A remark on nonsymmetric compact Riemann surfaces

By

DIETMAR GARBE

Let G be a group of automorphisms of a compact Riemann surface of genus g > 1. It is well known that G is a factor group of a Fuchsian group Γ of signature

 $(h; l_1, l_2, \ldots, l_n),$

that means a factor group of

$$x_1^{l_1} = x_2^{l_2} = \dots = x_n^{l_n} = \prod_{i=1}^n x_i = \prod_{i=1}^h [a_i, b_i] = 1$$

where $[a, b] = aba^{-1}b^{-1}$. The kernel N is a group of signature (q; -).

We use the notation of Singerman [3]. G is called a K-automorphism group if Γ is of signature (0; l_1 , l_2 , 2). There is a close connection between K-automorphism groups and regular maps. A Riemann surface is called *nonsymmetric* if it admits no anticonformal involution.

Singerman [3; Theorem 1] has shown that for every automorphism group G of a compact Riemann surface S for which Γ is not a triangle group $(0; l_1, l_2, l_3)$ there exists an automorphism group $G_1 \cong G$ of a nonsymmetric Riemann surface S_1 homeomorphic to S. Thus it is of interest to study the nonsymmetric Riemann surfaces where Γ is a triangle group. They are rather exceptional. Singerman gives one of genus g = 17 and some others of higher genus.

In this note we classify all K-automorphism groups of compact Riemann surfaces of genus 7. Together with earlier results of Coxeter-Moser, Sherk and the author (see [2]) one then knows all K-automorphism groups of genus $2 \leq g \leq 7$. Apart from isomorphic copies there exist exactly two nonsymmetric Riemann surfaces of genus $2 \leq g \leq 7$ whose group is a K-automorphism group. They belong to two surface kernels in (0; 9, 6, 2) and are of genus 7. As P. Bergau told me, one of these has been known to him before.

Our enumeration is based on the methods described in [2]. Firstly one determines the arithmetical possibilities of $(0; l_1, l_2, 2) \rightarrow G$ by means of the Riemann-Hurwitz formula

(1)
$$2g-2 = |G| \left(\frac{1}{2} - \frac{1}{l_1} - \frac{1}{l_2} \right).$$

By grouptheoretical reasoning one then decides wether there exist torsionfree normal subgroups of index |G| in $(0; l_1, l_2, 2)$. We illustrate this procedure by proving:

D. GARBE

Proposition. There exist exactly three classes of conformally equivalent compact Riemann surfaces of genus 7 whose automorphism group is of type $G \cong (0; 9, 6, 2)/N$ with torsionfree N. They are defined by the relations

- $x_1^9 = x_2^6 = x_3^2 = x_1 x_2 x_3 = 1;$ $[x_1, x_2^2] = x_1^3;$ (i)
- $x_1^9 = x_2^6 = x_3^2 = x_1 x_2 x_3 = 1;$ $[x_1, x_2^2] = x_1^{-3};$ (ii) $x_1^9 = x_2^6 = x_3^2 = x_1 x_2 x_3 = 1; \quad [x_1, x_2^2] = 1.$
- (iii)

(i) and (ii) belong to nonsymmetric Riemann surfaces. So they give irreflexible regular maps.

Proof. Using (1) we get |G| = 54. The 3-Sylow subgroup S_3 of G is normal. The corresponding normal subgroup in (0; 9, 6, 2) is defined by

 $u = x_1, \quad v = x_2 x_1 x_2^{-1} | u^9 = v^9 = (uv)^3 = 1.$

(Use Reidemeister-Schreier.) If S₃ is abelian we have $x_1 \rightleftharpoons x_2^2$. Taking N as the normal closure of $[x_1, x_2^2]$ in (0; 9, 6, 2) we get the K-automorphism group (iii).

Now let S_3 be nonabelian. The commutator quotient group S_3/S'_3 is of order 9. In fact: S'_3 can't be of order 9.0 therwise $S'_3 \cong C_9$ or $S'_3 \cong C_3 \times C_3$, and so S_3 would have a normal subgroup of index 9.

 S_3/S_3' cannot be cyclic of order 9. As the automorphism group of S_3' has order 2 the centralizer of S'_3 in S_3 would be S_3 . Hence S_3 would be abelian. Thus S_3/S'_3 is elementary abelian of type (3, 3).

The commutator quotient group of $\langle u, v \rangle$ is isomorphic to $C_9 \times C_3$. Thus the normal subgroup H in $\langle u, v \rangle$ which corresponds to S'_3 is uniquely determined. Hence $u^3 \in H$, $uv^{-1}u^{-1}v \in H$. The cosets \bar{u}^3 and $\bar{u}\bar{v}^{-1}\bar{u}^{-1}\bar{v}$ in G necessarily generate the same cyclic group of order 3, so

(2)
$$\bar{u}\bar{v}^{-1}\bar{u}^{-1}\bar{v} = \bar{u}^3$$
 or $\bar{u}\bar{v}^{-1}\bar{u}^{-1}\bar{v} = \bar{u}^{-3}$.

Adding the relations which correspond to (2) to those of (0; 9, 6, 2) one gets cases (i) and (ii). They satisfy the well-known criterion of nonsymmetry resp. irreflexibility (see [2; p. 41] and [3; Theorem 2]) whereas (iii) does not.

We want to remark that (i) and (ii) are 'mirror images' of each other.

The following list gives all K-automorphism groups of genus 7.

			Defining relators	
	$(l_1,l_2,2)$ $l_1\geqq l_2$	G	of N in $(0; l_1, l_2, 2)$	References
1.	(28, 28, 2)	28	$x_1^{13} x_2^{-1}$	[1; p. 105] {28, 28} _{1.0}
2.	(30, 15, 2)	30	$x_1^{14} x_2^{-1}$	[1; p. 139] {30, 15} ₂
3.	(16, 16, 2)	32	$x_1^2 x_2^2$	[1; p. 139] {16, 16} ₂
4.	(16, 16, 2)	32	$x_1^{10} x_2^2$	[2; Satz 6.2]
5.	(21, 6, 2)	42	$x_1^{\overline{7}} x_2^{-2}$	[2; Satz 6.2]
6.	(12, 6, 2)	48	$x_1^{\hat{6}} x_2^{\hat{3}}; [x_1^3, x_2]$	[2; Satz 6.4]
7.	(9, 6, 2)	54	$x_1^{-3}[x_1, x_2^2]$	
8.	(9, 6, 2)	54	$x_1^3 [x_1, x_2^2]$	_
9.	(9, 6, 2)	54	$[x_1, x_2^2]$	
10.	(7, 7, 2)	56	$x_1^3 x_2^2 (x_1^{-3} x_2)^2$	[1; p. 103] Edmonds'
				\mathbf{map}
11.	(28, 4, 2)	56	$x_1^{14} x_2^2$	[1; p. 115] {28, 4} _{1,1}
12.	(16, 4, 2)	64	$(x_1^{-1}x_2)^2$	[1; p. 110] {16, 4 2}
13.	(16, 4, 2)	64	$x_1^2 x_2 x_1^{-6} x_2^{-1}$	[2; Satz 6.4]
14.	(12, 3, 2)	144	$x_1^3 [x_1^2, x_2] x_1 [x_1^2, x_2]$	
15.	(7, 3, 2)	504	$\{(x_1^2 x_2^{-1})^5 x_1^{-1}\}^2$	[4; p. 70]

References

- [1] H. S. M. COXETER and W. O. J. MOSER, Generators and relations for discrete groups. 2nd edition. Berlin 1965.
- [2] D. GARBE, Über die regulären Zerlegungen geschlossener orientierbarer Flächen. J. reine angew. Math. 237, 39-55 (1969).
- [3] D. SINGERMANN, Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210, 17-32 (1974).
- [4] A. SINKOV, Necessary and sufficient conditions for generating certain simple groups. Amer. J. Math. 59, 67-76 (1937).

Eingegangen am 22. 11. 1977

Anschrift des Autors:

Dietmar Garbe Fakultät für Mathematik Universität Bielefeld Universitätsstr. 4800 Bielefeld 1