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Regular Maps and Their Groups.

By H. R. BrRaHANA.

The geometrical representation of a finite group by means of fundamental
regions, due to Dyck,* leads to a map that is transformed into itself by every
opération of the group. The group may be represented transitively on sym-
bols for regions, but in general it may not be represented transitively on
symbols for edges or vertices. On the other hand it is well known ¢ that the
polyhedral groups may be represented transitively on symbols for regions, for
edges, or for vertices of the regular polyhedra or the corresponding maps on
a sphere. In the one case the number of regions of the map is equal to twice
the order of the group and in the other the number of regions is equal to
the.order of the group divided by the number of sides of a region. Maps of
the latter type we have called regular maps.

The polyhedral groups are the only ones that may be represented on
regular maps on a sphere. There has been no attempt to determine the kinds
of groups that may be represented on regular maps on surfaces of higher genus.
Heffter § showed that the metacyclic groups may be so represented. In a
recent paper § all the maps of twelve five-sided regions with a group of order
120 containing an icosahedral subgroup were exhibited. In this last cited
investigation the surfaces were allowed to be one-sided or two-sided and when
the surface was two-sided a transformation of the map into itself in such a
way as to reverse the sense of the boundary of each region was permitted.
Lastly, the maps on a surface of genus one and the groups connected with
them were considered.* It was shown that any such regular map must be
made up of triangles, of quadrangles, or of hexagons and their groups must
be generated by two operators of orders two and three with product of order

* ¢« Gruppentheoretischen Studien,” Mathematische Annalen, Vol. 20 (1882), pp.
1-44.

1 Klein, Vorlesungen ueber das Ikosaeder, I, § 13.

I “Ueber metacyklische Gruppen und Nachbarconfigurationen,” Mathematische An-
nalen, Vol. 50 (1897), pp. 261-268.

§ Brahana and Coble, “ Maps of twelve countries, etc.”, American Journal of Mathe-
matics, Vol. 48 (1926), pp. 1-20.

¥ “ Regular Maps on an Anchor Ring,” American Journal of Mathematics, Vol. 48
(1926), pp. 225-240.
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six, or by two operators of order two and four with product of order four,
and conversely that to every such group there corresponds a regular map on an
anchor ring.

In § 1 we recall a condition that has been stated previously as necessary
that a given group be the group of a regular map and prove that it is suffi-
cient by giving a method of constructing the map corresponding to the given
group. In §2 we note four classes of groups that satisfy the given condition
and determine the genera of the surfaces on which the corresponding maps lie.
In § 3 we apply the earlier considerations to determine the regular maps on
a surface of genus two.

1. The Group of a Regular Map. A map is a finite set of distinct
0-cells, 1-cells, and 2-cells which constitutes a closed, connected, two-sided,
two-dimensional manifold. We shall hereafter use the terms vertices, edges
or lines, and regions for 0-cells, 1-cells, and 2-cells.

If the interior of a region of the map is imaged continuously on the
interior of a circle there will be a finite * set of points on the boundary of
the circle which correspond to the vertices of the map that lie on the boundary
of the given region. The number of points in this set is the number of ver-
tices of the region. The number of vertices of a region is the same as the
number of sides or edges of the region.

A map of k n-sided régions will be said to be regular if the number of
ways in which the surface can be put into (1 —1) correspondence with itself
so that regions correspond to regions, edges to edges, and vertices to vertices,
without reversal t of the sense of the boundaries of regions is kn.

The operations of transforming a map into itself in such a way as to
preserve the sense of a region obviously constitute a group; this group will
be called the group of the map. A map of k n-sided regions will be regular
if its group is of order kn.

It is immediately evident and has been noted otherwhere * that the group
of a regular map may be generated by two operators, viz.: S which leaves a
given region fixed permuting its edges cyclically, and T' which leaves an edge
of this region fixed interchanging the two regions which have the edge in

* We exclude the case of a map defined by designating a single point on a sphere
as the boundary of the remainder of the surface.

T It is well-known that the regions of a map on a two-sided surface may be sensed
alike in two distinet ways, cf. Veblen and Young, Projective Geometry, Vol. IT, p. 495.
We require that there be kn ways of transforming % positively sensed regions into the
same k positively sensed regions:

* Brahana and Coble, loc. cit., p. 5.
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common. 7T is of order two. By means of these two operations and com-
binations of them any region of the map may be transformed into any other
region with a particular vertex of the first going into any vertex of the second.

In demonstrating the sufficiency of the above condition, we shall dis-
tinguish two cases: (1) 7' is not permutable with S or any group generated
by a power of S; and (R) there exists a group generated by a power of §
which is permutable with 7. The tetrahedral, octahedral, and icosahedrol
groups come within the first category and the dihedral groups are in the
second.

We consider a group G generated by two operators § and T, the latter
of order two and not permutable with any group generated by a power of the
former. We distribute the operators of G in % right co-sets with respect to
the subgroup H consisting of S and its powers and denote each co-set by a
letter. Multiplication of all the operators of G on the right by any operator
of G interchanges the co-sets and so determines a substitution on the & letiers.
The resulting substitution group will be transitive and will be simply iso-
morphic with G. We note for future use that the only substitutions which
omit the letter corresponding to H are those which correspond to operators
of H.

Let Sq, Tap, and Sy be the substitutions corresponding to S, T, and 1'ST
respectively, b being the letter into which a is transformed by T'qs. The letter
b appears in a cycle of S, otherwise Sy would omit a contrary to the hjypo-
thesis that T' is not permutable with any subgroup generated by a power of S.
The cycle C of S, which contains b is of degree n, otherwise some power of
8. lower than the nth would leave b fixed ; this would imply that S7'- 8™ =
ST or 8™ = T'S¥1T which is impossible for the same reason.

We may now construct a regular map corresponding to G. A polygon
of n sides may be denoted by ¢ and bounded cyclically by n n-sided pelygons
named from C. The transform of @ and C by T gives b and its boundary.
Continuing this process we get k& bounded n-sided polygons. Since there are
n substitutions leaving @ fixed there will be n substitutions leaving b fixed
and b will appear n times in the conjugates of C. Therefore, each region
appears on the boundaries of n other regions. We may join the % polygons
into a simply connected polygon in a plane with its edges paired in the ordi-
nary manner. The two dimensional manifold so defined is two-sided, for any
operation leaving a fixed is a power of S, and so leaves ¢ unchanged making
it impossible to transform ¢ into itself with its boundary reversed. Hence,
to every group in the first class there corresponds a regular map.

The groups of the second category will be examined in two distinct classes
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according as (a) T is permutable with S, or (b) 7' is not permutable with
S but is permutable with a group generated by a power of 8.

The groups of class (a) are cyclic and of even order if 7" is a power of S.
A map corresponding to such a group is obtained by taking a polygon of n
sides and joining opposite sides so as to give a two-sided surface.* An ex-
ample of such a map is a four-sided region on an anchor ring; it contains one
region, one vertex, and two edges.

If T is not a power of S the group is Abelian and of order 2n. If there
exists a regular map corresponding to it and containing an n-sided region it
must contain two such regions. We may take two n-sided polygons and letter
their sides (abc - - - f) and (aBy * * - &) respectively. We join them to-
ether along @ and «, making b correspond to 8, ¢ to y, and so on, the mem-
bers of a pair being oppositely sensed with respect to the double polygon.
Such a map admits the operations (abc - - - f)(aBy - - + {) and (ax) (bB)
(cy) - -+ (f&). It may be readily verified that the number of vertices is 1
or 2 according as n is odd or even and that the genus of the resulting surface
is (n—1)/2 or (n—2) /2.

In the groups of class (b) the subgroup 1, T' is not invariant and we may
represent the group as a substitution group on symbols for the co-sets with
respect to this subgroup by the method used for groups of the first category.
If a is the letter corresponding to the set 1, 7' the substitution corresponding

S 82 ...8n1

. IS T82%--- T8
are all distinct. If we denote the order of G by kn as before, we see that the
substitution group is of degree kn/2. The number of letters in C' and its
conjugates is kn so that each of the letters appears twice. We may construct
a map corresponding to ¢ by taking an n-sided polygon for each of the con-
jugates of C and bounding it according to the letters of the conjugate. This
time we name edges on the boundary instead of regions across the boundary.
The polygons may be joined into a single two-sided surface by coalescing like-
named edges with the usual precautions as to the senses of corresponding-
edges.

We note that the dihedral groups are contained in this class. If T trans-
forms S into its inverse the group is dihedral. The resulting map contains
two n-sided regions and lies on a sphere. It may be obtained by drawing an

to § contains ¢ in a cycle C of n letters, for the n co-sets

* The only requirement is that the pair of corresponding sides ¢ and a’ be oppo-
sitely sensed on the boundary of the polygon and that they be then joined so that the
two senses coincide. See Brahana, “ Systems of Circuits on Two-Dimensional Mani-~
folds,” Annals of Math., Vol. 23 (1922), p. 146.
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n-sided polygon on a sphere. 7T' may transform S into some power of itself
other than its inverse in which case the group is again of order 2n and the
map consists of two n-sided polygons not on a sphere. If neither of the above
conditions obtain the map still resembles the dihedral maps in that each
region touches some other region along more than one edge. To see this let
S, and Sg be generators of the groups leaving the neighboring regions « and g
fixed, and let T',g S, T'up = Sp, where S, and T',s are the substitutions cor-
responding to S and 7' respectively. Since T' 8™ T = (8™)" for some m less
than n, then Ty Sy™ Tup = (S,™)" = (Sp)™ leaves both « and B fixed and
since mr 5~ n S, must transform an edge common to « and g into another edge
common to « and B.

We return from the digression of the last paragraph to state the principal
result so far obtained in the following theorem:

A necessary and suffictent condition that G be the group of a regular map
is that G be generated by two operators of which one is of order two.

2. Some Types of Group that Give Regular Maps. The Symmetric and
Alternating Groups. It is well known that the tetrahedral, octahedral, and
icosahedral groups are simply isomorphic with the alternating and symmetric
groups of degree four and the alternating group of degree five. We extend
the above result by means of two theorems, of which the first is:

To the symmetric group of degree n there corresponds a regular map of
(n—1) ! n-sided regions on a surface of genus

p=1-+4+ (n—2)! (n*—b5n+2)/4

The existence of the map follows from the theorem of §1 and a theorem
due to Moore * that the symmetric group of degree n is generated by two
operators of orders n and two whose product is of order (n—1).. In order
that we may determine the genus of the surface on which the map lies we
shall recall a theorem that was used in Regular Maps on an Anchor Ring.
In that paper it was proved (p. 227), though not explicitly stated, that

If 8 generates the group leaving o region fivred and T is the operator
leaving an edge of the same region fized, then ST generates the group leaving
a vertex of the region fized.

¥ Proceedings of the London Mathematical Soc., Vol. 28 (1896), pp. 357-366. See
also Carmichael, Quarterly Journal, Vol. 49 (1922), p. 235.
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From this theorem is follows that the number of regions at a vertex in
a regular map is equal to the order of ST. In thé maps under consideration
there are thus (n—1) regions at a vertex. The number of vertices is
n(n—=®) !, the number of edges is n!/2, and the number of regions is
(n—1)1. From the Euler formula we obtain the genus p=—1-+
(n—2)! (n*—5n+2)/4. We give in the following table a list of the
maps described by the theorem for n —4, 5, 6, and 7.

n k P n k P
4 6 0 6 120 49
5 R4 4 b 720 481

The first of these maps is the cube; the second is one of the maps described
in Maps of Twelve Fie-Sided Regions, etc. (1. c., p. 19) and is the doubly
covered figure II of that paper.

The alternating groups of degree greater than three are among the groups
that give regular maps, for each group is generated by two operators one of
which is of order two.* The generators may be chosen to be of orders 2 and
(n—1) with product of order (n—1) if n is even, and of orders 2 and
(n—2) with product of order n if n is odd. When n is even we have
n(n—R) !/2 vertices, n!/4 edges, and n(n —2) !/2 regions. The Euler for-
mula takes the form

n(n—2)! /@ —nl/44+n(n—2)1/2=2(1—p),
whence

p=1+n(n—2)!(n—>5)/8.
When n is odd we have (n—1)!/2 vertices, n!/4 edges, and

n(n—1)(n—3)1/2
regions. Hence,

p=14 (n—1)(n—3)! (n*—6n -+ 4)/8.

We have the following theorem :

¥ It may be shown readily that S=(a,1, a,, L. @, ) and T = ("'1“2) (asa.n)
for n even, and § = (a,, @,, - - -, @, ,) and T'= (a,a,_,) (a,a,) for n odd, generates
the alternating group of degree n.



274 BrAmANA: Regular Maps and Their Groups.

To the alternating group of degree n( > 3) there corresponds a regular
map of n(n—2)1/2 (n— 1)-sided regions or a map of n(n—1)(n—3)!/2
(n—2)-sided regions on a surface of genus 14 n(n—2R)!(n—25)/8 or
14 (n—1)(n—3!)(n*—6n 4 4)/8 according as n is even or odd.

It is of some interest to note the genera of the maps for small values of n.
In the following list n’ is the number of sides of each region of the map given
by the theorem above.

n n’ k P 7 n k P
3 4 0 6 5 "2 19
5 3 20 0 7 5 504 199.

The first two are the tetrahedron and the icosahedron respectively.

Every regular map determines a second regular map which we shall call
its dual. The dual of a map is obtained by taking a point within each region
and joining the points of every pair of neighboring regions by an arc across
their common edge, or by an arc across each common edge if more than one
exists, the arcs being chosen so that no two intersect. The resulting map has
a region for each vertex and a vertex for each region of the original map;
the number of edges is the same in both. The cube and the octahedron are
dual to each other, as are also the dodecahedron and the icosahedron. The
dual of the tetrahedron is a tetrahedron; such a map will be called self-dual.

If § and T are the generators of the group from which a given map is
obtained by the methods of § 1, the generators of the same group which would
give the dual map are (ST) and T. The number of sides of a region of a
map is equal to the number of regions at a vertex of its dual. Hence, a neces-
sary and sufficient condition that the map corresponding to the generators 8
and T be self-dual is that the orders of S and ST be the same.

We have immediately the following theorem:

The maps given by the theorem concerning alternating groups are self-
dual whenever n 1is even.

Subgroups of the Metacyclic Groups. The metacyclic group Gppyy of
degree p (p must be prime) is generated by an element 3 of order p and a
cyclic element S of order (p—1).* The element 3 generates an invariant

* Netto, Substitutiontheorie, § 125.
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subgroup and the remaining operators are the transforms of powers of S by
3 and its powers. S and 3 satisfy a relation S13 S = 3™, where mr1=1,
mod p, and m satisfies no relation of the form m? =1, mod p, where 2<<p —1.
Since p is a prime (> 2) § is of even order and S1/2 ig of order 2.

If p—1 contains any even factor p and p—1=pA then S* gener-
ates a cyclic group of order p which contains an element of order two. S and
3 generate a group of order pp. We shall show that this group Gy, may be
generated by §’— S and any of its elements of order two except (S5”)#/2,
e. g. by TV =3%8%/23% From the fact that 8138 —=3m, we have 3 8 =

83m and 38— 8 3. Hence
T — 37 () e/2 3k = (87)0/2 3m P12 5% — (1§7)0/2 52,
This last relation is due to the fact that
mPl—1= (m®V/2—-1) (m@D/2 4 1) =0, mod p.

The invariant subgroup is generated by any power of 3 except identity and
hence [8”,T”] contains 3. Therefore to every group G,, there corresponds
a regular map.

In order to determine the genus of the surface on which the map cor-
responding to G, lies we must find the order of S’7”. From considerations
similar to those used above we see that

8T = () [(/2)+1] w2k
(S/T/)z= (S/)2[(P/2)+ 1] 22k(m[(1’/2)+1])\ +1)
— (8 2[ (p/2) + 11 sz(_mx +1)

(S’T’)3= (S/)3[(p/2)+1] 22k(m2)‘—m)‘ + 1)

and in general,

(8T )n— (§)PL(p/2)+ 1] $2(L+mr—mh 4. (—1) "L D)

If we set (S8’I”)*» =1 and seek the smallest value of n that will satisfy the
relation, we shall have to find the smallest value of n that will satisfy the two
congruences

(a) Aan[(p/R) +1] =0, mod p—1, and
(b) 276(1 —_—m? -+ m2N — mS3A + 4 (_1)n—1 m(”'l))‘) =0, mod P
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If n is odd (b) takes the form %I_—i_—mm—:} =0, mod p, the 2% being dropped
because p is prime. This implies m™ ——1, mod p, hence n = p/? satisfies
the congruence provided p/2 is odd. This value also satisfies (a) since
(p/2) + 1 is even and n[(p/2) + 1] is a multiple of p. If n is even (b)
1—m™
¥
n—=p. This value obviously satisfies (a). Therefore the order of S7” is
p or p/2 according as p/® is even or odd.
The corresponding map will have p regions, pp/? edges, and p or 2p
vertices. From the Euler formula we find the genus of the surface. We
state the result in the following theorem:

takes the form =0, mod p, in which case m" =1 mod p, and

To every group of even order pp which is conlained in the metacyclic
group of degree p there corresponds a regular map of p p-sided regions on a
surface of genus 1+ (p/4) (p—4) or 1+ (p/4) (p— 6) according as p/?
1s or is not ¢ multiple of 4.

Since when p is a multiple of 4 S/ and S’I” are of the same order, we
have

The maps corresponding to G,p are self-dual whenever p is a multiple of 4.

When p = 2 the groups are dihedral and the maps lie on a sphere. When
p = p—1 the groups are the metacyclic groups themselves and the maps are
those given by Heffter (cf. the reference above). When p =4 or 6 the maps
lie on an anchor ring (cf. above).

It is worthy of note that of all the maps whose existence we have proved
very few lie on surfaces of low genus. The Euler formula V—F | F =
2(1— p) shows that if p is to be small ¥ and F must be as large as possible,
which for a group of given order requires that n and v, the orders of S and ST,
be small. If we seek a map on a surface of low genus whose group is a sub-
group of a metacyclic group the degree of the group or p or both must be
small. If the genus is to be greater than 1 p must be at least 11 and p must
be at least 8. The metacyclic group of degree 11 gives a map on a surface of
genus 12 ; the map on the surface of lowest genus corresponding to a group
Ggp is made up of 17 octagons on a surface of genus 18. The smallest map
of decagons corresponds to a Gy and lies on a surface of genus 32. We note
in passing that whenever p is of the form 40h -1 there exists a map of p
octagons and a map of p decagons each on a surface of genus p+ 1. The
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more interesting maps, i. e. those on surfaces of low genus, are all missing
except some of the maps on an anchor ring.

Subgroups of the Modular Group. The two-rowed unit matrices with
integer elements constitute a group simply isomorphic with the modular
group.* If the elements of each matrix are reduced modulo n there is ob-
tained a finite set of matrices of determinant 1, mod =, which constitute a
group isomorphic (1— o) with the modular group. This group, Gaun),
contains a single element of order two, viz.: no— 1 nO 1) , and so is not
available for the group of a regular map. If, however, we make the further
reduction of considering (Z cli)) to be equivalent to (:Z :‘g ) we obtain

Gueny which is in (1 —2) isomorphism with Gopny. The group Gy is gen-

erated by the two operators ((1) i) and ( ni 1 é)which we denote by

S and T. The order of S is n, the order of T is 2, and the order of ST is 3.
The order of the group is given by the equation

m(n) = (n*/2) (1 —1/¢:*) (1—1/g.*) - - - where n= g, g,"- «

and the ¢’s are distinct primes.

The group Gy, determines a map of u(n)/n n-sided regions, p(n) /2
edges, and u(n)/3 vertices. Using these values in the Euler formula we
determine the genus of the surface. The result is the following theorem:

To every group Gumy there corresponds a regular map of w(n)/n n-sided
regions on a surface of genus 1+ (1/6 —1/n)u(n).

It is evident that the maps associated by Klein-Fricke with the groups
Gueny have a close resemblance to the regular maps we have obtained. Their
maps consist of 2u(n) triangles in which the subgroups of order n are repre-
sented by the 2n triangles that come together at a vertex of one type, the
subgroups of order three by the six triangles at a vertex of another type, and
the elements of order two by the four triangles at a vertex of a third type.
We represent a subgroup of order n by a single n-sided region, which amounts
to combining the 2n triangles at a vertex of the first type into a single region.\
If this combination is made at each of the vertices of the first type their

* The facts of this paragraph are to be found in Klein-Fricke, Theorie der Bllip-
tischen Modulfunktionen, Leipzig (1890), Chapter 7.
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maps will obviously become regular maps in the sense in which we are using
the term.

For certain composite values of n Gy will contain distinet elements of

the form (g 2) ; for example, in addition to ((1) ;) ) we have, when

n==8, (; g) and, when n = 15, (g 2 ) . These elements will constitute

an invariant subgroup of G, and if this subgroup is of order m we obtain
a group Guemy/m in (1 — m) isomorphism with Gyux) by considering the oper-
ators of this invariant subgroup as equivalent. The groups Gy /m satisfy
the condition of § 1 and so give regular maps.

The following is the list of maps corresponding to groups Gy for small
values of n; it is essentially the combination of two lists given by Klein-
Fricke.

k n P k n P
4 3 0 24 v 3
6 4 0 24 8 5
12 5 0 36 9 10
12 6 1 36 10 13

The first four are regular polyhedra and a map on an anchor ring.

The subgroups of Gy for n prime are described by Klein-Fricke. Every
such subgroup, and the metacyclic groups are among them, which is generated
by two operators one of which is of order two gives a regular map. We shall
not pursue this question further but shall note two groups of low order that
give maps on surfaces of low genus. The group already mentioned obtained

by taking Gy, and considering ((1) Z(t)) and ( g 3(,) ) to be equivalent
gives a (s which corresponds to a map of 12 octagons on a surface of genus 3.

. 10 1 4 3 4 3 0
If we take Gu(s) and consider (O 1), (4 1). (0 3) and-(4 3

equivalent we obtain a G, which corresponds to a map of 6 octagons on a
surface of genus 2. (XKlein-Fricke, p. 652.) To see that the map is made

up of octagons we note that S — (; ; ) is still of order 8, since ((]; ‘11) =

((1) (1)) implies a==0, mod 8. We note for a later reference that §*T' = T'S*,
(0 1 ap (0 1Y), (L 4 01)=(10——

WhereT—(7 0),f0rTST=(7 0)' 0 1)'(7 0 4 1)

GG

0 1) \4 1
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3. The Regular Maps on a Surface of Genus Two. Our method of
investigating this question is first to determine from the Euler formula the
possible maps and then to examine the possibility of the existence of groups
having the characteristics required by the maps. From the maps we are able
to determine the order of the group, the orders of two generating operators,
and the order of their product. Since the existence of a map implies the
existence of a dual we may choose the generating operators of the group in
two distinet ways whenever the proposed map is not self-dual. This is of
appreciable advantage whenever the map is such that the generating operators
of the group may be chosen so that S is of prime order, for it assures us that
the order of the group must be twice the order of § if T’ is permutable with a
group generated by a power of S, or else, in the opposite case, the group may
be represented on symbols for regions of the proper one of the two dual maps.
Having the order and degree of the group we are able to make use of the
work that has been done in listing groups of low degree.

We shall consider first the cases of maps of one and two regions respect-
ively. For a map of one region on a surface of genus two the Euler formula
takes the following form (n/v) — (n/2) 4 1= —2 where v is the number
of regions at a vertex and n is the number of sides of a region. This equation
may be written in the form (n—6)(v—2) =12. (v—2) is a positive
integer, (n — 6) is therefore positive and is an integer because n is an integer.
The possible solutions are

n—="% 8 9, 10, 12, 18
v—14, 8, 6, 5. 4, 3.

The sides of the region are to be joined in pairs and so n cannot be odd.
If n=28 8§ is of order 8 and T'= 8% Then ST = 8% and is of order 8.
Since this is the value of v it follows that there exists a map of a single octa-
gon on a surface of genus two.

If n=10 we have §°=1, T'= 5% and ST = §° is of order 5 which
is the value of the corresponding v. Hence, there exists a map of a single
decagon on a surface of genus two.

If n =12 we have 8*?=1, T'= 8% and ST = 87 is of order 12. This
is not the proper value for v, and hence there is no map. If n = 18 we have
S8 =1, T =28 and ST = S is of order 9. There is no map in this case.*

If the map contains two regions we get in the same manner as ‘above'
(n—4)(v—=®) =28. The possible solutions are

* The last two groups give maps on surfaces of genera 3 and 4 respectively.
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6
, 6

8, 12
4, 3.

~

n =25,
v=1

~
M

The dual of the map of a single decagon above corresponds to the case
n=>5. Thus, there exists a map of two pentagons on a surface of genus two.
We note that the second map given above is self-dual and therefore we do not
expect to find its dual again. Since the group of order 10 is either cyclic or
dihedral and since the map corresponding to the latter group is on a sphere
there is no other map of two pentagons on a surface of genus two.

If n =6 we note that the group must be Abelian and S and 7" must be
independent generators, for 7'ST = 8™ where m?=1, mod 6. The only solu-
tions are m =1, or 5. The latter gives a dihedral group and the map lies
on a sphere. Hence, S and 7' are permutable and ST is of order 6 which is
the corresponding value of v in the table above. Therefore, there exists a map
of two hexagons on a surface of genus two. The map is self-dual.

If n =28 we have TST = 8™ where m?=1, mod 8. The solutions are
m=1, 3, 5, and 7. The last gives the dihedral group of order 16 and need
not be considered. The first gives ST of order 8 which is not the proper value
for v. For m =3 we may take S = (abedefgh) and T = (bd) (¢g) (fh),
whence 81" = (adeh) (bgfc) which is of the proper order. Hence, there exists
a map of two octagons on a surface of genus two. If m =25 we may take 8
to be as above in which case 1" will be (bf) (dh) ; their product is (afgdebch)
which is not of the proper order. Hence, there is just one map of two octagons.

Finally, if n = 12 T'ST = S™ where m?==1, mod 12. The possible solu-
tions are m =1, 5, 7, 11. The first and last are impossible as in the preced-
ing case. For the other two cases we may take S to be (abcdefghijkl) and T
and 17 to be (bf) (ck) (et) (hI) and (bh)(df) (fI) respectively. The orders
of ST and ST are 4 and 6 and therefore the groups give maps on surfaces of
genera 3 and 4 respectively. Hence, there exists no map of two dodecagons
on a.surface of genus two.

We have now considered all the possibilities when %, the number of re-
gions, is less than 3. We tabulate the remaining possibilities in the following
list.

In making out this list we may proceed according to values of k as we
have done for the cases ¥ =1 and 2. To see that k cannot he greater
‘than 28 we may put the equation given by the Euler formula in the form
R/v+2R/n+4/kn=1. Since k¥ >28 and n=3, 1/v-+1/n=10/21.
Neither v nor n can be less than 3 and hence both must be less than 7, and
if one of them is 4 the other must be less than 5. Possible pairs of values
for v, n are 8,3;38,4;3,5;38,6;4,3;4,4;5,3;6,3 The corresponding
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values of n/2 — (n+ v) /v are — 1/, —1/4, —1/10, 0, —1/3, 0, — 1/3,
0. None of these values are positive as they must be to satisfy the Euler for-
mula, since k is necessarily positive. Hence there is no map of more than 28
regions on o surface of genus two.

The columns headed  and g give respectively the number of vertices and
the orders of the groups. The list contains just one of a pair of dual maps,
the one given being the one with the smaller value of %, for example, the first
map would contain 3 10-sided regions coming together 3 at a vertex and its
dual which is not listed would be made up of 10 triangles coming together 10
at a vertex. The only exceptions we have made are in the cases where the
dual map would contain 1 or 2 regions.

k n v r g k 7 ) r g
1. 3 10 3 10 30 . 6 8 16 48
R. 3 4 12 1 12 8. 6 3 18 1 18
3. 4 9 3 12 36 9. 8 5 4 10 40
4. 4 6 4 6 P 10. 8 3 12 2 R4
5. 4 5 5 4 R0 1. 12 7 3 28 84,
6. 4 4 8 2 16

We may dispose immediately of nos. 2, 6, 8, and 10. Since there
does not exist a map of one 12-sided region or one 18-sided region on a surface
of genus two there ewists no map corresponding to no. 2 or nmo. 8. There
exists a map of two octagons and no map of two dodecagons, hence there
exists a map of 4 4-sided regions and there does not exist a map of 8 triangles
on a surface of genus two.

A Dbrief consideration shows that there can exist no regular map of 4
pentagons corresponding to no. 5. No regiort can touch itself along an edge
unless it touches itself along every edge, in which case the map would consist
of a single region of an even nt .1ber of sides. If a given region of a regular
map touches another region more than once along an edge it must touch each
of the regions on its boundary the same number of times and hence if the
number of its edges is a prime it can touch but one other region. = Such a map,
can’contain but two regions. Hemnce there exists no map of 4 pentagons on a
surface of genus two.

For the remaining possibilities we examine the substitution groups of the
proper order and. degree, all of which, with one exception, have been listed.*

* These groups are to be found as follows:
Degrees 4-8, Miller, American Journal of Mathematics, Vol. 28 (1899), pp. 287-338;
Degree 10, Cole, Quarterly Journal, Vol. 27 (1894), pp. 39-50.
Degree 12, Miller, Quarterly Journal, Vol. 28 (1896), pp. 193-231.

9
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The degree of the group may be taken to be either % or r, since  is the num-
ber of regions of the dual map. The exception is that of a possible group of
order 48 and degree 6 or 16 corresponding to no. 7 of the list. It is evident
that if such a map exists its group cannot be represented on symbols for
regions, but may be represented on symbols for regions of the dual map.
Thus we would seek a substitution group of order 48 and degree 16. The
groups of degree 16 have not been listed.
We take up the remaining cases in order.

1. We seek a group of order 30 and degree 10. No such group exists
and hence there exists no map.

3. There are five groups of order 36 and degree 12.

The first two groups contain (abedef- ghijkl) s which is simply isomorphic
with («By) all (8¢£) cyc. Gy thus contains operators of orders 2, 3, and 6.
The two groups are obtained by combining G5 with Ty = (ag-bh-ci-dj-ek-fl)
and T, = (aj-bl-ck-dg-ei-fh) respectively. 7'y is permutable with every oper-
ator of (15, but T, is permutable with G5 without being permutable with
every operator. Neither of these groups contains an operator of order 9, for,
since 7,87, =8 and T.8T.= 8" for every S where S and S’ are in Gy,
(7.8)°* =1 would imply 7,8° =1 and (7,8)° =1 would imply 7,S8(S’8)*
=1 which are impossible since neither T, nor T, is in Gis.

The third and fourth groups may be managed in the same manner. The
third is {(abcdef) cyc (ghijkl) cyc} pos and R, = (ajdg-bkeh-clfi) whose
square is in Gs. The fourth is {(abedef)e (ghijkl)e} pos and R, — (ajdg-
bifh-cket) whose square is also in the corresponding G4s. The first G4s con-
tains operators of orders 2, 3, and 6; the second contains operators of orders
? and 3 since (abcdef)e is simply isomorphic with the symmetric group of
degree 8 and the products of the type (ad) (bf) (ce) (ght) (jkl) are not in Gis.
An operator of order 9 would have to be outside G4s in either case and hence
of the form RS where R is either RB; or R, and S is in the corresponding G'ys.
Since BSR — R*'RSR — R?R*SR — R?S” — &’ where 8” and §’ are in Gys,
(BS)®* =1 would imply RS(8’S)*=1 which is impossible since B is not
in Gis.

The fifth group is (abcd-efgh-ijkl) pos which is simply isomorphic with
the alternating group of degree 4, and (aei-bfj-cgk-dhl) which is permutable:
with every operator of the G4,. Gy, contains operators of orders 2 and 3 and
G contains operators of orders 2, 3, and 6. Hence, there exists no map of
twelve triangles on a surface of genus two.
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4. We seek a group of order 24 and degree 6. There are three transitive
groups of the proper order and degree. The first two (== abcdef)., and
(- abedef) 24, are simply isomorphic with the symmetric group of degree 4
and so contain no operators of order 6. Hence, neither of these can be the
group of a regular map of six 4-sided regions coming together six at a vertex.

The third group is (abedef).s, which is simply isomorphic with the direct
product of the alternating group on four letters and an operator of order two.
Its operators are of orders 2, 8, and 6 and so it could not be the group of a
map of 4-sided regions.

7. We seek a map of 16 triangles coming together 8 at a vertex. The
dual map is composed of six octagons coming together three at a vertex.
Since in the dual map n > & each octagon would have to touch just four or
two others and it would be impossible to represent the group on symbols for
regions. Therefore we have no hope of finding the group among those of
order 48 and degree 6. The groups of order 48 and degree 16 have not been
listed. However, the group generated by S and T' which satisfy the relations

8f=1, T*=1, (8T)®=1, and (S*T)*=1
is of order 48.* To see this we note that S,

8 =T8T, 8,=8"8:8=28°T, 8;=8"8,8=8°T8S,
8y =0878:8=T8° and 8;=T8T =45

constitute a complete conjugate set, S transforming 8, S,, Ss, S, cyclically
and leaving s fixed and T' transforming S, S,, and S; into S;, S, and S
respectively. S represented on symbols for its conjugates is of order four,
T is of order two, and ST is of order three transforming S, Sy, and S, cyclic-
ally and 8., S5, and 3, likewise cyclically. The group represented on symbols
for conjugates of § is the group of the cube, or the octahedral group, being
generated by two operators of orders two and three whose product is of order
four. Hence, the group generated by S and T is of order 48. Therefore,
there exists a map of siz octagons coming together three at a vertex on a
surface. of genus two.

9. We seek a group of order 40 and degree 8 or 10. There is one group
of order 40 and degree 10, viz. (abcde:fghif)s, and T = (af-bg-ch-di-ej)
which is permutable with every element of the Gy. The G, is simply iso-
morphic with the metacyclic group of degree 5. The elements of G, are of

* This group is among the groups of genus two given by Burnside. It is also the
group described at the end of § 2.
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orders 2, 4, and 5 and the elements outside of (' are of orders 2, 4, and 10.
The elements of order 5 with identity constitute a cyclic subgroup which is
invariant under G, and so under G4. Let § and 3 be elements of orders
4 and 5 respectively of Gso. Gy it generated by S and an element of order
two outside of G which must be of the form T'-37% §23% — T”, for the group
[S,T’] contains 827 = T'§? 3% 82 3k — T'-3%, sinceS* 5 § =32 T-3*isof
order 10 and its square is a power of =, hence 3 is in [S,7”]. The order
of ST” is not 5 since all thé operators of order 5 are in (5. Hence, the map
corresponding to such a choice of generators would not lie on a surface of
genus two.* The generators might be chosen to be 8= ST and T” =
3% §2 Sk the first being any operator of order four outside of (f,, and the
second being in Gg. The above argument shows also that their product is
not of order 5. Noting that there exists no group of order 40 and degree 8,
we have the result that there exists no regular map of ten 4-sided regions on
a surface of genus two.

11. This case is readily disposed of by observing that there exists no
group of order 84 and degree 12.

Collecting our results we see that there exist just 8 regular maps on a
surface of genus two. They are made up of

1 octagon, a self-dual map;

1 decagon and the dual map of
2 pentagons;

2 hexagons, a self-dual map;

2 octagons and the dual map of
4 quadrangles;

6 octagons and the dual map of
16 triangles.

* For neither choice of generators could ST be of order two since @,  is not di-
hedral; 87 must therefore be of order four and the map lies on an anchor ring. See
Regular Maps on an Anchor Ring, p. 234.



