ; 9,6,2)$ we get the K-automorphism group (iii).

Now let S_{3} be nonabelian. The commutator quotient group S_{3} / S_{3}^{\prime} is of order 9 . In fact: S_{3}^{\prime} can't be of order 9 . Otherwise $S_{3}^{\prime} \cong C_{9}$ or $S_{3}^{\prime} \cong C_{3} \times C_{3}$, and so S_{3} would have a normal subgroup of index 9 .
S_{3} / S_{3}^{\prime} cannot be cyclic of order 9 . As the automorphism group of S_{3}^{\prime} has order 2 the centralizer of S_{3}^{\prime} in S_{3} would be S_{3}. Hence S_{3} would be abelian. Thus S_{3} / S_{3}^{\prime} is elementary abelian of type (3,3).

The commutator quotient group of $\langle u, v\rangle$ is isomorphic to $C_{9} \times C_{3}$. Thus the normal subgroup H in $\langle u, v\rangle$ which corresponds to S_{3}^{\prime} is uniquely determined. Hence $u^{3} \in H, u v^{-1} u^{-1} v \in H$. The cosets \bar{u}^{3} and $\bar{u} \bar{v}^{-1} \bar{u}^{-1} \bar{v}$ in G necessarily generate the same cyclic group of order 3 , so

$$
\begin{equation*}
\bar{u} \bar{v}^{-1} \bar{u}^{-1} \bar{v}=\bar{u}^{3} \quad \text { or } \quad \bar{u} \bar{v}^{-1} \bar{u}^{-1} \bar{v}=\bar{u}^{-3} \tag{2}
\end{equation*}
$$

Adding the relations which correspond to (2) to those of $(0 ; 9,6,2)$ one gets cases (i) and (ii). They satisfy the well-known criterion of nonsymmetry resp. irreflexibility (see [2; p. 41] and [3; Theorem 2]) whereas (iii) does not.

We want to remark that (i) and (ii) are 'mirror images' of each other.
The following list gives all K-automorphism groups of genus 7 .

	$\left(l_{1}, l_{2}, 2\right) \quad l_{1} \geqq l_{2}$	$\|G\|$	Defining relators of N in $\left(0 ; l_{1}, l_{2}, 2\right)$	References
1.	$(28,28,2)$	28	$x_{1}^{13} x_{2}^{-1}$	[1; p. 105] \{28, 28$\}_{1,0}$
2.	(30, 15, 2)	30	$x_{1}^{14} x_{2}^{-1}$	[1; p. 139] 330,15$\}_{2}$
3.	$(16,16,2)$	32	$x_{1}^{2} x_{2}^{2}$	[1; p. 139] $\{16,16\}_{2}$
4.	$(16,16,2)$	32	$x_{1}^{10} x_{2}^{2}$	[2; Satz 6.2]
5.	(21, 6, 2)	42	$x_{1}^{7} x_{2}^{-2}$	[2; Satz 6.2]
6.	(12, 6, 2)	48	$x_{1}^{6} x_{2}^{\frac{3}{3}} ;\left[x_{1}^{3}, x_{2}\right]$	[2; Satz 6.4]
7.	($9,6,2)$	54	$x_{1}^{-3}\left[x_{1}, x_{2}^{2}\right]$	[
8.	(9, 6, 2)	54	$x_{1}^{3}\left[x_{1}, x_{2}^{2}\right]$	-
9.	(9, 6, 2)	54	$\left[x_{1}, x_{2}^{2}\right]$	-
10.	(7, 7, 2)	56	$x_{1}^{3} x_{2}^{2}\left(x_{1}^{-3} x_{2}\right)^{2}$	[1; p. 103] $\underset{\text { map }}{\text { Edmonds' }}$
11.	(28, 4, 2)	56	$x_{1}^{14} x_{2}^{2}$	[1; p. 115] $\{28,4\} 1,1$
12.	(16, 4, 2)	64	$\left(x_{2}^{-1} x_{2}\right)^{2}$	[1;p.110] $\{16,4 \mid 2\}$
13.	$(16,4,2)$	64	$x_{1}^{2} x_{2} x_{1}^{-6} x_{2}^{-1}$	[2; Satz 6.4]
14.	$(12,3,2)$	144	$x_{1}^{3}\left[x_{1}^{2}, x_{2}\right] x_{1}\left[x_{1}^{2}, x_{2}\right]$	-
15.	(7, 3, 2)	504	$\left\{\left(x_{1}^{2} x_{2}^{-1}\right)^{5} x_{1}^{-1}\right\}^{2}$	[4; p. 70]

References

[1] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups. 2nd edition. Berlin 1965.
[2] D. Garbe, U'ber die regulären Zerlegungen geschlossener orientierbarer Flächen. J. reine angew. Math. 237, 39-55 (1969).
[3] D. Singermann, Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210, 17-32 (1974).
[4] A. Sivkov, Necessary and sufficient conditions for generating certain simple groups. Amer. J. Math. 59, 67-76 (1937).

Eingegangen am 22.11. 1977
Anschrift des Autors:
Dietmar Garbe
Fakultät für Mathematik
Universität Bielefeld
Universitätsstr.
4800 Bielefeld 1

