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Abstract. There are two main thrusts in the theory of regular and chi-
ral polytopes: the abstract, purely combinatorial aspect, and the geo-
metric one of realizations. This brief survey concentrates on the latter.
The dimension of a faithful realization of a finite abstract regular poly-
tope in some euclidean space is no smaller than its rank, while that of a
chiral polytope must strictly exceed the rank. There are similar restric-
tions on the dimensions of realizations of regular and chiral apeirotopes.
From the viewpoint of realizations in a fixed dimension, the problems
are now completely solved in up to three dimensions, while considerable
progress has been made on the classification in four dimensions, the fi-
nite regular case again having been solved. This article reports on what
has been done already, and what might be expected in the near future.

1 Introduction

Donald Coxeter’s work on regular polytopes and groups of reflexions is often
viewed as his most important contribution. At its heart lies a dialogue between
geometry and algebra which was so characteristic for his mathematics (see, for
example, [4, 5, 7]). This paper is yet more evidence for his lasting influence on
generations of geometers.

In [16] (see also [17, Sections 7E, 7F]), we classified completely all the faith-
fully realized regular polytopes and discrete regular apeirotopes in dimensions up to
three. Further, in [14], the first author classified the regular polytopes and apeiro-
topes of maximal rank in each higher dimension, and showed that chiral polytopes
could not have full rank. Last, in [19, 20], the second author has found all the chiral
apeirohedra in three dimensions.

2000 Mathematics Subject Classification. Primary 51M20, 52B15.
The second author was supported in part by NSA-grant H98230-04-1-0116.

©0000 American Mathematical Society



2 Peter McMullen and Egon Schulte

The present paper surveys the developments on realizations of regular or chiral
polytopes, which have occurred since the publication of our book [17]. There are
two quite different ways to approach realizations. The first, for which a fairly com-
plete theory exists (at least, in the finite case), asks for a description of the space
of all realizations (a kind of “moduli space”) of a given abstract regular polytope
or apeirotope, with rank playing only a minor réle (see [17, Sections 5B, 5C]| for
further details). The second, about which much less is known in general terms, asks
for a classification of the realizations of all these polytopes and apeirotopes in a eu-
clidean space of given dimension (in this case, it is usual to impose conditions such
as faithfulness and discreteness). This problem is solved in three dimensions. The
finite regular polyhedra have long been known; adding to the Petrie-Coxeter apeiro-
hedra of [3], Griinbaum [11] found all but one of the remaining regular apeirohedra,
while Dress [8, 9] found the missing example, and proved that the classification was
then complete. We refer the reader to [16] for a quick method of arriving at the full
characterization, including a discussion of the geometry of the regular apeirohedra
and presentations of their symmetry groups, as well as for the enumeration of the
regular 4-apeirotopes in three dimensions.

In four dimensions, the currently open problems are those of classifying the
finite regular polyhedra, and the regular apeirohedra and 4-apeirotopes; [14] solves
the problems of the regular 4-polytopes and 5-apeirotopes. The paper [15] in prepa-
ration actually settles the first of these problems (the polytopes with planar faces
were classified in [1, 2]); however, the other two, together with the corresponding
classification problems for chiral polytopes, are still open, although some progress
has been made on them.

2 Regular and chiral polytopes

For the general background on abstract regular polytopes, we refer the reader to
the recently published monograph [17]; for the most part, we shall not cite original
papers directly. In this paper, we largely concentrate on the geometric aspects of
the theory, that is, on realizations of regular polytopes.

However, we begin with the more combinatorial picture. An abstract polytope
of rank n, or simply an (abstract) n-polytope, is a partially ordered set P with a
strictly monotone rank function, taking values in {—1,0,...,n}. The elements of
rank j are the j-faces of P, or wertices, edges and facets of P if j =0,1 orn—1,
respectively. The maximal chains are the flags of P and contain exactly n+ 2 faces,
including a unique minimal face and a unique maximal face (usually omitted from
the notation). Two flags are called adjacent if they differ by one element; then P
is strongly flag-connected, meaning that, if ® and ¥ are two flags, then they can be
joined by a sequence of successively adjacent flags @ = @, ®q,..., P, = ¥, each of
which contains @ NW¥. Finally, if F and G are a (j — 1)-face and a (j + 1)-face with
F < G, then there are exactly two j-faces H such that F' < H < G. An n-polytope
P is then called regular if its combinatorial automorphism group I'(P) (preserving
the partial ordering) is (simply) transitive on its flags; in this case, if @ is a (fixed)
base flag and, for j = 0,...,n — 1, p; is the automorphism which maps & to the
adjacent flag &/ with a different j-face, then I'(P) is generated by po, ..., pn_1-

We can adopt (see [17, Theorem 2E11]) the viewpoint that an abstract regular
polytope is to be identified with its group. The latter is precisely what is called
a string C-group; here, the “C” stands for “Coxeter”, though not every C-group
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is a Coxeter group. A string C-group I" is a group generated by n involutions p;
(the distinguished generators) with j € N := {0,...,n — 1}, such that p; and py
commute if 0 < 7 <k —2<n-—3, and

(pilied)yn(pilieK)={(p;|teInK) (2.1)

for each J, K C N; the last is the intersection property. Each string C-group I" then
determines (uniquely) a regular n-polytope P with I' = I'(P). The j-faces of P
are the right cosets Ijo of the distinguished subgroup

Iy = {pi|i#j)

for each j7 € N, and two faces are incident just when they intersect (as cosets). In
fact, incidence actually induces an order relation:

Tjo < Iyt <= TjoNnIyr #0and j <k.

Formally, we also adjoin two copies of I' itself, as the (unique) (—1)- and n-faces of
P. The maximal chains (with respect to this ordering) are the flags of P; the group
I’ is then simply transitive on the flags of P. In particular, for j =0,...,n — 1 the
distinguished generator p; of I" takes the base flag @ := {I_1,I0,I1,...,In_1,10}
into the adjacent flag #/ which differs from it in I';. Note that the distinguished
subgroups I',—1 = (po,...,pn—2) and Iy = {p1,...,pn—1) are themselves string
C-groups; the corresponding polytopes are the facet and vertez-figure of P, respec-
tively (the latter consists of the faces of P with vertex Ip). As we said earlier, [17,
Theorem 2E11] shows that this description of a regular polytope P in terms of (its
C-group) I'(P) and the previous one in terms of the face poset are equivalent.
The distinguished generators of I' = I'(P) satisfy relations

(pipj)Pii =¢ (i,7=0,...,n—1), (2.2)
with p;; = 1, pi; = pji > 2 if i # j, and p;; = 2 if |i — j| > 2 (hence the term
“string” C-group). The numbers p; := pj_1,; (j = 1,...,n — 1) determine the
Schlafli type {p1,...,pn—1} of P. To avoid cases which, in our context, turn out
to be trivial, we always assume that adjacent generators p;_1 and p; of I' do not
commute (this is justified in Section 3); in other words, p; > 2 (possibly, p; = c0).
If the polytope is determined just by the p;, then we have the universal regular
polytope (of that Schlafli type), for which we use the same symbol {p1,...,pn—1}
(but without qualification); we write [p1,...,pn—1] for the corresponding Cozeter
group. Generally, however, the group I" will satisfy additional relations as well, for
some of which we introduce special notation later.

The underlying face-set of a polytope P can be finite or infinite. An infinite
n-polytope is also called an (abstract) n-apeirotope; when n = 2, we also refer to it
as an apeirogon, and when n = 3 as an apeirohedron.

A central question in the abstract theory is that of the amalgamation of poly-
topes of lower rank. If a regular (n+1)-polytope has facets (of type) the n-polytope
P and vertex-figures the n-polytope Q, then the facets of Q must be isomorphic to
the vertex-figures of P. Conversely, if P and Q satisfy this latter criterion, then we
write (P, Q) for the class of all regular (n + 1)-polytopes with facet P and vertex-
figure Q. The question has two parts. First, is (P, Q) # 0; in other words, does
there exist any such regular (n + 1)-polytope at all? If so, then there is a universal
member {P, Q} in the family (P, Q), of which every other one is a quotient (in
the sense that its group is an appropriate quotient). Second, given that it exists,
we ask what {P,Q} is. (See [17, Section 4B] for further details.) In the present
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context, we often pose this question in the form: is a given regular polytope, whose
facet and vertex-figure are known, actually universal of its kind?

There are several general techniques for constructing new regular polytopes
from old ones. In particular, two different regular polytopes may be related by
what is called a mizing operation; the distinguished generators of the second group
are certain products of those of the first (see [17, Chapter 7]). Apart from the
duality operation §, which just reverses the order of the distinguished generators
(and the order relation on the faces), there are two others we mention here; one
further operation (for chiral polyhedra) will occur in Section 6. Let I' = (p; | i € N)
be a string C-group, let j # k, and consider the operation

(P05 -y Pn=1) = (PO, - Pj=1, PiPRs Pj+15 - -5 Pn—1) =1 (005, On1).

Since adjacent generators of I” do not commute, we easily see that the group A :=
(00,...,0n—1) cannot possibly be a string C-group unless (j, k) = (2,0) or (n —
3,n — 1). The former will rule itself out later for geometric reasons (see Section 3);
the latter, namely,

T (p07 e 7pn—l) = (PO; vy Pn—45 Pn—3Pn—1s Pn—2, pn—l) = (007 ey 071—1)7 (23)

which we denote by I' — I'™, is called the Petrie operation, since it generalizes the
operation with the same name when n = 3. Even when n = 3, the Petrie operation
7 does not always yield a C-group (though such cases are rather exceptional), but,
for higher rank, each application has to be checked directly. However, if in fact I'™
is a C-group, then we write P — P7 to indicate the effect of the operation on the
corresponding polytope P; the new polytope P” is called the Petrial of P. One
general case (see [14]) can be settled easily.

Proposition 2.1 If I' = {(po,...,pn-1) is a string C-group with n > 4 for
which p,_3 is odd, then the Petrial I'™ is not a C-group.

Mixing operations are particularly powerful when applied to regular polyhedra
or apeirohedra P. For example, the Petrial P™ can be obtained from P by replacing
the 2-faces by the Petrie polygons of P (while keeping the vertices and edges); the
geometric picture of a Petrie polygon here is one which shares two successive edges
of each 2-face which it meets, but not a third. An important class of regular
polyhedra or apeirohedra consists of those which are completely determined by
their Schlafli type and the length of their Petrie polygons. We write {p, ¢}, for
the polyhedron (possibly infinite) of Schlifli type {p, ¢}, whose Petrie polygons of
length r determine it. Its group is the Coxeter group (po, p1,p2) = [p, q], with the
imposition of the single extra relation

(pop1p2)” =e. (2.4)

We note that, if it is a genuine polyhedron, then the Petrial of {p, ¢}, is {r, ¢},.
In the context of polyhedra, another operation is also of great importance. The
(second) facetting operation @ is given by

w21 (po, p1,p2) = (o, p1P2pP1, P2), (2.5)

and replaces the 2-faces of a polyhedron P by the holes (while keeping the vertices
and edges); a hole of P is an edge-circuit which exits from the second edge (in some
local orientation) emanating from a vertex from the edge by which it entered. The
designation of a (possibly infinite) regular polyhedron of Schlafli type {p, ¢}, which
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is determined by its holes of length h, is {p,q|h}. The corresponding relation to
be imposed on the Coxeter group {po, p1, p2) = [p, q] is

(poprp2p)" = e. (2.6)

Various examples of such polyhedra occur later; for now, let us observe that
the three Petrie-Coxeter apeirohedra are, as abstract regular polyhedra, {4,6|4},
{6,4]4} and {6,6]3}.

In [17, Section TA] we also introduced the notion of a mix of two regular
polytopes (or corresponding C-groups). The following abstract construction is a
special case of this mix and occurs when one polytope is 1-dimensional, that is, a
segment. Again, suppose that I' = (p; | i € N) is a string C-group. Let 7 be an
involution which commutes with all p;, and consider the operation

(p07 ) 7pn—17T) = (pOTu P 7pn—l) = (007 ) 7Un—l)' (27)

This is called mizing with a segment, because 7 can be regarded as the generating
involution of the group of the segment { } (see Section 3 for the notation). We have
(see [17, Theorem 7AS8])

Theorem 2.2 Mizing a string C-group I' with the group of a segment always
yields another C-group. This is isomorphic to I' if all edge-circuits in the associated
regular polytope P have even length; otherwise, it is isomorphic to the direct product
I' X Co of I' with a cyclic group Co of order 2.

The resulting regular polytope (which we again say is obtained from P by
mixing with a segment) is denoted by P ¢ { }. This has twice as many vertices as
‘P precisely when some edge-circuit of P has odd length.

We also require another basic technique for constructing regular polytopes from
certain groups by what are called twisting operations (see [17, Chapter 8]). In this,
a given group (usually itself a C-group) is augmented by means of one or more
group automorphisms. This technique has been extremely successful in various
classification problems for regular polytopes. In the present context, it assumes
great importance in the enumeration of the regular polyhedra in E?; see Section 7
below.

Roughly speaking, chiral polytopes have half as many possible automorphisms
as have regular polytopes. More technically, the n-polytope P is chiral if it has
two orbits of flags under its group I'(P), with adjacent flags in different orbits. A
chiral n-polytope P is then identified with a group of the form I = (o1, ...,0n-1),
on which there are relations

{ﬁ”:a j=1,....,n—1,

2.8
(0j0j+1"'0k)2:5, 1<j<k<n-1. (2:8)

We again refer to {p1,...,pn—1} as the Schlafli type of P.

The relationship between the group and the corresponding (abstract) polytope
is a little less obvious than is the case for regular polytopes (see [21] for more
details). The distinguished generator o; permutes the (j —1)- and j-faces cyclically
in the appropriate section of the base flag @ = {Fy, F,..., Fy—1}; if F] replaces
F; in the adjacent flag 7, then Fi_joj = Fj_1 and Fjo; = Fj. The vertices of
P are (identified with) the right cosets of the subgroup Iy := (02,...,0,-1), with
Fy = I itself the base vertex. The involutory element 7 := 0105 interchanges the
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two vertices of the base edge, taking @ into (#°)? = (#2)%; it is often useful to
replace o1 as a generator by 7 (compare [19]).

In a chiral polytope, adjacent flags are not equivalent under the group. If
@ is replaced by an adjacent flag, #° (say), then the respective generators are
oy ', 0}02,03,...,0,_1. Thus a chiral polytope occurs in two (combinatorially)
enantiomorphic forms, each specified by the choice of an orbit of base flags (&
or @), or, equivalently, a conjugacy class of sets of generators (represented by
O1y...,0p—10r O] 0209,03,...,0,_1, respectively). For a regular polytope, these
two enantiomorphic forms can be identified (under the generator pg of I').

3 Realizations

There are many candidates for spaces in which regular polytopes P might be re-
alized geometrically. The usual (and generally most useful) context of realizations
is of those in euclidean spaces, because it is in these that we obtain the richest
structure. However, initially at least, it is appropriate for us to broaden the defini-
tion. Thus, for the time being, E is a k-dimensional spherical space S¥, euclidean
space EF or hyperbolic space H”, for some k. If P is a finite polytope, then E will
be spherical; if P is an apeirotope, then, since we are generally interested only in
discrete realizations, E will be euclidean or hyperbolic.

We begin with a brief review of some definitions (see [17, Chapter 5] for the
general background here). Let P be an abstract regular polytope (or apeirotope
— for the moment, we use the generic term, not distinguishing between the finite
and infinite cases), and let I" := I'(P). For a faithful realization of P we have two
ingredients. First, we need a suitable space E which admits a group G of isometries
isomorphic to I'; this is the symmetry group of the realization of P. It is convenient
to identify the reflexion R; in G corresponding to the involution p; in I' with its
mMarror

{r € E|zR; ==z}
of fixed points; we thus use the same symbol E for the ambient space to denote the
identity mapping. The intersection

W::Rlﬂ"'ﬂRnfl

is called the Wythoff space of the realization. The realization of P associated with
G and its generators R; then arises from some choice of initial vertex v € W. The
vertex-set of the realization is V' := vG, the orbit of v under G, and we always
assume that F is spanned by V' (as a subspace of the appropriate kind), so that E
is thought of as the ambient space of the realization, namely, the space (of one of
the three kinds) of smallest dimension which contains it.

Note that, if G were to be such that R; = F, the identity mapping, then R, = E
for all £k > j as well and the realization would not be faithful. In particular, this
will happen if p; = 2, which is why we excluded this possibility in Section 2.

The induced geometric structure, the actual realization P of P, is defined as
follows. Write F := v, and, for j > 1, let

Fj = j_1<R0, .. .,Rj_1>;

these are the basic faces. Then the j-faces of the realization are the F;G with
G € G, with the order relation given by iterated membership. Thus edges are
composed of the two vertices which belong to them (we also think of an edge as the
line-segment between its vertices — there will be no ambiguity, even in the spherical
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case, because antipodal points of the sphere will never determine an edge), 2-faces
of the edges which belong to them, and so on up to the ridges or (n — 2)-faces
and facets or (n — 1)-faces. We sometimes refer to the realization P as a geometric
polytope. Its dimension is defined by dim P := dim F, and its vertex-set is denoted
by V(P) := V. Finally, for the realization to be faithful, we demand that, for each
j=1,...,n—1, a j-face be uniquely determined by the (j —1)-faces which belong to
it. Recall here our initial assumption that G and I" be isomorphic, so for a faithful
realization we then have natural bijections between the sets of j-faces of P and P
for each j. Some regular polytopes do not admit faithful realizations, because this
latter condition implies a corresponding purely combinatorial condition on P.

A realization of an abstract regular n-polytope P determines a realization of
each of its faces or co-faces (iterated vertex-figures). In particular, F,,_; (and its
induced structure, with the same initial vertex v) gives a realization of the facet
of P; its symmetry group is the image G,,—1 of I},_1. If we write w for the mid-
point of the edge between v and vRy, then w is the initial vertex of a realization
of the vertex-figure of P, with symmetry group the image Gy of I'y. (This suffices
for our purposes. However, in the hyperbolic case of a polytope with vertices on
the absolute, then the initial vertex w is well-defined as the intersection of the
mirror Ry with the line between v and vRy — in any event, w will always lie in this
intersection.) Faithfulness is hereditary; that is, if the original realization of P is
faithful, then the realizations of the facet and vertex-figure of P are also faithful.
In a similar way, (Ro, ..., R;_1) is the symmetry group of the basic j-face F}; of P,
while (Rjy1, ..., Ry—1) is that of the basic co-j-face P/F}, which is the (j + 1)-fold
iterated vertex-figure. Thus the vertex-figure itself is P/Fy. Even more generally,
(Rj41,...,Rr—1) is the symmetry group of the section Fy/F; (for j < k —2), the
(j 4+ 1)-fold iterated vertex-figure of the basic k-face Fy.

We often find it more convenient to use vRy rather than w as the initial ver-
tex of the vertex-figure; for most purposes, this makes little difference, since the
combinatorics are not altered.

For regular polytopes of rank at most 2 we have the following spherical or
euclidean realizations. In EY we just have the point (realizing the 0-polytope),
the finite regular 1-polytopes are segments { }, which are naturally realized in
the O-sphere S°, while the regular apeirogon {oc} is naturally realized discretely
in E! = R. In the unit circle S', there is an infinite family of (finite) regular
polygons. Their mirrors Ry and R; are lines through its centre at a rational angle
m/p, meaning that p > 2 is a rational number (always in its lowest terms); the
resulting regular polygon is denoted {p}. In addition, {oo} has non-discrete faithful
realizations in S'. As we mentioned before, we shall not address here the question
of finding all possible realizations of a given abstract regular polytope; a fairly
complete theory has been described in [17, Sections 5B, 5C]. Suffice it to remark
that the realization space has been determined for several interesting classes of
polytopes; see, for example, [18].

There are important restrictions on faithful realizations; we refer to [17, Sec-
tions 5B, 5C] for proofs.

Theorem 3.1 Let P be a faithful realization of an abstract reqular polytope
P, whose ambient space E is a spherical, euclidean or hyperbolic space. Then
dim P > rank P — 1.
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Theorem 3.2 Let P be a faithful realization of an abstract regular n-polytope
in E, with group G = (Ry,...,Rn—1). Then dimR; > j for j =0,...,n—2, and
dimR,_1>n—2.

In both theorems, if the polytope is finite, so that the ambient space is spherical,
then, regarded as euclidean realizations, each of the dimensions must be increased
by 1.

If we have (not necessarily faithful) realizations of the abstract regular polytope
(or apeirotope) P in two euclidean spaces, say P with mirrors S, ..., S,—1 in L and
@ with mirrors Ty, ...,T,—1 in M (possibly some S; = L or T; = M), then their
blend has mirrors S; x T in Lx M for j =0,...,n—1. Indeed, if v € S1N---NSp_1
and w € Ty N---NT,_; are the initial vertices of the two realizations, then (v, w)
can be chosen as the initial vertex of the blend, which we then write P#@Q. A
realization which cannot be expressed as a blend in a non-trivial way is called pure.

One main tool for classifying regular polytopes of a fixed rank n in a fixed
dimension is the dimension vector (dim Ry, dim Ry, ...,dim R, _;) of the possible
realizations; the first step in any enumeration is to determine which dimension
vectors can occur.

It is worth noting that, in general, duals of faithfully realizable regular poly-
topes are not necessarily faithfully realizable at all (Petrials are particular exam-
ples), let alone in the same space.

There is a similar realization theory for chiral polytopes. Indeed, let us call a
realization P of an abstract polytope P chiral if P has two orbits of flags under its
symmetry group G(P), with adjacent flags lying in different orbits. It is clear that
the original polytope P must be regular or chiral. Note that there exist (already
in E3) faithful realizations of polytopes with two flag orbits under G(P) which are
not chiral (see [22] for examples).

It is helpful to remark that, if P is a regular n-polytope with group I' =
{(po,---,pn—1), then its combinatorial rotation subgroup I'*(P) has generators

0j 1= pj—1pPj, j=1...,n—1.

Thus a chiral realization of a polytope may be thought of as having only rotational
symmetries. Moreover, if the abstract polytope P is at least chiral, in that its
group I' contains the automorphisms o1,...,0,_1 in the definition of chirality,
then P is actually regular if we can adjoin any one of the involutions p; for j =
0,...,n—1. (We then have p; = g;41pit1 for i =0,...,5 — 1, or p; = p;_10; for
i=j4+1,...,n—1.)

Chiral realizations are derived by a variant of Wythoff’s construction, applied
to a suitable representation G = (S1,...,S5,-1) of the underlying combinatorial
group I := (o1,...,0,_1); the latter is I'(P) or I'"(P) according as the abstract
polytope P is chiral or regular. The Wythoff space now is the fixed set of the
subgroup Go := (Sa,...,S,—1). We describe the 3-dimensional case in more detail
in Section 6.

It is clear that an abstract regular polytope may have chiral realizations, though
not necessarily faithful ones; it is an interesting open question whether it could
actually have faithful chiral realizations. It is an elementary observation that a
realized polygon with full rotational symmetry group is actually regular. Similar
arguments to those used in the proof of Theorem 3.1 then yield
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Proposition 3.3 If P is a faithful chiral realization of an abstract polytope,
whose ambient space is a spherical, euclidean or hyperbolic space E, then dim P >

rank P — 1.

When the abstract polytope P is finite, we usually assume that the centroid
of the vertex-set V' of its (chiral or regular) realization P is the origin o of E,
so that G is an orthogonal group. If P is infinite, in which case we again call
P a (geometric) apeirotope, we will additionally demand of P that it be discrete,
so that the group G acts discretely on the ambient space E. Moreover, in order
to avoid constant repetition of various fixed phrases subsequently, we adopt the
conventions that, in the geometric context of realizations, regular polytope will
mean “faithfully realized finite abstract regular polytope”, while regular apeirotope
will mean “discrete faithfully realized abstract regular apeirotope”; we also adopt
the corresponding terminology for chiral polytopes and chiral apeirotopes.

We end the section with two general remarks. Let S and T be linear reflexions.
First, since ST = (—S)(—T) = ST~ (thus identifying —S with its mirror S, and
so on), then SNT and S+ NT+ are both pointwise fixed by the product. That is,
the axis (fixed set) of ST is

(SNT)+(StnTH) (=(SNT)+ (S+T)*). (3.1)

In particular, if S and T' commute, then (3.1) is the mirror of their product ST =
TS, which is again a reflexion.

Second, we have a general construction from [14], of which special cases already
occur in [16]. Let X be a point-set in a euclidean space E. We call X rational if
the points of X can be chosen to have rational coordinates with respect to some
(linear or affine) coordinate system in E. The following remark is obvious.

Lemma 3.4 Let E be a euclidean space, and let X be a finite point-set in E.
Let R(X) be the group generated by the point-reflexions (inversions) in the points
of X. Then R(X) is discrete if and only if X is rational.

If P is a regular polytope with ambient space E, then we similarly call P
rational if its vertex-set is rational. We have the following.

Theorem 3.5 Let P be a rational regular n-polytope in the euclidean space
E, with symmetry group Go = (R, ..., R,) and initial vertex w, and suppose that
v € R N---NR,. Let Ry = {w} be the point-reflexion in the point w. Then
G :=(Ry,...,R,) is the group of a discrete reqular (n+ 1)-apeirotope apeir P, with
2-faces apeirogons, and vertex-figure P at the initial vertex v.

We call apeir P the free abelian apeirotope on P, or with vertez-figure P, and
base vertex v. When we apply this construction, it will usually be the case that P
itself is finite and full-dimensional in F/, so that v is the centre of P.

4 Regular polytopes of full rank

If P is a realization of a regular polytope P for which equality holds in Theo-
rem 3.1, then we say that P is of full rank. The emphasis is placed this way round,
because our aim (as explained in Section 1) is to classify regular (and chiral) poly-
topes by dimension. In this case, we can go further than Theorem 3.2, and place
further restrictions on the dimensions of the mirrors of the generating reflexions of
the realizations. We refer to [14] for a proof.
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Theorem 4.1 Let P be a faithful realization of full rank of a regular n-
polytope P in the ambient space E, with symmetry group G = (Ro,...,Ry—1).
Then dimRj =j orn—2 for j=0,...,n—3, anddim R,,_» =dimR,_; =n —2.

For finite polytopes, we now find it convenient to revert to the former definition
of realization in euclidean spaces. In other words, henceforth we regard a sphere
which carries the vertices of a realization P of a finite regular polytope as sitting in
the euclidean space of one larger dimension with centre the origin o. The mirrors
R; of its euclidean group G are then thought of as linear subspaces, also of one
larger dimension than before; in particular, in the minimal case, Ry is either a line
or a hyperplane. Finally, we shall use the more familiar I for the identity (in a
sense, E' is no longer quite appropriate).

Remark 4.2 If R is a linear reflexion in a euclidean space E, then —R =
(=I)R, the product of R with the central inversion —I, is the reflexion in the
orthogonal complement R+ of R. Replacing a mirror by its orthogonal complement
is often a useful tool in studying realizations. In particular, in the case of a faithful
realization of full rank of a finite regular n-polytope with centre o, if the mirror
Ry is a line, then —Ry is a hyperplane reflexion. If we replace Ry by — Ry, then
at worst we have replaced the symmetry group G by G x Ca, with Cy = {*I}; in
any event, we always have another finite group. Thus the mirror replacement often
produces groups closely related to finite groups generated by hyperplane reflexions.

Remark 4.2 enables us to introduce some important geometric operations on
finite polytopes of full rank, which are the key to their enumeration. For such
polytopes P, since o is the sole fixed point of the ambient space E under the group
g, it follows that

Ko Z:Roﬂ'“ﬂRn,l:{O}.

Thus the central reflexion —I, identified with its mirror {0}, is Ky, so the mirror
replacement of Remark 4.2 is Ry — Ry K. Moreover, it is extremely useful to have
variant operations, which act on the co-(j — 1)-face P/F;_; for some j and also
apply to apeirotopes when their co-(j — 1)-faces are finite. With

K, =Ri.Nn---NR,_1 (nggn—l),

we see that (the reflexion in) K} induces the central inversion on the affine hull of
P/F}_q; recall here our assumption of full rank. For 0 < j < k < n — 1, we then
define the operation x;; on G by

Rjk - (Ro, ey Rn—l) — (Ro, ey Rj_l, Rij, Rj+1, N 7Rn—l) = (SQ, ey Sn—l)'
(4.1)
This produces a new group with generators Sy, ..., S,—1. We abbreviate x;; to x;,
because this is the most important case (and here usually only with 7 = 0, 1), but
Koz is also useful. Thus k; interchanges the two possibilities for i; which can occur
in Theorem 4.1. Just as with the Petrie operation, though, it must be emphasized
that it is by no means generally the case that xj; will yield a C-group when it
is applied to another; for example, for S; to be an involution, we need j = k or
j <k —2. Observe also that K,,_1 = R,_1, so that the Petrie operation of (2.3)
can be written as ™ = Kp—3,n—1.
One result, for which we only have a case-by-case (but not a general) proof, is
the following.
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Theorem 4.3 If P is a finite reqular polytope of full rank, then P"° is also a
finite regular polytope of full rank.

It is instructive to see how the operation kg acts geometrically on simple ex-
amples. In fact, kg may do one of three things, even when the original group G is
a hyperplane reflexion group: it may double the order, leave it the same, or even
halve it. To illustrate this, in E? take, respectively, the (group of the) tetrahe-
dron, octahedron and cube; note that, in each case, whereas the old facets were
of full rank, the new ones (of the polyhedron associated with the new group) are
skew polygons, and so are not. In the planar case, we have {p}"® = {¢}, where

1,1_1
p g T2
Remark 4.4 If K, € (Rj,..., R,—1), then kj results in a mixing operation.

It would be inappropriate to reproduce all the details of [14] here, even in outline
form. However, let us note a few of the salient facts. We shall say more about three
and four dimensions in later sections; from five dimensions on, things settle in a
common pattern. Recall our conventions that “regular (or chiral) polytope” will
mean “faithfully realized finite abstract regular (or chiral) polytope”, while “regular
(or chiral) apeirotope” will mean “discrete faithfully realized abstract regular (or
chiral) apeirotope”.

For the regular n-polytopes in E”, we add to the simplex, cross-polytope and
cube the results of applying o to each. From the n-simplex {3"7!} we obtain a
polytope {3"~1}%0 with 2(n + 1) vertices, those of the simplex and its dual; its
group is Sp41 x Cy. For the n-cross-polytope, {3"72 4}%° has the same vertices
and symmetry group as {3"72,4}. With the n-cube {4,372}, there is a distinction
between even and odd dimensions n. When n is even, {4,3" 2} has the same
vertices and symmetry group; however, when n is odd, {4, 3" ~2}%° is isomorphic to
the half-cube {4,3"~2}/2 = {4,3"~2},,, obtained by identifying opposite vertices of
the cube.

For the regular (n+1)-apeirotopes in E", we can apply the “apeir” construction
to each of the six n-polytopes of the last paragraph. We also have {4,372 4}, the
tiling of space by n-cubes, and, finally, {4,372, 4}t which is obtained from it by
replacing its vertex-figure {372 4} with {3772, 4}%. This last is very interesting;
its 3-face is the Petrie-Coxeter apeirohedron {4, 6|4}, and, more generally, its facet
is the n-face of {4,3™72 4} for each m > n.

The following table lists the numbers of regular polytopes and apeirotopes of
full rank, according to dimension.

|| dimension | polytopes | apeirotopes ||

0 1 -
1 1 1
2 00 6
3 18 8
4 34 18
>5 6 8

We end the section by quoting another result from [14]. If equality occurs in
Proposition 3.3, then (as before) we say that P is of full rank. This result shows
that including chiral polytopes does not add any new examples to the previous
classification.

Theorem 4.5 There are no chiral realizations of polytopes of full rank.
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5 Regular polytopes in three dimensions

The paper [16] was devoted to the complete classification of the regular poly-
topes and apeirotopes in 2, and so we confine ourselves here to the briefest mention
of the techniques employed.

With rank at most 2, we have the segment in rank 1, and the polygons (planar
and zigzag) and apeirogons (linear, zigzag and helical) in rank 2. We say no more
about them.

With rank 3, we first note that the three regular planar tessellations and their
Petrials are planar. There are nine “classical” regular polyhedra (the so-called Pla-
tonic solids and the Kepler-Poinsot polyhedra — see [17, Section 1A] for discussion
of truer attributions), and nine others, which (as a family) can be regarded either as
their Petrials, or as the result of applying kg to them. There are twelve apeirohedra
which are blends of the six planar ones with a segment or apeirogon, and twelve
others which are pure (unblended); of these, except for the Petrie-Coxeter apeiro-
hedra of [3], all but one were found by Griinbaum [11], and the last was discovered
by Dress [8, 9].

The last case of the twelve pure apeirohedra is possibly the most interesting,
at least for the methods employed. A geometric discussion shows that the pos-
sible dimension vectors (of the mirrors of the generating reflexions) are given by
(2,1,2), (1,1,2), (1,2,1) and (1,1,1). If these mirrors are Ry, Ry, Re (we assume
that the initial vertex is o, so that Ry, Ry are linear mirrors), define S{ to be the
translate of Ry through o, S} := R; for j = 1,2, and finally S; := 5% or —57,
according as R; is a plane or line. This relates the original symmetry group to one
of the crystallographic Coxeter groups [3, 3], [3,4] or [4, 3] (we need both the latter
forms) or the corresponding regular polyhedra; then the three groups, each with
four dimension vectors, result in the twelve apeirohedra.

These apeirohedra are listed in the following table; for any notation not intro-
duced hitherto, we refer to [16] or [17, Section 7E].

| [ {33} (3,4} {43} |
(2,1,2) || {6,6/3}  {6,4|4}  {4,6[4}
(1,1,2) || {00,6}4,4  {o0,4}64 {00,6}6,3
(17271) {676}4 {674}6 {476}6
(1,1,1) || fo0, 3} {00,4} .3 {o0,3}®

The entries in the left column are the dimension vectors (dim Ry, dim Ry, dim Ry),
and the remaining columns are indexed by the corresponding finite regular polyhe-
dra. Of these twelve apeirohedra, nine occur naturally as distinguished members
in large families of polyhedra (generally apeirohedra), in which all but two polyhe-
dra are chiral (the two exceptional polyhedra are regular); we elaborate on this in
Section 6.

Finally, there are eight regular 4-apeirotopes in E® (see [17, Section 7F]). There
is the regular tiling {4,3,4} of space by cubes, the result {{4,6|4},{6,4}s} of
applying k1 (or 7) to it, and six more obtained by applying the “apeir” operation
to the six rational regular polyhedra, namely, the tetrahedron, octahedron and cube
and their Petrials.
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6 Chiral polytopes in three dimensions

We now proceed with the enumeration of the (discrete and faithful) chiral
polyhedra in E3, following [19, 20]. Again, we shall not go into details and therefore
only briefly summarize the results.

The symmetry group G := G(P) of a chiral polyhedron P has two orbits on the
flags, such that adjacent flags are in distinct orbits. If P is the underlying abstract
polyhedron, then G is isomorphic to I'(P) or I'"(P) according as P is chiral or
regular. In either case, G = (S1, S2), where S1, S are the distinguished generators
of G associated with a base flag @ of P and corresponding to the generators o1, 0
of I'(P) or I'(P), respectively. If P is of type {p, ¢}, then

SP =89 =(5,592)? =1,

but in general there are also other independent relations. If @ is replaced by >
(the adjacent flag with a different 2-face), then the new pair of generators of G are
S153, 5’2_1. Thus 51,92 and S;53, 5’2_1 are the pairs of generators representing the
two enantiomorphic forms of P.

As we remarked in Section 3, a chiral polyhedron P can be obtained from a
variant of Wythoff’s construction, applied to a group G = (S1,S52) with initial
vertex a point v fixed by Sz (but not Sy). If we set T := S1.52, which must be a
reflexion in a line or plane, then the base vertex, edge and facet of P are v, v(T")
and (v(T'))(S1), respectively; as usual, the other vertices, edges and facets are their
images under G.

The first step is to determine the possible special groups and their generators.
Recall that, if R: z — xR’+t is a general element of G, with R’ € Os, the orthogonal
group, and ¢ € E3 a translation vector, then the linear mappings R’ form the special
group Go of G. In the present context, G must be a crystallographic group in E3
and Gy = (S51,5%) a finite subgroup of Og. If T(G) denotes the subgroup of all
translations in G, then Gy = G/T(G). It turns out that the only possible special
groups are [3,3] and [3,4] (possibly as [4,3]), the full tetrahedral and octahedral
group, respectively, and their rotation subgroups [3,3]" and [3,4]" (possibly as
[4,3]T), as well as the group [3,3]* obtained from [3,3]* by adjoining the central
inversion in the invariant point of [3,3]*. In particular, this limits the possible
Schlafli types to {4,6}, {6,4}, {6,6}, {c0,3} and {c0,4}.

A chiral polyhedron in E? cannot be finite (by Theorem 4.5) or be a blend (its
group must be affinely irreducible). Thus each chiral polyhedron is infinite and
pure.

The possible apeirohedra fall into six infinite 2-parameter families (up to con-
gruence). In each family, all but two polyhedra are chiral; the two exceptional
polyhedra are regular. The following table lists the families of polyhedra by the
structure of their special group, along with the two regular polyhedra occurring in
each family; in three families, one exceptional polyhedron is finite.

(BaF [ B3 | BA [ o | Wa [ BAF |
P(a,b) | Qc,d) | Q(e,d)* | Pi(a,b) | Pa(c,d) | Ps(c,d)
{6,6}s | {4,6}6 | {6,4}¢ | {00,3}(@ | {00,3}® | {00,4}. .3
{6,6(3} | {4,6/4} | {6,4]4} | {3,3} {4,3} {3,4}

The columns are indexed by the special groups to which the respective polyhedra
correspond; some groups occur twice but with different pairs of generators. The
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second row contains the six families; as we said before, possibly with one exception,
all members of a family are apeirohedra. For the first three families, discreteness
forces the parameter pairs a, b and ¢, d, respectively, to be relatively prime integers;
however, for the last three families, the parameters can be reals. (Thus, when the
polyhedra are considered up to similarity, there is a single rational or real parameter,
as appropriate.)

In particular, the chiral polyhedra P(a,b), Q(c,d) and Q(c,d)* (the dual of
Q(c,d)) have finite skew faces and skew vertex-figures, and are of types {6,6},
{4,6} or {6, 4}, respectively; remarkably, in each family, the two regular polyhedra
have planar faces or vertex-figures. Recall that no regular polyhedron has finite
skew faces and skew vertex-figures (see [17, Section 7E]). On the other hand, the
polyhedra Pj(a,b), P2(c,d) and P3(c, d) have infinite faces consisting of helices over
triangles, squares or triangles, respectively, and are of types {oo,3}, {o0,3} or
{00, 4}.

The last two rows of the table comprise nine of the twelve pure regular apeiro-
hedra in E3, namely those listed in the table of Section 5 with dimension vectors
(1,2,1), (1,1,1) or (2,1, 2), as well as the three (finite) “crystallographic” Platonic
polyhedra. The three remaining pure regular apeirohedra {co,6}4 4, {00,4}6,4 and
{00,6}6,3 all have dimension vector (1,1,2) and do not occur in families alongside
chiral polyhedra.

We now display the families of polyhedra, with the various known relationships
among them. These complement the known relationships between regular polyhe-
dra (see [17, Section 7E]). Three operations on (chiral or regular) polyhedra and
their groups G are involved: the duality operation ¢, the second facetting operation
2 and the halving operation 7 (see Section 2 or [19]). In terms of the generators
of G they are defined as follows:

5 (81,82) = (831,57,
p2: (51,82) = (51557,53),
n: o (S1,82) = (S78,5;7).
In each case, the pair of elements on the right are the generators for the group of
a new polyhedron, namely the image of the given polyhedron under 8, po or 7,
respectively.

The following diagram emphasizes operations relating families rather than in-
dividual polyhedra. In particular, we drop the parameters from the notation; for
example, P; denotes the family of polyhedra P (a,b).

Q- < Q@ & p

L

Py P 2 p

Observe that, in the diagram, Ps is not connected to any other family; it is an
interesting open question if there exists a relationship between P3; and any other
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family. The circular arrow in the diagram indicates the self-duality of the family
(in fact, of each of its polyhedra). The operations § and @2 map a polyhedron to
one with the same parameter pair, either a, b or ¢, d. However, n replaces ¢, d by the
new pair ¢ — d, ¢ + d. Moreover, note that 5, when applicable, maps a polyhedron
to one in the same row of the table.

For a discussion of other classes of highly symmetric polyhedra in E? we refer
the reader to, for example, [12].

7 Regular polytopes in four dimensions

Just as is the case with the classical regular polytopes and apeirotopes, the
richest family of full rank occurs in E*. Again, we do not wish to go into the results
of [14] in great detail; instead, we shall concentrate on a few plums.

We have already accounted for the effects of ko; we merely note that the sixteen
classical regular (convex and star-) 4-polytopes give rise to another sixteen in this
way. However, we can also apply 7 to the 4-cube {4, 3,3}, to obtain

{4,3,3}" = {{4,4|4}, {4, 3}5}.

That is, the facets are toroids, and the vertex-figure is the half-3-cube; moreover,
the polytope is universal of this kind. The final instance (of the 34 in the table of
Section 4) is obtained by applying o to this last.

These two finite polytopes just mentioned contribute two regular 5-apeirotopes
via the “apeir” construction. Leaving aside the examples already discussed in
Section 4, then for the 5-apeirotopes there remain those obtained from {3, 3,4, 3}
and its dual {3, 4, 3,3}. For the first, we can apply x1 (that is, apply & to its vertex-
figure {3,4, 3}); we get an apeirotope whose 3-faces are Petrie-Coxeter apeirohedra
{6,6|3}. For the other, we can first apply «1; the resulting apeirotope has 3-faces
the last Petrie-Coxeter apeirohedron {6,4]4}. To both of these (that is, {3,4, 3,3}
and {3,4, 3,3}"1), we can now apply 7 as well; the 3-faces remain as they were (that
is, octahedra {3,4} or {6,4|4}, respectively); the facet of the first is the universal
apeirotope {{3,4},{4,4|4}} (we comment on this further in Section 8).

It is a striking fact that all three Petrie-Coxeter apeirohedra in E? occur as
3-faces of regular 5-apeirotopes in E* (one of them twice).

We next discuss the recent (as yet unpublished) classification of the four-
dimensional (finite) regular polyhedra. Those polyhedra with planar faces were
all found in [1, 2]; the methods we employ in [15] are akin to those used in [14, 16],
and are, we feel, much simpler.

As we have already pointed out in Section 3, our strategy is to determine what
possible dimension vectors can occur, and then to enumerate every polytope in the
corresponding subclasses. Theorem 3.2 provides a starting point; in the current
case, the dimension vector must satisfy

dimRy > 1, dimR; >2, dimR, > 2.

We now proceed as follows. As essentially the same trick we perform in E3, if
the mirror Ry satisfies dim Ry = 1, then we can replace it by

_ROZRé_u

its orthogonal complement, which (as an isometry) is its product with the central
inversion —I; we refer to this more general operation as kg as well. We always
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obtain another finite group G’; in fact,
G| = 3161, 1G], or 2g].

Next, if dim Ry = 2 and dim Ry = 3 (or vice versa, but this case will have to be
excluded), then we can replace Ry by RoRa, that is, apply (or reverse) the Petrie
operation m; bearing in mind (3.1), the new Ry has dim Ry = 1 or 3, and in the
former case we can proceed as previously.

Finally, as long as our (possibly new) group contains a hyperplane reflexion
(that is, dim R; = 3 for some j), we can regard G as a reflexion (Coxeter) group, on
which certain involutions with 2-dimensional mirrors act as automorphisms (more
precisely, G is the corresponding semi-direct product). When we have carried out
the foregoing procedures, only the dimension vectors (3,2, 3) and (2, 3, 2) need to be
considered. For classification purposes, we then reverse the procedure: the starting
point is a Coxeter group, not necessarily with standard generators, which can be
represented by a diagram that permits permutation of its nodes.

We give a couple of simple examples of what happens in the cases (3,2,3)
and (2,3,2) in a little detail, and then comment on the remaining cases (with
the exception of (2,2,2)) more briefly. We list them according to their dimension
vectors.

e (3,2,3): from the group [3, 4, 3] of the regular 24-cell, we derive the diagrams

wl
Iy
ol

each of which permits a top-to-bottom flip, and thereby gives two dual
regular polyhedra with dimension vectors (3,2, 3). (From the first diagram,
we obtain the polyhedra {4,8|3} and {8,4|3} of [3].) Similar examples
derive from the diagram

e (2,3,2): the general case is derived from a diagram

q
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with horizontal and vertical flips. This gives rise to a polyhedron of type
{2p,2q}2r, from which are obtained up to five others by duality and Pe-
triality. (There is a restriction on ¢: it must not be a fraction with even
denominator.) As a specific instance, the full family of six is obtained when
{p.q,r} ={3,4, % .

e (3,3,3): this corresponds to three-dimensional polyhedra, and so is excluded
(but only on these grounds).

e (1,3,3): this is allowed; ko can be applied to the case (3,3, 3).

e (2,3,3): this is obtained from (3,3, 3) or (1,3, 3) by Petriality; therefore, the
first possibility must be excluded.

e (3,3,2): this would be obtained from (2,3,3) by duality; however, in the
allowed case, the faces of the original are centred at o, and so the dual must
be excluded.

e (1,3,2): this would be obtained from (3, 3,2) by applying kg, and so is also
disallowed.

e (1,2,3): this arises from (3,2, 3) by applying xo.

e (2,2,3): this is obtained from (3,2,3) or (1,2, 3) by Petriality.

e (3,2,2): this would arise from (2,2,3) by duality. However, it may be
seen that (with either possibility) the product RoR; of the corresponding
reflexions Ry and R; in the original is a double rotation (in two orthogonal
planes), since Ryg N Ry = {o}; it follows that the class cannot occur.

e (1,2,2): this would be obtained from (3,2,2) by applying %o, and so it too
must be excluded.

It is notable that only the groups [3,3,3] and [3, 4, 3] give rise to polyhedra in
the classes (3,2,3) and (2,3,2) and those derived from them. Even though other
finite reflexion groups in E* permit diagram automorphisms (for suitably chosen
generators), these are inner, and then the corresponding “polyhedra” degenerate.

The anomalous case is dimension vector (2,2,2), to which the notion of a
Coxeter group with outer automorphisms is inapplicable. Indeed, some examples
of this kind cannot be related to Coxeter groups in any meaningful way. The
approach here is through quaternions. Each isometry which occurs in such a group
is a rotation (that is, lies in SO4), and so can be represented by a quaternionic
transformation of the form

x +— axb, (7.1)

where a, b are unit quaternions (recall that a=! = @). In keeping with our usual
conventions, mappings are thought of as acting on the right; thus it must be the
inverse of a quaternion which provides an appropriate mapping when acting on
the left. For the mapping (7.1) to be a reflexion, both a and b must be pure
imaginary. Our symmetry group G gives rise to two groups Gy, and Gg of the left-
acting quaternions a and right-acting quaternions b; then G is a certain quotient of
Gr x Gg (for further details at this stage, we refer the reader to [10]). Further, there
are then quotients Gy, Ggr of G, Gr in SO3, each by normal subgroups of index 2,
and these are generated by half-turns about lines in E3. If a = cos ) + usin ¥, with
u pure imaginary, then the image of a under the homomorphism from Gy, to Gy, is
a rotation through 29 about the axis in E3 through u, when the latter is regarded
as a unit vector in E3. Thus, for example, if a is pure imaginary, then its image
is the half-turn about the axis in E? through a; it is important to note that this
half-turn lifts to two pure imaginary quaternions +a. The only groups which can
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occur as such groups Gy, or Gg are dihedral, octahedral or icosahedral; the cyclic
and tetrahedral groups do not contain enough half-turns. Finally, if the generating
reflexions are
IRj = aijj = —aijj (] = 0, 1, 2),
then (as scalar products of vectors in E3),
<CL1, CL2> = :|:<b1, b2>,

because the product RiRs must have a 2-dimensional axis. However, the opposite
must be true for the product RgR;, because this has to be a double rotation.

In summary, the following ingredients go into the enumeration. First, two
groups in E3 generated by half-turns: these are a dihedral group Doy, (k can only
take the values 2, 3 or 5), the octahedral group Sy = [3, 3] = [3, 4]3 or the isosahedral
group As = [3,5]5. Second, for j = 1,2, two regular polyhedra of type {r;, ¢} (with
the same ¢); here, we must allow r; > 1, rather than the usual r; > 2, to account
for two possible liftings of the half-turns contributing to Ry. We then obtain a
polyhedron of type {p, ¢}, where the face {p} is of the form {p;}#{p2}, with

1 1 1 1
Lr(L)
p; 2 L T2

where the signs are chosen so that p; > 2 for j = 1,2. It is convenient to write the

face, instead, as
p . p
th p;, = —
{ dy, ds } S A

(in lowest terms) for j = 1, 2.
As a specific example, if 1 = 3, 79 = % and ¢ = 5, then we obtain a polyhedron
of type

30

m , 5} .
However, if we replace g by % (or 3 by %), indicating a different choice of lifting for
Ry, then we obtain type

75:5}-

Remark 7.1 A further comment is in order here. An opposite orthogonal
transformation of E* is of the form

T — azxh,
with a, b as before. In a group G containing such transformations, the corresponding
left and right groups Gy and Gr must be conjugate in the whole group of unit
quaternions. Thus one could also use quaternions to investigate the classes other

than (2,2,2); however, the methods which we have already described are more
efficacious.

8 Open problems

As the dimension increases, so there are more possibilities for the ranks of
faithfully realized regular or chiral polytopes or apeirotopes. In full rank, the
regular cases are classified, and chirality does not occur. In E4, therefore, the open
cases are the (finite) chiral polytopes of rank 3, and the regular or chiral apeirotopes
of ranks 3 and 4.

We look at the regular cases first; we begin with rank 4. Each of the eight
regular 4-apeirotopes in E3 can be blended (mixed) with a segment or an apeirogon;
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this gives 16 blended examples. Next, the “apeir” construction described at the
end of Section 3 can be applied to any of the four-dimensional rational regular
polyhedra. Finally, certain of the facets of the regular apeirotopes of full rank in
E* are 4-apeirotopes. It is possible that there are not too many more examples
which do not fall under one of these three categories, and maybe even none at all.

Incidentally, there is only one four-dimensional 4-apeirotope whose facets are
finite regular polyhedra. This is the universal {{3,4},{4,4|4}}, with facet the
octahedron {3, 4} and vertex-figure the toroid {4, 4|4}, which, as noted in Section 7,
is the facet of the 5-apeirotope {3,4,3,3}". (Compare [17, Theorem 10B3] with
s = 4 in the dual form, and the preceding discussion.) To see that this is the
only example, observe that there are no four-dimensional (finite) regular polyhedra
with triangular faces (nor with pentagons or pentagrams either, but these must
be excluded on crystallographic grounds). Hence, the only possible vertex-figure
has square faces, which means that the facet must be an octahedron or its Petrial
{6,4}3. In turn, the vertex-figure must be a regular polyhedron with square faces,
and circumradius equal to its edge-length; this forces it to be {4,4|4}. Finally,
direct calculation shows that, in fact, {6,4}3 cannot actually be a facet in such a
way.

As for the four-dimensional regular apeirohedra, a mere glance at some of
the possibilities shows that the enumeration problem is likely to be rather hard.
For example, in E? the apeirohedron {g, 10} is non-discrete; however, when it is
blended with its isomorphic copy {5, 13—0} in E4, a discrete regular apeirohedron of
type {5,10} is obtained. Several similar examples also occur.

There are also examples derived from complex reflexion groups in C2?, which
we regard as real groups in E* generated by reflexions with 2-dimensional mirrors.
A curiosity is the following. We can twist the first of the two diagrams below by
the dihedral group D3 (or symmetric group S3), and the second by Cy. We then
actually obtain the same geometric group; however, the outer automorphisms of
one correspond to the generating reflexions of the other (and vice versa). We refer
to [17, Section 9D] for the background here.

We now turn to chiral polytopes and apeirotopes. For the latter, various infi-
nite families of chiral apeirohedra were described in [19, 20] (see Section 6); each
such apeirohedron can be blended with a segment or an apeirogon to give a four-
dimensional chiral apeirohedron. Finally, there are plenty of finite chiral polyhedra
in E4; for example, each chiral toroid {4,4} (s,4) is realizable. Whether there exist
non-toroidal finite chiral polyhedra in E* is a nice open question.

Finally, presentations for the symmetry groups have only been fully worked out
for the 3-dimensional regular polyhedra and apeirotopes (see [17, Sections TE, 7F]).
For higher dimensions, presentations are known for certain classes of polytopes, for
example, the regular star-polytopes (see [17, Section 7D] or [13]). In this context,
the main tool is the so-called “circuit criterion”, which states that the automor-
phism group of an abstract polytope P (and thus the symmetry group of a faithful
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realization) is determined by the group of its vertex-figure and the circuit structure
of the edge-graph of P (see [17, Section 2F] for more details). A variant of this
method should also succeed in the chiral case. In particular, there is an interest
in presentations for the symmetry groups of the 3-dimensional chiral apeirohedra.
Here we do not know if the corresponding abstract apeirohedra are also chiral or if
they are regular. Settling this question may have to be the first step in arriving at
presentations for their symmetry groups.
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