
Optimal Networks

A.O. Ivanov and A.A. Tuzhilin

The aim of this mini-course is to give an introduction in Optimal Net-
works theory. Optimal networks appear as solutions of the following natural
problem: How to connect a finite set of points in a metric space in an optimal
way? We cover three most natural types of optimal connection: spanning trees
(connection without additional road forks), shortest trees and locally shortest
trees, and minimal fillings.

1 Introduction: Optimal Connection

This mini-course was given in the First Yaroslavl Summer School on Discrete and Com-
putational Geometry in August 2012, organized by International Delaunay Laboratory
“Discrete and Computational Geometry” of Demidov Yaroslavl State University. We are
very thankful to the organizers for a possibility to give lectures their and to publish this
notes, and also for their warm hospitality during the Summer School. The real course
consisted of three 1 hour lectures, but the division of these notes into sections is inde-
pendent on the lectures structure. The video of the lectures can be found in the site of
the Laboratory (http://dcglab.uniyar.ac.ru). The main reference is our books [1]
and [2], and the paper [3] for Section 5.

Our subject is optimal connection problems, a very popular and important kind of
geometrical optimization problems. We all seek what is better, so optimization problems
attract specialists during centuries. Geometrical optimization problems related to inves-
tigation of critical points of geometrical functionals, such as length, volume, energy, etc.
The main example for us is the length functional, and the corresponding optimization
problem consists in finding of length minimal connections.

1.1 Connecting Two Points

If we have to points A and B in the Euclidean plane R2, then, as we know from the
elementary school, the shortest curve joining A and B is unique and coincides with the
straight segment AB, so optimal connection problem is trivial in this case. But if we
change the way of distance measuring and consider, for example, so-called Manhattan
plane, i.e. the plane R2 with fixed standard coordinates (x, y) and the distance function
ρ1(A,B) = |a1−b1|+ |a2−b2|, where A = (a1, a2) and B = (b1, b2), then it is not difficult
to verify that in this case there are infinitely many shortest curves connecting A and B.
Namely, if 0 ≤ a1 < b1 and 0 ≤ a2 < b2, then any monotonic curve γ(t) =

(
x(t), y(t)

)
,

t ∈ [0, 1], γ(0) = A, γ(1) = B, where functions x(t) and y(t) are monotonic, are the
shortest, see Figure 1, left. Another new effect that can be observed in this example is
as follows. In the Euclidean plane a curve such that each its sufficiently small piece is a
shortest curve joining its ends (so-called locally shortest curve) is a shortest curve itself.
In the Manhattan plane it is not so. The length of a locally shortest curve having the
form of the letter Π, see Figure 1, right, can be evidently decreased.

Similar effects can be observed in the surface of standard sphere S2 ⊂ R3. Here the
shortest curve joining a pair of points is the lesser arc of the great circle (the cross-section
of the sphere by a plane passing through the origin). Two opposite points are connected
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Figure 1: The shortest curves connecting a pair of points in Manhattan plane (left), and
locally shortest but not shortest curve in this plane (right).

by infinitely many shortest curves, and if points A and B are not opposite, then the
corresponding great circle is unique and it is partitioned into two arcs, both of them are
locally shortest, one is the (unique) shortest, but the other one is not. (Really speaking,
the difference with the Manhattan plane consists in the fact that for the case of the
sphere any directional derivative of the length of any locally shortest arc with respect to
its deformation preserving the ends is equal to zero).

Exercise 1.1 For a pair of points on the surface of the cube describe shortest and locally
shortest curves. Find out an infinite family of locally shortest curves having pairwise
distinct lengths.

1.2 Connecting Many Points: Possible Approaches

Let us consider general situation, when we are given with a finite set M = {A1, . . . , An}
of points in a metric space (X, ρ), and we want to connect them in some optimal way in
the sense of the total length of the connection. We are working under assumption that we
already know how to connect pairs of points in (X, ρ), therefore we need just to organize
the set of shortest curves in appropriate way. There are several natural statements of
the problem, and we list here the most popular ones.

1.2.1 No Additional Forks Case: Spanning Trees

We do not allow additional forks, that is, we can switch between the shortest segments
at the points from M only. As a result, we obtain a particular case of Graph Theory
problem about minimal spanning trees in a connected weighted graph. We recall only
necessary concepts of Graph Theory, the detail can be found, for example in [4].

Recall that a (simple) graph can be considered as a pair G = (V,E), consisting of a
finite set V = {v1, . . . , vn} of vertices and a finite set E = {e1, . . . , em} of edges, where
each edge ei is a two-element subset of V . If e = {v, v′}, then we say that v and v′ are
neighboring, edge e joins or connects them, the edge e and each of the vertices v and
v′ are incident. The number of vertices neighboring to a vertex v is called the degree
of v and is denoted by deg v. A graph H = (VH , EH) is said to be a subgraph of a
graph G = (VG, EG), if VH ⊂ VG and EH ⊂ EG. The subgraph H is called spanning, if
VH = VG.

A path γ in a graph G is a sequence vi1 , ei1 , vi2 . . . , eikvik+1
of its vertices and edges

such that each edge eis connects vertices vis and vis+1 . We also say that the path γ
connects the vertices vi1 and vik+1

which are said to be ending vertices of the path. A
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Figure 2: Minimal spanning tree (left), shortest tree (center), and minimal filling, con-
necting the vertex set of regular triangle in Euclidean plane.

path is said to be cyclic, if its ending vertices coincide with each other. A cyclic path
with pairwise distinct edges is referred as a simple cycle. A graph without simple cycles
is said to be acyclic. A graph is said to be connected, if any its two vertices can be
connected by a path. An acyclic connected graph is called a tree.

If we are given with a function ω : E → R on the edge set of a graph G, then
the pair (G,ω) is referred as a weighted graph. For any subgraph H = (VH , EH) of a
weighted graph

(
G = (VG, EH), ω

)
the value ω(H) =

∑
e∈EH

ω(e) is called the weight of

H. Similarly, for any path γ = vi1 , ei1 , vi2 . . . , eikvik+1
the value ω(γ) =

∑k
s=1 ω(eis) is

called the weight of γ.
For a weighted connected graph

(
G = (VG, EG), ω

)
with positive weight function ω,

a spanning connected subgraph of minimal possible weight is called minimal spanning
tree. The positivity of ω implies that such subgraph is acyclic, i.e. it is a tree indeed.
The weight of any minimal spanning tree for (G,ω) is denoted by mst(G,ω).

Optimal connection problem without additional forks can be considered as minimal
spanning tree problem for a special graph. Let M = {A1, . . . , An} be a finite set of points
in a metric space (X, ρ) as above. Consider the complete graph K(M) with vertex set M
and edge set consisting of all two-element subsets of M . In other words, any two vertices
Ai and Aj are connected by an edge in K(M). By AiAj we denote the corresponding
edge. The number of edges in K(M) is, evidently, n(n − 1)/2. We define the positive
weight function ωρ(AiAj) = ρ(Ai, Aj). Then any minimal spanning tree T in K(M)
can be considered as a set of shortest curves in (X, ρ) joining corresponding points and
forming a network in X connecting M without additional forks in an optimal way, i.e.
with the least possible length. Such a network is called a minimal spanning tree for M in
(X, ρ). Its total weight ωρ(T ) is called length and is denoted by mstX(M). In Section 2
we speak about minimal spanning trees in more details.

1.2.2 Shortest tree: Fermat–Steiner Problem

But already P. Fermat and C. F. Gauss understood that additional forks can be profitable,
i.e. can give an opportunity to decrease the length of optimal connection. For example, see
Figure 2, if we consider the vertex set M = {A1, A2, A3} of a regular triangle with side 1
in the Euclidean plane, then the corresponding graph K(M) consists of three edges of the
same weight 1 and each minimal spanning tree consists of two edges, so mstR2(M) = 2.
But if we add the center T of the triangle and consider the network consisting of three

straight segments A1T , A2T , A3T , then its length is equal to 3 2
3

√
3
2 =

√
3 < 2, so it is

shorter than the minimal spanning tree.
This reasoning leads to the following general definition. Let M = {A1, . . . , An} be
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a finite set of points in a metric space (X, ρ) as above. Consider a larger finite set N ,
M ⊂ N ⊂ X, and a minimal spanning tree for N in X. Then this tree contains M
as a subset of its vertex set N , but also may contain some other additional vertices-
forks. Such additional vertices are referred as Steiner points. Further, we define a value
smtX(M) = infN :M⊂N⊂X mstX(N) and call it the length of shortest tree connecting M or
of Steiner minimal tree for M . If this infimum attains at some set N , then each minimal
spanning tree for this N is called a shortest tree or a Steiner minimal tree connecting M .
Famous Steiner problem is the problem of finding a shortest tree for a given finite subset
of a metric space. We will speak about Steiner problem in more details in Section 3. The
shortest tree for the vertex set of a regular triangle in the Euclidean plane is depicted in
Figure 2.

1.2.3 Minimizing over Different Ambient Spaces: Minimal Fillings

Shortest trees give the least possible length of connecting network for a given finite set in
a fixed ambient space. But sometimes it s possible to decrease the length of connection
by choosing another ambient space. Let M = {A1, . . . , An} be a finite set of points
in a metric space (X, ρ) as above, and consider M as a finite metric space with the
distance function ρM obtained as the restriction of the distance function ρ. Consider
an isometric embedding φ : (M,ρM ) → (Y, ρY ) of this finite metric space (M,ρM ) into
a (compact) metric space (Y, ρY ) and consider the value smtY

(
φ(M)

)
. It could be less

than smtX(M). For example, the vertex set of the regular triangle with side 1 can be
embedded into Manhattan plane as the set

{
(−1/2, 0), (0, 1/2), (1/2, 0)

}
, see Figure 2.

Than the unique additional vertex of the shortest tree is the origin and the length of
the tree is 3/2 <

√
3. So, for a finite metric space M = (M,ρM ), consider the value

mf(M) = infφ smtY
(
φ(M)

)
which is referred as weight of minimal filling of the finite

metric space M. Minimal fillings can be naturally defined in terms of weighted graphs
and can be considered as a generalization of Gromov’s concept of minimal fillings for
Riemannian manifolds. We speak about them in more details in Section 5.

2 Minimal Spanning Trees

In this section we discuss minimal spanning trees construction in more details. As we have
already mentioned above, in this case the problem can be stated in terms of Graph Theory
for an arbitrary connected weighted graph. But geometrical interpretation permits to
speed up the algorithms of Graph Theory.

2.1 General Case: Graph Theory Approach

We start with the Graph Theory problem of finding a minimal spanning tree in a con-
nected weighted graph. It is not difficult to verify that direct enumeration of all possible
spanning subtrees of a connected graph leads to an exponential algorithm.

To see that, recall well-known Kirchhoff theorem counting the number of span-
ning subtrees. If G = (V,E) is a connected graph with enumerated vertex set V =
{v1, . . . , vn}, then its Kirchhoff matrix is defined as (n × n)-matrix BG = (bij) with
elements

bij =

 deg vi if i = j,
−1 if {vi, vj} ∈ E,
0 otherwise.

Then the following result based on elementary Graph Theory and Binet–Cauchy formula
for determinant calculation is valid, see proof, for example in [4].
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Theorem 2.1 (Kirchhoff) For a connected graph G with n ≥ 2 vertices, the number
of spanning subtrees is equal to the algebraic complement of any element of the Kirchhoff
matrix BG.

Example. Let G = Kn be the complete graph with n vertices. Than its Kirchhoff
matrix has the following form:

BKn
=


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1

 .

The algebraic complement of the element bnn is equal to∣∣∣∣∣∣∣∣∣
n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

1 · · · 1
−1 · · · −1
...

. . .
...

−1 · · · n− 1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 n · · · 0
...

...
. . .

...
0 0 · · · n

∣∣∣∣∣∣∣∣∣ = nn−2,

where the first equality is obtained by change of the first row by the sum of all the rows,
and the second equality is obtained by change of the ith row, i ≥ 2, by the sum of it
with the first row.

Corollary 2.2 The complete graph with n vertices contains nn−2 spanning trees.

Remark. Notice that this result is equivalent to Cayley Theorem saying that the total
number of trees with n enumerated vertices is equal to nn−2.

But it is a surprising fact, that there exist polynomial algorithms constructing minimal
spanning trees. Several such algorithms were discovered in 1960s. We tell about Kruskal’s
algorithm. Similar Prim’s algorithm can be found in [4].

So, we are given with a connected weighted graph
(
G = (V,E), ω

)
with positive

weight function ω. At the initial step of Kruckal algorithm we construct the graph
T0 = (V, ∅) and put E0 = E. If the graph Ti−1 and the non-empty set Ei−1 ⊂ E,
i ≤ n − 1, have been already constructed, then we choose in Ei−1 an edge ei of least
possible weight and construct a new graph Ti = Ti−1 ∪ ei and also a new set Ei = {e ∈
E | e ̸∈ Ti and Ti ∪ e is acyclic}. Algorithm stops when the graph Tn−1 is constructed1.

Theorem 2.3 (Kruskal) Under the above notations, the graph Tn−1 can be constructed
for any connected weighted graph G = (G,ω), and moreover, Tn−1 is a minimal spanning
tree in G.

Proof. The set Ei is non-empty for all 0 ≤ i ≤ n − 2, because the corresponding
subgraphs Ti are not connected (the graph Ti has n vertices and i edges), therefore all
the graphs T1, . . . , Tn−1 can be constructed. Further, all these graphs are acyclic due to
the construction, and Tn−1 has n vertices and n− 1 edges, so it is a tree.

To finish the proof it remains to show that the spanning tree Tn−1 ⊂ G is minimal.
Since the graph G has a finite number of spanning trees, a minimal spanning tree does
exist. Let T be a minimal spanning tree. We show that it can be reconstructed to the
tree Tn−1 without changing the total weight, so Tn−1 is also a minimal spanning tree.

1Here the operation of adding an edge e to a graph G = (V,E) can be formally defined as follows:
G ∪ e = (V,E ∪ {e}). Similarly, G \ e = (V,E \ {e}).
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To do this, recall that the edges of the tree Tn−1 are enumerated in accordance with
the work of the algorithm. Denote them by e1, . . . , en−1 as above, and assume that ek
is the first one that does not belong to T . The graph T ∪ ek contains a unique cycle
c ⊃ ek. This cycle c also contains an edge e not belonging to Tn−1 (otherwise c ⊂ Tn−1,
a contradiction). Consider the graph T ′ = T ∪ ek \ e. It is evidently a spanning tree in
G, and therefore its weight is not less than the weight of the minimal spanning tree T ,
hence

ω(T ′) = ω(T ) + ω(ek)− ω(e) ≥ ω(T ),

and thus, ω(ek) ≥ ω(e).
On the other hand, all the edges e1, . . . , ek−1 belongs to T by our assumption. There-

fore, the graph Tk−1∪e is a subgraph of T and is acyclic, in particular. Hence, e ∈ Ek−1 so
as ek ∈ Ek−1. But the algorithm has chosen ek, hence ω(ek) ≤ ω(e). Thus, ω(ek) = ω(e),
and so ω(T ′) = ω(T ), and therefore T ′ is a minimal spanning tree in G. But now T ′

contains the edges e1, . . . , ek from Tn−1. Repeating this procedure we reconstruct T to
Tn−1 in the class of minimal spanning trees. Theorem is proved.

Remark. For a connected weighted graph with n vertices and m edges the complexity
of the Kruskal’s algorithm can be naturally estimated as mn ∼ n3. The estimation
can be improved to m logm ∼ n2 log n. The fastest non-randomized comparison-based
algorithm with known complexity belongs to Bernard Chazelle [5]. It turns out that if
the weight function is geometrical, then the algorithms can be improved.

2.2 Euclidean Case: Geometrical Approach

Now assume that M is a finite subset of the Euclidean plane R2. It turns out that a
minimal spanning tree for M in R2 can be constructed faster than the one for an abstract
complete graph with n = |M | vertices by means of some geometrical reasonings. To do
that we need to construct so called Voronoi partition of the plane, corresponding to M ,
and the Delaunay graph on M . It turns out that any minimal spanning tree for M in
R2 is a subgraph of the Delaunay graph, see Figure 3, and the number of edges in this
graph is linear with respect to n, so the standard Kruskal’s algorithm applied to it gives
the complexity n log n instead of n2 log n for the complete graph with n vertices.

Let us pass to details. Let M = {A1, . . . , An} ⊂ R2 be a finite subset of the plain.
The Voronoi cell of the point Ai is defined as

VorM (Ai) =
{
x ∈ R2 | ∥x−Ai∥ ≤ ∥x−Aj∥ for all j

}
.

The Voronoi cell for Ai is a convex polygonal domain which is equal to the intersection
of the closed half-planes restricted by the perpendicular bisectors of the segments AiAj ,
j ̸= i. It is easy to verify, that the intersection of any two Voronoi cells has no interior
points and that ∪i VorM (Ai) = R2. This partition of the plane is referred as Voronoi
partition or Voronoi diagram. Two cells VorM (Ai) and VorM (Aj) are said to be adjacent,
if there intersection contains a straight segment. The Delaunay graph D(M) is defined
as the dual planar graph to the Voronoi diagram. More precisely, the vertex set of D(M)
is M , and to vertices Ai and Aj are connected by an edge, if and only if their Voronoi
cells VorM (Ai) and VorM (Aj) are adjacent. The edges of the Delaunay graph are the
corresponding straight segments.

It is easy to verify, that if the set M is generic in the sense that no three points lie
at a common straight line and no four points lie at a common circle, then the Delaunay
graph D(M) is a triangulation, i.e. its bounded faces are triangles. In general case some
bounded faces could be inscribed polygons. Anyway, the number of edges of the graph
D(M) does not exceed 3n. It remains to prove the following key Lemma.
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Figure 3: Voronoi diagram (left) and Delaunay graph together with a minimal spanning
tree (right) for a point set in the plane.

Lemma 2.4 Any minimal spanning tree for M ⊂ R2 is a subgraph of the Delaunay
graph D(M).

Proof. Let e = AiAj be an edge of a minimal spanning tree T for M . We have to show
that the Voronoi cells VorM (Ai) and VorM (Aj) are adjacent. The graph T \ e consists
of two connected components, and this partition generates a partition of the set M into
two subsets, say M1 and M2. Assume that Ai ∈ M1 and Aj ∈ M2. The minimality of
the spanning tree T implies that ∥Ai, Aj∥ is equal to the distance between the sets M1

and M2, where ∥Ai, Aj∥ stands for the distance between Ai and Ak.
By u we denote the middle point of the straight segment AiAj , and let Ak be another

point from M . Assume that Ak ∈ M2. Due to the previous remark, ∥Ai, Ak∥ ≥ ∥Ai, Aj∥,
therefore

∥u,Ak∥ ≥ ∥Ai, Ak∥ − ∥Ai, u∥ ≥ ∥AiAj∥ − ∥Ai, u∥ = ∥Ai, Aj∥/2 = ∥u,Ai∥ = ∥u,Aj∥.

On the other hand, if ∥u,Ak∥ = ∥u,Ai∥, then we have equalities in both above inequali-
ties. The first one means that u lies at the straight segment AiAk, hence Ak lies at the ray
Aiu. The second equality implies ∥AiAk∥ = ∥AiAj∥, and so Ak = Aj , a contradiction.
Thus, ∥u,Ak∥ > ∥u,Ai∥, that is u does not belong to the cell VorM (Ak) for k ̸∈ {i, j}.
Thus, u ∈ VorM (Ai) ∩VorM (Aj),

Since the inequality proved is strict, the same arguments remain valid for points lying
close to u on the perpendicular bisector to the segment AiAj . Therefore, the intersection
of the Voronoi cells VorM (Ai) and VorM (Aj) contains a straight segment, that is the
cells are adjacent. Lemma is proved.

Remark. The previous arguments work in any dimension. But the trouble is that
starting from the dimension 3 the number of edges in the Delaunay graph need not be
linear on the number of its vertices.

Exercise 2.5 Verify that the same arguments can be applied to minimal spanning trees
for a finite subset of Rn.

Exercise 2.6 Give an example of a finite subset M ⊂ R3 such that the Delaunay graph
D(M) coincides with the complete graph K(M).

Problem 2.7 In what metric spaces similar geometrical approach also works? It defi-
nitely works for planar polygons with intrinsic metric, see [6].
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Figure 4: Torricelli–Simpson construction, the case Ai ≤ 120◦ (left), and the case A3 >
120◦ (right).

3 Steiner Trees and Locally Minimal Networks

In this section we speak about shortest trees and locally shortest networks in more de-
tails. Besides necessary definitions we discuss local structure theorems, Melzak algorithm
constructing locally minimal trees in the plane, global results concerning locally minimal
binary trees in the plane (so called twisting number theory) and the particular case, lo-
cally minimal binary trees with convex boundaries (language of triangular tilings). The
details concerning twisting number and tiling realization theory can be found in [2] or [1],
and also in [7].

3.1 Fermat Problem

The idea that additional forks can help to decrease the length of a connecting network
had been already clear to P. Fermat and his students. It seems that Fermat was the
first, who stated the following optimization problem: for given three points A1, A2, and
A3 in the plane find a point X minimizing the sum of distances from the points Ai,
i.e. minimize the function F (X) =

∑
i ∥Ai, X∥. For the case when all the angles of the

triangle A1A2A3 are less than or equal to 120◦ the solution was found by E. Torricelli
and later by R. Simpson. The construction of Torricelli is as follows, see Figure 4.

On the sides of the triangle A1A2A3 construct equilateral triangles AiAjA
′
k, {i, j, k} =

{1, 2, 3}, such that they intersect the initial triangle only by the common sides. Then, as
Torricelli proved, the circumscribing circles of these three triangles intersect in a point
referred as Torricelli point T of the triangle A1A2A3. If all the angles Ai are less than
or equal to 120◦, then T lies in the triangle A1A2A3 and gives the unique solution to
the Fermat problem.2 Later Simpson proved that the straight segments AiA

′
i also pass

through the Torricelli point, and the lengths of all these three segments are equal to
F (T ). If one of the angles, say A3, is more than 120◦, then the Torricelli point is located
outside the triangle and can not be the solution to Fermat problem. In this case the
solution is X = A3.

2An elementary proof can be obtained by rotation R of a copy of the triangle around its vertex, say
A1, by 60◦ and considering the polygonal line L joining A2, X, image R(X) of X under the rotation,
and R(A3). The length of L is equal to F (X), and minimal value of F (X) corresponds to the location
of the X such that L is a straight segment.
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Remark. So we see, that shortest tree for a triangle in the plane consists of straight
segments meeting at the vertices by angles more than or equal to 120◦. It turns out, that
this 120◦-property remains valid in much more general situation.

3.2 Local Structure Theorem and Locally Minimal Networks

Let M = {A1, . . . , An} be a finite subset of Euclidean space RN , and T is a Steiner tree
connecting M . Recall that we defined shortest trees as abstract graphs with vertex set in
the ambient metric space. In the case of RN it is natural to model edges of such graph as
straight segments joining corresponding points in the space. The configuration obtained
is referred as a geometrical realization of the corresponding graph. Below, speaking about
shortest trees in RN we will usually mean their geometrical realizations. The local
structure of a shortest tree (more exactly of a geometrical realization of the tree) can be
easily described.

Theorem 3.1 (Local Structure) Let Γ be a shortest tree connecting a finite subset
M = {A1, . . . , An} in RN . Then

1. all edges of Γ are straight segments;

2. any vertex v ∈ Γ of degree 1 belongs to M ;

3. any two neighboring edges of Γ meet in common vertex by angle more than or equal
to 120◦;

4. if the degree of a vertex v is equal to 2 and v ̸∈ M , then the edges meet at v by
180◦ angle.

Corollary 3.2 Let Γ be a shortest tree connecting a finite subset M = {A1, . . . , An} in
RN . Then the degree of any its vertex is at most 3, and if the degree of a vertex v equals
to 3, then the edges meet at v by angles equal to 120◦.

Example. Let M be the vertex set of regular tetrahedron ∆ in R3. Then the network
consisting of four straight segments joining the vertices of the tetrahedra with its center
O is not a shortest network. Indeed, since degO = 4, then the angles between the
edges meeting at O are less than 120◦. The set M is connected by three different (but
isometrical) shortest networks, each of which has two additional vertices of degree 3, see
Figure 5.

Theorem 3.1 can be just “word-by-word” extended to the case of Riemannian mani-
folds (we only need to change straight segments by geodesic segments) [1] and even to the
case of Alexandrov spaces with bounded curvature. The case of normed spaces turned
out to be more complicated (some general results can be found in [2]).

A connected graph Γ in RN (in a Riemannian manifold) whose vertex set contains
a finite subset M ⊂ RN is called a locally minimal network connecting M or with the
boundary ∂Γ = M , if it satisfies Conditions (1)–(4) from Theorem 3.1. In the case of
complete Riemannian manifolds such graphs are minimal “in small,” i.e. the following
result holds, see [1].

Theorem 3.3 (Minimality “in small”) Let Γ be a locally minimal network connect-
ing a finite subset M of a complete Riemannian manifold W . Then each point P ∈ Γ
possesses a neighborhood U in W , such that the network Γ∩U is a shortest network with
the boundary (∂Γ ∩ U) ∪ (Γ ∩ ∂U).

Remark. In the case of normed spaces Theorem 3.3 is not valid even for two-point sets,
see example in Figure 1.
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Figure 5: Non-shortest tree (left) and one of the shortest trees (right) for the vertex set
of a regular tetrahedron.

Figure 6: Tree G is partitioned into 4 non-degenerate components by cutting at vertices
of degree 2.

3.3 Melzak Algorithm and Steiner Problem Complexity

Let us return back to the case of Euclidean plane. It turns out that in this case the
Torricelli–Simpson construction can be generalized to a geometrical algorithm, that either
constructs a locally minimal tree of a given structure for a given boundary set, or reports
that such a tree does not exist. This algorithm was discovered by Z. Melzak [9] and
improved by F. Hwang [8].

Assume that we are given with a tree G whose vertex degrees are at most 3, a finite
subset M of the plane, and a bijection φ : ∂G → M , where ∂G is the set of all vertices
from G of degrees 1 and 2. To start with, partition the tree G into the union of so-called
non-degenerate components Gi by cutting the tree at each its vertex of degree 2, see
Figure 6. To construct locally minimal network Γ of type G spanning M in accordance
with φ it suffices to construct each its component Γi of type Gi on the corresponding
boundary Mi = φ(∂Gi), where ∂Gi = ∂G ∩ Gi, in accordance with φi = φ|∂Gi and to
verify the angles between the edges of the components at the vertices of degree 2. All
these angles must be more than or equal to 120◦, see Figure 6.

Now we pass to the case of one non-degenerate component, i.e. we assume that G
has no vertices of degree 2 and that ∂G consists of all the vertices of degree 1. Such
trees are referred as binary. If |∂G| = 2, then the corresponding locally minimal tree Γ
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Figure 7: A step of forward trace of Melzak algorithm.

is a straight segment. Otherwise, it is easy to verify that each such tree G contains so-
called moustaches, i.e. a pair of vertices of degree 1 neighboring with a common vertex
of degree 3. Fix such moustaches {x, x′} ⊂ ∂G, by y denote their common vertex of
degree 3, and make a forward step of Melzak algorithm, see Figure 7, that reduces the
number of boundary vertices by 1. Namely, we reconstruct the tree G by deleting the
vertices x and x′ together with the edges xy and x′y and adding y to the boundary of new
binary tree; reconstruct the set M by deleting the points φ(x) and φ(x′) and adding a
new point Axx′ which is the third vertex of a regular triangle constructed on the straight
segment φ(x)φ(x′) in the plane; and reconstruct the mapping φ putting φ(y) = Axx′ .
Notice that the point Axx′ can be constructed in two ways, because there are two such
regular triangles. Thus, if the number of boundary vertices in the resulting tree is more
than 2, then we can repeat the procedure described above. And if it becomes 2, then we
can construct the corresponding locally minimal tree — the straight segment. Here the
forward trace of Melzak algorithm stops. Now we have to reconstruct the initial tree, if
possible.

Thus, we have a straight segment I ⊂ R2 realizing locally minimal tree with unique
edge ab, and at least one of its ending points has the form Axx′ , where x and x′ are the
boundary vertices of the binary tree G from the previous step, neighboring with their
common vertex of degree 3. Let this common vertex be a, that is a corresponds to Axx′ .
We reconstruct G by adding edges ax and ax′. Then we restore the points φ(x) and
φ(x′) in the plane together with the regular triangle φ(x)φ(x′)Axx′ , circumscribe the
circle S1 around it and consider the intersection of S1 with the segment I, see Figure 8.
If it does not contains a point lying at the smaller arc of S1 restricted by φ(x) and φ(x′),
then the tree G can not be reconstructed and we have to pass to another realization of
the forward trace of the algorithm. Otherwise we put φ(a) be equal to this point. The
straight segments φ(x)φ(a) and φ(x′)φ(a) meet at φ(a) by 120◦ and together with the
subsegment φ(a)φ(b) form a locally minimal binary tree Γ of type G with tree boundary
vertices. We repeat this procedure until we either reconstruct the tree of type G, or
verify all possible realizations of the forward trace and conclude that the tree of type G
does not exists.

The Melzak algorithm described above contains an exponential number of possibili-
ties of its forward trace realization, due to two possible locations of each regular triangle
constructed by the algorithm. This complexity can be reduced by means of modification
suggested by F. Hwang [8]. He showed that considering a bit more complicated config-
urations of boundary points (four points corresponding to “neighboring moustaches” or
three points corresponding to moustaches and “neighboring” degree-1 vertex) one always
can understand which regular triangle must be chosen, see details in [8].

But unfortunately even a linear time realization of Melzak algorithm does not lead to
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Figure 8: A step of back trace of Melzak algorithm.

Figure 9: Three binary trees with 4 vertices of degree 1.

a polynomial algorithm of a shortest tree finding. The reason is a huge number of possible
structures of the tree G with |∂G| = n together with also exponential number of different
mappings φ : ∂G → M for fixed ∂G and M . Even for binary trees we have 3 possibilities
for n = 4, see Figure 9, and 15 possibilities for n = 5 (notice that the corresponding
binary trees are isomorphic as graphs). For n = 6 we have two non-isomorphic binary
trees and the number of possibilities becomes 90. It can be shown that the total number
of possibilities can be estimated by Catalan number and grough exponentially.

So, to obtain an efficient algorithms, we have to find some a priori restrictions on pos-
sible structures of minimal networks. In the next subsection we tell about the restrictions
generated by geometry of boundary sets.

3.4 Boundaries Geometry and Networks Topology

Here we review our results from [10] and [7]. The goal is to find some restriction on
the structure of locally minimal binary trees spanning a given boundary in the plane in
terms of geometry of the boundary set. To do this we need to choose or to introduce
some characteristics of the network structure and of the boundary geometry.

As a characteristic of the geometry of a boundary set M we take the number of
convexity levels c(M). Recall the definition. Let M be a finite non-empty subset of
the plane. Take the convex hull chM of M and assign the points from M lying at the
boundary of the polygon chM to the first convexity level M (1) of M . If the set M \M (1)

is not empty, then define the second convexity level M (2) of M to be equal to the first
convexity level of M \ M (1), and so on. As a result, we obtain the partition of the set
M into its convexity levels, and by c(M) we denote the total number of this levels, see
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Figure 10: A boundary set with 4 convexity levels.

Figure 10.
Now let us pass to definition of a characteristic describing the “complexity” of planar

binary trees. Assume that we are given with a planar binary tree Γ, and let the orientation
of the plane be fixed. For any its two edges, say e1 and e2, we consider the unique path
γ in Γ starting at e1 and finishing at e2. All interior vertices of γ are the vertices of Γ
having degree 3. Let us walk from e1 to e2 along γ. Then at each interior vertex of γ
we make either left, or right turn in Γ. Define the value tw(e1, e2) to be equal to the
difference between the numbers of left and right turns we have made. In other words,
assign to an interior vertex of γ the label τ = ±1, where +1 corresponds to left turns and
−1 to right turns. Then tw(e1, e2) is the sum of these values, see Figure 11. Notice that
tw(e1, e2) = − tw(e2, e1). At last, we put tw Γ = max tw(ei, ej), where the maximum is
taken over all ordered pairs of edges of Γ.

If the tree Γ is locally minimal, then the twisting number between any pair of its
edges has a simple geometrical interpretation, see Figure 11. Namely, since the angles
between any neighboring edges are equal to 2π/3, then tw(ei, ej) is equal to the total
angle which the oriented edge rotates by passing from ei to ej , divided by π/3.

It turns out, that the twisting number of a locally minimal binary tree with a given
boundary is restricted from above by a linear function on the number of convexity levels
of the boundary. Namely, the following result holds.

Theorem 3.4 Let Γ be a locally minimal binary tree connecting the boundary set M that
coincides with the set of vertices of degree 1 from Γ. Then

tw Γ ≤ 12
(
c(M)− 1

)
+ 5.

The important particular case c(M) = 1 corresponds to the vertex sets of convex
polygons. Such boundaries are referred as convex.

Theorem 3.5 Let Γ be a locally minimal binary tree with a convex boundary. Then
tw Γ ≤ 5. Conversely, any planar binary tree Γ with tw Γ ≤ 5 is planar equivalent to a
locally minimal binary tree with a convex boundary.

Notice that the direct statement of Theorem 3.5 is rather easy to prove (it follows
from the geometrical interpretation of the twisting number, easy remark that tw Γ al-
ways attains at boundary edges, and the monotony of convex polygonal lines). But the
converse statement is quite non-trivial. The proof obtained in [7] is based on the com-
plete description of binary trees with twisting number at most five, obtained in terms of
so-called triangular tilings that will be discussed in the next subsection.
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Figure 11: Left and right turns in planar binary tree and its twisting number (left), and
twisting number of locally minimal binary tree.

Figure 12: A diagonal triangulation and corresponding planar binary tree.

Problem 3.6 Estimate the number of binary trees structures with n vertices of degree 1
and twisting number at most k. It is more or less clear that the number is exponential
on n even for k = 5, but it is interesting to obtain an exact asymptotic.

3.5 Triangular Tilings and their Applications

It turns out that the description of planar binary trees with twisting number at most five
can be effectively done in the language of planar triangulations of a special type which
are referred as triangular tilings.

The correspondence between diagonal triangulations of planar convex polygons and
planar binary trees is well-known: the planar dual graph of such triangulation is a binary
tree, see Figure 12, and each binary tree can be obtained in such a way. Here the vertices
of the dual graph are centers of the triangles of the triangulation (medians intersection
point) and middle points of the sides of the polygon; and edges are straight segments
joining either the middle of a side with the center of the same triangle, or two centers of
the triangles having a common side.

In the context of locally minimal binary trees, the most effective way to represent
the diagonal triangulations is to draw them consisting of regular triangles. Such special
triangulations are referred as triangular tilings. The main advantage of the tilings is that
the dual binary tree constructed as described above is a locally minimal binary tree with
the corresponding boundary. Therefore, tilings “feel the geometry” of locally minimal
binary trees and turns out to be very useful in the description of such trees with small
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Figure 13: A triangular tiling with its dual binary tree (left), its outer cells (middle) and
inner cells (right).

Figure 14: Un-paired and paired growths of a tiling (left), growths that should be
deleted to get a skeleton (middle), corresponding decomposition into skeleton and growths
(right).

twisting numbers.
The main difficulty in constructing a triangulation consisting of regular triangles for

a given binary tree is that the resulting polygon can overlap itself. An example of such
overlapping can be easily constructed from a binary tree Γ corresponding to the diagonal
triangulation of a convex n-gon, n ≥ 6, all whose diagonals are incident to a common
vertex. But the twisting number of such Γ is also at least 6. The following result is
proved in [7].

Theorem 3.7 The triangular tiling corresponding to any planar binary tree with twisting
number less than or equal to five has no self-intersections.

Theorem 3.7 gives an opportunity to reduce the description of the planar binary trees
with twisting number at most five to the description of the corresponding triangular
tilings.

To describe all the triangular tilings whose dual binary trees have the twisting number
at most five, we decompose each such tiling into elementary “breaks”. The triangles of
the tiling are referred as cells. A cell of a tiling T is said to be outer, if two its sides lie
at the boundary of T considered as planar polygon. Further, a cell is said to be inner,
if no one of its sides lies at the boundary, see Figure 13. An outer cell adjacent to (i.e.
intersecting with by a common side) an inner cell is referred as a growth of T . A tiling
can contains as un-paired growths, so as paired growths, see Figure 14.

For each inner cell we delete exactly one growth adjacent to it, providing such growths
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Figure 15: Branching points (left), linear parts (middle), and code of a skeleton (right).

Figure 16: All possible codes of skeletons whose dual binary trees have twisting number
at most 5.

exist. As a result, we obtain a decomposition of the initial tiling into its growths and its
skeleton (a tiling without growths). Notice, that such a decomposition is not unique.

It turns out that the skeletons of the tilings whose dual binary trees have twisting
number at most five can be described easily. Also, the possible location of growthes in
such tilings on their skeletons also can be described. The details can be found in [7] or [1].
Here we only formulate the skeletons describing Theorem and include several examples
of its application.

Inner cells of a skeleton S are organized into so-called branching points, see Figure 15.
After the branching points deleting, the skeleton is partitioned into linear parts. Each
linear part contains at most one outer cell. Construct a graph C(S) referred as the code
of the skeleton S as follows: the vertex set of C(S) is the set of its branching points
and of the outer cells of its linear parts. The edges correspond to the linear parts, see
Figure 15.

The following result is proved in [7].

Theorem 3.8 Consider all skeletons whose dual graphs twisting numbers are at most 5
and for each of these skeletons construct its code. Then, up to planar equivalence, we
obtain all planar graphs with at most 6 vertices of degree 1 and without vertices of degree
2. In particular, every such skeleton contains at most 4 branching points and at most 9
linear parts.

All possible codes of such skeletons are depicted in Figure 16.
This description of skeletons and corresponding tilings obtained in [7], was applied

to the proof of inverse (non-trivial) statement of Theorem 3.5. In some sense, the proof
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Figure 17: Two infinite families of locally minimal binary trees connecting vertex sets of
regular polygons, existing for any regular n-gon (left) and for 3k + 6-gons (middle), and
the unique finite family, existing for 24-, 30-, 36- and 42-gons only (right).

obtained in [7] is constructive: for each tiling under consideration a corresponding locally
minimal binary tree with a convex boundary is constructed.

Another application is a description of all possible binary trees of the skeleton type
that can be realized as locally minimal binary trees connecting the vertex set of a regular
polygon. It turns out, see details in [1], that there are 2 infinite families of such trees and
1 finite family. The representatives of these networks together with the corresponding
skeletons are shown in Figure 17.

4 Steiner Ratio

As we have already discussed in the previous Section, the problem of finding a shortest
tree connecting a given boundary set is exponential even in two-dimensional Euclidean
plane. On the other hand, in practice it is necessary to solve transportation problems of
this kind for several thousands boundary points many times a day. Therefore, in practice
some heuristical algorithms are used. One of the most popular heuristics for a shortest
tree is corresponding minimal spanning tree. But using such approximate solutions
instead of exact one it is important to know the value of possible error appearing under
the approximation. The Steiner ratio of a metric space is just the measure of maximal
possible relative error for the approximation of a shortest tree by the corresponding
minimal spanning tree.

4.1 Steiner Ratio of a Metric Space

Let M be a finite subset of a metric space (X, ρ), and assume that |M | ≥ 2. We put
srM = smt(M)/mst(M). Evidently, srM ≤ 1. The next statement is also easy to prove.

Assertion 4.1 For any metric space (X, ρ) and any its finite subset M ⊂ X, |M | ≥ 2,
the inequality srM > 1/2 is valid.

Proof. Let G be a Steiner tree connecting M . Consider an arbitrary embedding of the
graph G into the plane, walk around G in the plane and list consecutive paths forming
this tour and joining consecutive boundary vertices from M . The length of each such
path γPQ joining boundary vertices PQ, i.e. the sum of the lengthes of its edges, is more
than or equal to the distance ρ(P,Q), due to the triangle inequality. Consider the cyclic
path in the complete graph with vertex set M consisting of edges formed by the pairs
of consecutive vertices from the tour, and let T be a spanning tree on M contained in

17



this path. It is clear, that ρ(T ) <
∑

(P,Q) ρ(γPQ), where the summation is taken over
all the pairs of consecutive vertices of the tour. On the other hand, each edge of the
tree G belongs to exactly two such paths, hence

∑
(P,Q) ρ(γPQ) = 2ρ(G). So, we have

sr(M) ≥ ρ(G)/ρ(T ) > 1/2. The Assertion is proved.

The value sr(M) is the relative error appearing under approximation of the length of
a shortest tree for a given set M by the length of a minimal spanning tree. The Steiner
ratio of a metric space (X, ρ) is defined as the value sr(X) = infM⊂X sr(M), where the
infimum is taken over all finite subsets M , |M | ≥ 2 of the metric space X. So, the Steiner
ratio of X is the value of the relative error in the worse possible case.

Corollary 4.2 For arbitrary metric space (X, ρ) the inequality 1/2 ≤ sr(X) ≤ 1 is valid.

Exercise 4.3 Verify, that for any r ∈ [1/2, 1] there exists a metric space (X, ρ) with
sr(X) = r, see corresponding examples in [2].

Sometimes, it is convenient to consider so-called Steiner ratios srn(X) of degree n,
where n ≥ 2 is an integer, which are defined as follows: srn(X) = infM⊂X,|M |≤n sr(M).
Evidently, sr2(X) = 1. It is also clear that sr(X) = infn srn(X).

Steiner ratio was firstly defined for the Euclidean plane in [11], and during the follow-
ing years the problem of Steiner ratio calculation is one of the most attractive, interesting
and difficult problems in geometrical optimization. A short review can be found in [2]
and in [12]. One of the most famous stories here is connected with several attempts to
prove so-called Gilbert–Pollack Conjecture, see [11], saying that sr(R2, ρ2) =

√
3/2, where

ρ2 stands for the Euclidean metric, and hence sr(R2, ρ2) is attained at the vertex set of a
regular triangle, see Figure 2. In 1990s D. Z. Du and F.K. Hwang announced that they
proved the Steiner Ratio Gilbert–Pollak Conjecture [13], and their proof was published in
Algorithmica [14]. In spite of the appealing ideas of the paper, the questions concerning
the proof appeared just after the publication, because the text did not appear formal.
And about 2003–2005 it becomes clear that the gaps in the D. Z. Du and F.K. Hwang
work are too deep and can not be repaired, see detail in [15].

4.2 Steiner Ratio of Small Degrees for Euclidean Plane

Gilbert and Pollack calculated sr3(R2, ρ2) in their paper [11]. We include their proof
here.

Since the Steiner ratio of a regular triangle is equal to
√
3/2, then sr3(R2, ρ2) ≤

√
3/2,

so we just need to prove the opposite inequality. To do this, consider a triangle ABC
in the plane. If one of its angles is more than or equal to 120◦, then the shortest tree
coincides with minimal spanning tree, so in this case sr(ABC) = 1. So it suffices to
consider the case when all the angles of the triangle are less than 120◦.

Let S be the Torricelli point of the triangle ABC. Show firstly that |AS| ≤ |BS|, if
and only if |BC| ≥ |AC|, i.e. the shortest edge of the Steiner minimal tree lies opposite
with the longest side of the triangle. The proof is shown in Figure 18, left. Indeed, if
|BS| < |AS|, then we take the point B′ ∈ [S,B] with |SB′| = |SA|, hence |CB′| = |CA|
due to symmetry and |CB′| < |CB| because B′ ≥ 120c. Conversely, if |BC| > |B′C|,
then there exists B′ ∈ [B,S] with |CB′| = |CA|, because |BC| > |CA| > |SC|. Then
|AS| = |SB′| < |SB|.

Thus, the two-edges tree T = [A,B] ∪ [B,C] is a minimal spanning tree for ABC, if
and only if BC is the longest side of ABC, if and only if |AS| ≤ |BS| and |AS| ≤ |CS|.
Consider the points E ∈ [B,S] and D ∈ [C, S], such that |AS| = |ES| = |DS|, and
put x = |AC|, y = |AB|, z = |DE| = |AD| = |AE|, and x′ = |CD|, y′ = |EB|. Then
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Figure 18: To the calculation of sr3(R2, ρ2).

|SA| = |SE| = |SD| = z/
√
3 and

smt(M) = 3|SA|+ |DC|+ |EB| =
√
3z + x′ + y′ and mst(M) = x+ y,

where M stands for the set {A,B,C}. But x ≤ x′+ z and y ≤ y′+ z, due to the triangle
inequality, and hence

sr(M) =

√
3z + x′ + y′

x+ y
≥

√
3z + x′ + y′

x′ + z + y′ + z
=

√
3z + x′ + y′

x′ + y′ + 2z
≥

√
3

2
.

Thus, we proved the following statement.

Assertion 4.4 The following relation is valid: sr3(R2, ρ2) =
√
3/2.

Remark. For small n it is already proved that srn(R2, ρ2) =
√
3/2 (recently O. de Wet

proved it for n ≤ 7, see [16]). The proof of de Wet is based on the analysis of Du and
Hwand method from [14] and understanding that it works for boundary sets with n ≤ 7
points. Also in 60th several lower bounds for sr(R2, ρ2) were obtained, and the best of
them is worse than

√
3/2 in the third digit only.

Problem 4.5 Very attractive problem is to prove that sr(R2, ρ2) =
√
3/2, i.e. to prove

Gilbert–Pollack Conjecture. The attempts to repair the proof of Du and Hwang have
remained unsuccessful, so some fresh ideas are necessary here.

4.3 Steiner Ratio of Other Euclidean Spaces and Riemannian
Manifolds

The following result is evident, but useful.

Assertion 4.6 If Y is a subspace of a metric space X, i.e. the distance function on Y
is the restriction of the distance function of X, then sr(Y ) ≥ sr(X).

This implies, that sr(Rn, ρ2) ≤ sr(R2, ρ2) ≤
√
3/2. Recall that Gilbert–Pollack con-

jecture implies that the Steiner ratio of Euclidean plane attains at the vertex set of
a regular triangle. In multidimensional case the situation is more complicated. The
following result was obtained by Du and Smith [17]

Assertion 4.7 If M ⊂ Rn is the vertex set of a regular n-dimensional simplex, then
sr(M) > sr(Rn, ρ2) for n ≥ 3.
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Figure 19: Construction of the set P in R3 (non-interesting but visual case n = 2).

Proof. Consider the boundary set P in Rn+1, consisting of the following 1 + n(n + 1)
points: one point (0, . . . , 0) and n(n + 1) points all whose coordinates except two are
zero, one is equal to 1, and the remaining one is −1. It is clear that P is a subset of
n-dimensional plane defined by the next linear condition: sum of all coordinates is equal
to zero. Represent P as the union of the subsets P i = {x ∈ P | xi = 1} ∪ {(0, . . . , 0)}.
Notice that each set P i, i = 1, . . . , n + 1, consists of n + 1 points and forms the vertex
set of an regular n-dimensional simplex (to see that it suffices to verify that all the
distances between the pairs of points from P i are the same and are equal to

√
2). The

configuration of 7 points in R3 is shown in Figure 19 (this case is not important for us,
but it is easy to draw). Now, mst(P ) = (n+ 1)mst(P i), but for n ≥ 3 we conclude that
smt(P ) < (n+1) smt(P i), because the degree of the vertex (0, . . . , 0) in the corresponding
network which is the union of the shortest networks for P i is equal to n+ 1 ≥ 4 that is
impossible in the shortest network due to the Local Structure Theorem 3.1. So,

sr(P ) = smt(P )/mst(P ) <
(n+ 1) smt(P i)

(n+ 1)mst(P i)
= sr(P i).

Taking as a heuristic for the length of a shortest tree connecting the vertex set of
regular simplex the length of the network joining the center of the simplex with all its
vertices we get the following estimate.

Corollary 4.8 For any n ≥ 3 the upper estimate

sr(Rn, ρ2) <

√
1

2
+

1

2n

is valid.

One of the best general low estimates is obtained by Graham and Hwang in [19].

Assertion 4.9 For any n ≥ 2 the lower estimate 1/
√
3 ≤ sr(Rn, ρ2) is valid.

The best known upper estimate for R3 is obtained by Smith and Smith [18]. It is
attained at an infinite boundary set which is known as “Smith sausage” and depicted
in Figure 20. The corresponding value, obtained as the limit of the ratios for finite
fragments, is as follows: √

283

700
− 3

√
21

700
+

9
√

22− 2
√
21

140
.
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Figure 20: A finite fragment of infinite “Smith sausage”.

Notice that the idea of an infinite set is based on a deep result of Du and Smith estimating
from below the number of points in a subset M of Rn such that sr(M) = sr(Rn, ρ2) by a
function f(n) rapidly increasing on n, see details in [17]. For example, f(50) = 53, but
f(200) = 3 481 911. Therefore, it is difficult to expect to guess a finite set M in Rn with
sr(M) = sr(Rn, ρ2) for large n.

Recently, the Steiner ratio of the Lobachevskii plane, and hence, of any Lobachevskii
space has bin calculated by Innami and Kim, see [20].

Theorem 4.10 Steiner ratio of Lobachevskii space Ln for any n ≥ 2 is equal to 1/2.

For general Riemannian manifold Ivanov, Cieslik and Tuzhilin, see [21], obtained the
following general result.

Theorem 4.11 The Steiner ratio of n-dimensional Riemannian manifold is less than
or equal to the Steiner ratio of the Euclidean space Rn.

5 Minimal Fillings

This Section is devoted to minimal fillins, the third kind of optimal connections discussed
in the Introduction. This problem appeared as a result of a synthesis of two classical
problems: the Steiner problem on the shortest networks (it is discussed in Sections 3
and 4), and Gromov’s problem on minimal fillings.

The concept of a minimal filling appeared in papers of Gromov, see [22]. Let M be a
manifold endowed with a distance function ρ. Consider all possible films W spanning M ,
i.e., compact manifolds with the boundary M . Consider on W a distance function d that
does not decrease the distances between points in M . Such a metric space W = (W,d) is
called a filling of the metric space M = (M,ρ), see example in Figure 21. The Gromov
Problem consists in calculating the infimum of the volumes of the fillings and describing
the spaces W which this infimum is achieved at (such spaces are called minimal fillings).

In the scope of Steiner problem, it is natural to consider M as a finite metric space.
Then the possible fillings are metric spaces having the structure of one-dimensional strat-
ified manifolds which can be considered as graphs whose edges have nonnegative weights.
This leads to the following particular case of generalized Gromov problem.

Let M be an arbitrary finite set, and G = (V,E) be a connected graph. We say, that
G connects M or joins M , if M ⊂ V . Now, let M = (M,ρ) be a finite metric space,
G = (V,E) be a connected graph joining M , and ω : E → R+ is a mapping into non-
negative numbers, which is usually referred as a weight function and which generates the
weighted graph G = (G,ω). The function ω generates on V the pseudo-metric dω (some
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Figure 21: The space M is the circle S1 with arc-metric. The films X in the both Figures
are parts of the standard sphere containing M as a parallel. The left film X is not a
filling since the distance between the points p and q in X is less than in M (the shortest
path is depicted). The right film X is a filling of M .

distances in a pseudo-metric can be equal to zero), namely, the dω-distance between the
vertices of the graph G is defined as the least possible weight of the paths in G joining
these vertices. If for any two points p and q from M the inequality ρ(p, q) ≤ dω(p, q)
holds, then the weighted graph G is called a filling of the space M, and the graph G
is referred as the type of this filing. The value mf(M) = inf ω(G), where the infimum
is taken over all the fillings G of the space M is the weight of minimal filling, and each
filling G such that ω(G) = mf(M) is called a minimal filling.

5.1 Parametric Networks and Optimal Connection Problems

Here we give a common view on Steiner problem and minimal filling problem in terms
of so-called parametric networks in a general metric space.

Let X = (X, d) be a metric space and G = (V,E) be an arbitrary connected graph.
Any mapping Γ: V → X is called a network in X parameterized by the graph G = (V,E),
or a network of the type G. The vertices and edges of the network Γ are the restrictions
of the mapping Γ onto the vertices and edges of the graph G, respectively. The length of
the edge Γ: vw → X is the value d

(
Γ(v),Γ(w)

)
, and the length d(Γ) of the network Γ is

the sum of lengths of all its edges. We shall consider various boundary value problems
for graphs. To do that, we fix some subsets ∂G of the vertex sets V of our graphs
G = (V,E), and we call such ∂G the boundaries. We always suppose that in each graph
under consideration a boundary, possibly, an empty one, is chosen. The boundary ∂Γ of
a network Γ is the restriction of Γ onto ∂G. If M ⊂ X is finite and M ⊂ Γ(V ), then we
say that the network Γ joins or connects the set M . The vertices of graphs and networks
which are not boundary ones are called interior vertices. The value

smt(M) = inf
{
d(Γ) | Γ is a network joining M

}
is called the length of shortest network for M . Notice that the network Γ which joins
M and satisfies d(Γ) = smt(M) may not exist, see [23] and [24] for nontrivial examples.
If such a network exists, it is called a shortest network connecting M , or for M . One
variant of the Steiner problem is to describe the shortest networks for finite subsets of
metric spaces.3

Now let us define minimal parametric networks in a metric space X = (X, d). Let
G = (V,E) be a connected graph with some boundary ∂G, and let φ : ∂G → X be a

3The denotation smt is an acronym for “Steiner Minimal Tree” which is a synonym for the shortest
network whose edges are non-degenerate and, thus, it must be a tree.
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mapping. By [G,φ] we denote the set of all networks Γ: V → X of the type G such that
∂Γ = φ. We put

mpn(G,φ) = inf
Γ∈[G,φ]

d(Γ)

and we call this value the length of minimal parametric network. If there exists a network
Γ ∈ [G,φ] such that d(Γ) = mpn(G,φ), then Γ is called a minimal parametric network
of the type G with the boundary φ.

Assertion 5.1 Let X = (X, d) be an arbitrary metric space and M be a finite subset of
X. Then

smt(M) = inf
{
mpn(G,φ) | φ(∂G) = M

}
,

where the infimum is taken over all connected graphs G with a boundary ∂G and all
mappings φ : ∂G → X with φ(∂G) = M .

Thus, as in the case of the plane, the problem of calculating the length of the shortest
network is reduced to investigation of minimal parametric networks.

Let M = (M,ρ) be a finite metric space and G = (V,E) be an arbitrary connected
graph connecting M . In this case we always assume that the boundary of such G is fixed
and equal to M . By Ω(M, G) we denote the set of all weight functions ω : E → R such
that (G,ω) is a filling of the space M. We put

mpf(M, G) = inf
ω∈Ω(M,G)

ω(G)

and we call this value the weight of minimal parametric filling of the type G for the space
M. If there exists a weight function ω ∈ Ω(M, G) such that ω(G) = mpf(M, G), then
(G,ω) is called a minimal parametric filling of the type G for the space M.

Assertion 5.2 Let M = (M,ρ) be a finite metric space. Then

mf(M) = inf
{
mpf(M, G)

}
,

where the infimum is taken over all connected graphs G joining M .

It is not difficult to show that to investigate shortest networks and minimal fillings
one can restrict the consideration to trees such that all their vertices of degree 1 and 2
belong to their boundaries. In what follows, we always assume that this condition
holds, providing the opposite is not declared.

To be more precise, we recall the following definition. We say that a tree is a binary
one if the degrees of its vertices can be 1 or 3 only, and the boundary consists just of
all the vertices of degree 1. Then each finite metric space has a binary minimal filling
(possibly, with some degenerate edges), and a non-degenerate minimal filling (whose type
is a tree and all whose vertices of degree 1 and 2 belong to its boundary in accordance
with the above agreement), see [3].

5.2 Minimal Realization

It turns out that the problem on minimal filling can be reduced to Steiner problem in
special metric spaces and for special boundaries.

Consider a finite set M = {p1, . . . , pn}, and let M = (M,ρ) be a metric space. We
put ρij = ρ(pi, pj). By Rn

∞ we denote the n-dimensional arithmetic space with the norm∥∥(v1, . . . , vn)∥∥∞ = max
{
|v1|, . . . , |vn|

}
,

and by ρ∞ the metric on Rn
∞ generated by ∥ · ∥∞, i.e., ρ∞(v, w) = ∥w − v∥∞. Let us

define a mapping φM : M → Rn
∞ as follows:

φM(pi) = p̄i = (ρi1, . . . , ρin).
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Assertion 5.3 The mapping φM is an isometry with its image.

Proof. This easily follows from the triangle inequality. Indeed,∥∥p̄i − p̄j
∥∥ = max

k
|ρik − ρjk| ≥ ρij ,

because the value ρij stands at the ith and jth places of the vector p̄i− p̄j . On the other
hand, ρij ≥ ρik −ρjk for any k, due to the triangle inequality, hence

∥∥p̄i− p̄j
∥∥ ≤ ρij , and

Assertion is proved.

The mapping φM is called the Kuratowski isometry.
Let G = (G,ω) be a filling of a space M = (M,ρ), where G = (V,E), and dω be the

pseudo-metric on V generated by the weight function ω. Denote by EM the edges set of
the complete graph on M and put Ḡ = (V, Ē = E ∪ EM ). Let ω̄ be the weight function
on Ē coinciding with metric ρ on EM and with ω on Ē \EM . Recall that dω̄ denotes the
pseudo-metric on V generated by ω̄.

We define the network ΓG : V → Rn
∞ of the type G as follows:

ΓG(v) =
(
dω̄(v, p1), . . . , dω̄(v, pn)

)
.

This network is called the Kuratowski network for the filling G.

Assertion 5.4 We have ∂ΓG = φM.

Proof. This easily follows from the filling definition. Indeed, the mapping ∂ΓG is defined
on the set M only. By definition,

ΓG(pi) =
(
dω̄(pi, p1), . . . , dω̄(pi, pn)

)
,

hence it suffices to show that dω̄(pi, pk) = ρik for any k. The vertices pi and pk are joined
by the edge pipk of the weight ρik in the graph Ḡ, and the weight of any other path in
G connecting pi and pk is more than or equal to ρik, because G is a filling. Assertion is
proved.

For any network Γ in a metric space (X, d) by ωΓ we denote the weight function on
G induced by the network Γ, i.e., ωΓ(vw) = d

(
Γ(v),Γ(w)

)
.

Corollary 5.5 Let G = (G,ω) be a minimal parametric filling of a metric space (M,ρ)
and Γ = ΓG be the corresponding Kuratowski network. Then ω = ωΓ.

Let Γ be a network in a metric space X , let G be its parameterizing graph, and
H = (H,ω) be a weighted graph. We say that Γ and H are isometric, if there exists an
isomorphism of the weighted graphs H and G = (G,ωΓ).

Corollary 5.5 and the existence of minimal parametric and shortest networks in a
finite-dimensional normed space [1] imply the following result.

Corollary 5.6 Let M = (M,ρ) be a metric space consisting of n points, and φM : M →
Rn

∞ be the Kuratowski isometry. For any graph G joining M there exists a minimal
parametric filling of the type G of the space M. Each minimal parametric filling of
the type G of the space M is isometric to the corresponding Kuratowski network, which
is, in this case, a minimal parametric network of the type G with the boundary φM.
Conversely, each minimal parametric network of the type G on φM(M) is isometric to
some minimal parametric filling of the type G of the space M.

Corollary 5.7 Let M = (M,ρ) be a metric space consisting of n points, and φM : M →
Rn

∞ be the Kuratowski isometry. Then there exists a minimal filling G for M, and the
corresponding Kuratowski network ΓG is a shortest network in the space Rn

∞ joining the
set φM(M). Conversely, each shortest network on φM(M) is isometric to some minimal
filling of the space M.
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5.3 Minimal Parametric Fillings and Linear Programming

Let M = (M,ρ) be a finite metric space connected by a (connected) graph G = (V,E).
As above, by Ω(M, G) we denote the set consisting of all the weight functions ω : E → R+

such that G = (G,ω) is a filling of M, and by Ωm(M, G) we denote its subset consisting
of the weight functions such that G is a minimal parametric filling of M.

Assertion 5.8 The set Ω(M, G) is closed and convex in the linear space RE of all the
functions on E, and Ωm(M, G) ⊂ Ω(M, G) is a nonempty convex compact.

Proof. It is easy to see, that the set Ω(M, G) ⊂ RE is determined by the linear in-
equalities of two types: ω(e) ≥ 0, e ∈ E, and

∑
e∈γpq

ω(e) ≥ ρ(p, q), where γpq stands
for the unique path in the tree G connecting the boundary vertices p and q. Therefore,
Ω(M, G) is a convex closed polyhedral subset of RE that is equal to the intersection
of the corresponding closed half-spaces. The weight functions of minimal parametric
fillings correspond to minima points of the linear function

∑
e∈E ω(e) restricted to the

set Ω(M, G). Thus, the problem of minimal parametric filling finding is a linear pro-
gramming problem, and the set Ωm(M, G) of all minima points is a nonempty convex
compact polyhedron (the boundedness and, hence, compactness of this set follows from
increasing of the objective function with respect to each its variable).

5.4 Generalized Fillings

Investigating the fillings of metric spaces, it turns out to be convenient to expand the
class of weighted trees under consideration permitting arbitrary weights of the edges (not
only non-negative). The corresponding objects are called generalized fillings, minimal
generalized fillings andminimal parametric generalized fillings. Their weights for a metric
space M and a tree G are denoted by mf−(M) and mpf−(M, G), respectively.

For any finite metric space M = (M,ρ) and a tree G connecting M , the next evident
inequality is valid: mpf−(M, G) ≤ mpf(M, G). And it is not difficult to construct
an example, when this inequality becomes strict, see Figure 22. However, for minimal
generalized fillings the following result holds, see [25].

Theorem 5.9 (Ivanov, Ovsyannikov, Strelkova, Tuzhilin) For an arbitrary finite
metric space M, the set of all its minimal generalized fillings contains its minimal filling,
i.e. a generalized minimal filling with nonnegative weight function. Hence, mf−(M) =
mf(M).

5.5 Formula for the Weight of Minimal Filling

Let M = (M,ρ) be a finite metric space, and G be a tree connecting M . Choose an
arbitrary embedding G′ of the tree G into the plane. Consider a walk around the tree
G′. We draw the points of M consecutive with respect to this walk as a consecutive
points of the circle S1. Notice that each vertex p from M appears deg p times. For
each vertex p ∈ M of degree more than 1, we choose just one arbitrary point from the
corresponding points of the circle. So, we construct an injection ν : M → S1. Define
a cyclic permutation π as follows: π(p) = q, where ν(q) follows after ν(p) on the circle
S1. We say that π is generated by the embedding G′ (this procedure is not unique due to
different possible choices of ν). Each π generated in this manner is called a tour of M
with respect to G. The set of all tours on M with respect to G is denoted by O(M,G).
For each tour π ∈ O(M,G) we put

p(M, G, π) =
1

2

∑
x∈M

ρ
(
x, π(x)

)
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Figure 22: Minimal parametric filling (left) and minimal generalized parametric filling
(right) of the vertex set of the plane rectangle with sides 3 and 4. The type is the same:
the moustaches connects the diagonal pairs of the vertices. The interior edge has to be
zero in the case of the filling and can be negative in the case of the generalized filling.
Here 9 = mpf−(M, G) < mpf(M, G) = 10.

and we call this value by the half-perimeter of the space M with respect to the tour π.
The minimal value of p(M, G, π) over all π ∈ O(M,G) for all possible G (in fact, over
all possible cyclic permutations π on M) is called the half-perimeter of the space M.

A. Ivanov and A. Tuzhilin proposed the following hypothesis.

Conjecture 5.10 For an arbitrary metric space M = (M,ρ) the following formula is
valid

mf(M) = min
G

max
π∈O(M,G)

p(M, G, π),

where minimum is taken over all binary trees G connecting M .

A.Yu. Eremin [26] constructed a counter-example to the Conjecture 5.10 and showed
that if one changes the concept of tour by the one of multitour, introduced by him, then
the Conjecture 5.10 holds.

To define the multitours, let us consider the graph in which every edge of G is taken
with the multiplicity 2k, k ≥ 1. The resulting graph possesses an Euler cycle consisting
of irreducible boundary paths — the ones which do not contain properly other boundary
paths. This Euler cycle generates a bijection π : X → X, where X = ⊔k

i=1M , which is
called multitour of M with respect to G, see an example in Figure 23. The set of all
multitours on M with respect to G is denoted by Oµ(M,G).

Let M = (M,ρ) be a finite metric space, and G be a tree connecting M . As in the
case of tours, for each multitour π ∈ Oµ(M,G) we put

p(M, G, π) =
1

2k

∑
x∈X

ρ
(
x, π(x)

)
.

Theorem 5.11 (A.Yu. Eremin) For an arbitrary finite metric space M = (M,ρ) and
an arbitrary tree G joining M , the weight of minimal parametric generalized filling can
be calculated as follows

mpf−(M, G) = max
{
p(M, G, π) | π ∈ Oµ(M,G)

}
.

The weight of minimal filling can be calculated as follows

mf(M) = mf−(M) = min
G

max
{
p(M, G, π) | π ∈ Oµ(M,G)

}
,

where minimum is taken over all binary trees G connecting M .
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Figure 23: A part of a moultitour with multiplicity 2 (left), and the irreducible boundary
paths the multitour consists from (right). The multitour starts as a green polygonal line
and becomes blue when multiplicity of edges becomes more than 2.

5.6 Minimal Fillings for Generic Metric Spaces

Theorem 5.11 gives an opportunity to get several interesting corollaries. To formulate
one of them, we need to define what is a “generic” metric space. Notice that the set of
all metric spaces consisting of n points can be naturally identified with a convex cone in
Rn(n−1)/2 (it suffices to enumerate the set of all two-elements subsets of these spaces and
assign to each such space the vector of the distances between the pairs of points). This
representation gives us an opportunity to speak about topological properties of families
of metric spaces consisting of a fixed number of points.

We say, that some property holds for a generic metric space, if for any n this property
is valid for an everywhere dense set of n-point metric spaces.

The following result can be found in [26].

Corollary 5.12 (A.Yu. Eremin) Each general finite metric space has a minimal fill-
ing which is a nondegenerate binary tree.

5.7 Additive Spaces and Minimal Fillings

The additive spaces are very popular in bioinformatics, playing an important role in
evolution theory and, more general, in an hierarchy modeling. Recall that a finite metric
space M = (M,ρ) is called additive, if M can be joined by a weighted tree G = (G,ω)
such that ρ coincides with the restriction of dω onto M . The tree G in this case is called
a generating tree for the space M.

Not any metric space is additive. An additivity criterion can be stated in terms of
so-called 4 points rule: for any four points pi, pj , pk, pl, the values ρ(pi, pj) + ρ(pk, pl),
ρ(pi, pk) + ρ(pj , pl), ρ(pi, pl) + ρ(pj , pk) are the lengths of sides of an isosceles triangle
whose base does not exceed its other sides.

Theorem 5.13 ([28], [29], [30], [31]) A metric space is additive, if and only if it sat-
isfies the 4 points rule. In the class of non-degenerate weighted trees, the generating tree
of an additive metric space is unique.

The next criterion solves completely the minimal filling problem for additive metric
spaces.

Theorem 5.14 Minimal fillings of an additive metric space are exactly its generating
trees.
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The next additivity criterion is obtained by O.V. Rubleva, a student of Mechanical
and Mathematical Faculty of Moscow State University, see [32].

Assertion 5.15 (O.V. Rubleva) The weight of a minimal filling of a finite metric
space is equal to the half-perimeter of this space, if and only if this space is additive.

In the scope of Assertion 5.15, we conjectured that if there exists a tree connecting a
metric space such that all the corresponding half-perimeters are equal to each other, then
the space is additive. It turns out that it is not true. Z.N. Ovsyannikov suggested to
consider a wider class of spaces, so called pseudo-additive spaces, for which our conjecture
becomes true, see [27].

A finite metric space M = (M,ρ) is said to be pseudo-additive, if the metric ρ
coincides with dω for a generalized weighted tree (G,ω) (which is also called generat-
ing), where the weight function ω can take arbitrary (not necessary nonnegative) val-
ues. Z.N. Ovsyannikov shows that these spaces can be described in terms of so-called
weak 4-points rule: for any four points pi, pj , pk, pl, the values ρ(pi, pj) + ρ(pk, pl),
ρ(pi, pk) + ρ(pj , pl), ρ(pi, pl) + ρ(pj , pk) are the lengths of sides of an isosceles triangle.
The generating tree is also unique in the class of non-degenerate trees. Moreover, the
following result is valid, see [27].

Theorem 5.16 (Z.N. Ovsyannikov) Let M = (M,ρ) be a finite metric space. Then
the following statements are equivalent.

• There exist a tree G such that M coincides with the set of degree 1 vertices of G
and all the half-perimeters p(M,G, π) of M corresponding to the tours around G
are equal to each other.

• The space M is pseudo-additive.

Moreover, the three G in this case is a generating tree for the space M.

It would be interesting to see, what role these pseudo-additive spaces could play in
applications.

5.8 Examples of Minimal Fillings

Now let us give several examples of minimal filling and demonstrate how to use the
technique elaborated above.

5.8.1 Triangle

Let M = (M,ρ) consist of three points p1, p2, and p3. Put ρij = ρ(pi, pj). Consider the
tree G = (V,E) with V = M ∪ {v} and E = {vpi}3i=1. Define the weight function ω on
E by the following formula:

ω(ei) =
ρij + ρik − ρjk

2
,

where {i, j, k} = {1, 2, 3}. Notice that dω restricted onto M coincides with ρ. Therefore,
M is an additive space, G = (G,ω) is a generating tree for M, and, due to Theorem 5.14,
G is a minimal filling of M.

Recall that the value (ρij + ρik − ρjk)/2 is called by the Gromov product (pj , pk)pi of
the points pj and pk of the space M with respect to the point pi, see [33].
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5.8.2 Regular Simplex

Let all the distances in the metric space M are the same and are equal to d, i.e. M is
a regular simplex. Then the weighted tree G = (G,ω), G = (V,E), with the vertex set
V = M ∪ {v} and edges vm, m ∈ M , of the weight d/2 is generating for M. Therefore,
the spaceM is additive, and, due to Theorem 5.14, G is its unique nondegenerate minimal
filling. If n is the number of points in M , then the weight of the minimal filling is equal
to dn/2.

5.8.3 Star

If a minimal filling G = (G,ω) of a space M = (M,ρ) is a star whose single interior
vertex v is joined with each point pi ∈ M , 1 ≤ i ≤ n, n ≥ 3, then the metric space M
is additive [3]. In this case the weights of edges can be calculated easily. Indeed, put
ei = vpi. Since a subspace of an additive space is additive itself, then we can use the
results for three-points additive space, see above. So, we have ω(ei) = (pj , pk)pi , where
pi, pj , and pk are arbitrary distinct boundary vertices.

5.8.4 Mustaches of Degree more than 2

Let G = (V,E) be an arbitrary tree, and v ∈ V be an interior vertex of degree (k+1) ≥ 3
adjacent with k vertices w1, . . . , wk from ∂G. Then the set of the vertices {w1, . . . , wk},
and also the set of the edges {vw1, . . . , vwk}, are referred as mustaches. The number k is
called by the degree, and the vertex v is called by the common vertex of the mustaches.
An edge incident to v and not belonging to {vw1, . . . , vwk} is called the root edge of the
mustaches under consideration.

As it is shown in [3], any mustaches of a minimal filling of a metric space forms an
additive subspace. If the degree of such mustaches is more than 2, then we can calculate
the weights of all the edges containing in the mustaches just in the same way as in the
case of a star.

5.8.5 Four-Points Spaces

Here we give a complete description of minimal fillings for four-points spaces, see details
in [3].

Proposition 5.17 Let M = {p1, p2, p3, p4}, and ρ be an arbitrary metric on M . Put
ρij = ρ(pi, pj). Then the weight of a minimal filling G = (G,ω) of the space M = (M,ρ)
is given by the following formula

1

2

(
min{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23}+max{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23}

)
.

If the minimum in this formula is equal to ρij + ρrs, then the type of minimal filling is
the binary tree with the mustaches {pi, pj} and {pr, ps}.

We apply the obtained result to the vertex set of a planar convex quadrangle.

Corollary 5.18 Let M be the vertex set of a convex quadrangle p1p2p3p4 ⊂ R2 and
ρ(pi, pj) = ∥pi − pj∥. The weight of a minimal filling of the space (M,ρ) is equal to

1

2
min

(
ρ12 + ρ34, ρ14 + ρ23

)
+

ρ13 + ρ24
2

.

The topology of minimal filling is a binary tree with mustaches corresponding to opposite
sides of the less total length.
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5.9 Ratios

The Steiner ratio is discussed in Section 4. Here we define some other ratios based on
minimal fillings, which could be more available for calculating, and which could be useful
to calculate the Steiner ratio, as we hope.

5.10 Steiner–Gromov Ratio

For convenience, the sets consisting of more than a single point are referred as nontrivial.
Let X = (X, ρ) be an arbitrary metric space, and let M ⊂ X be some finite subset.
Recall that by mst(M,ρ) we denote the length of minimal spanning tree of the space
(M,ρ). Further, for nontrivial M , we define the value

sgr(M) = mf(M,ρ)/mst(M,ρ)

and call it the Steiner–Gromov ratio of the subset M . The value inf sgr(M), where the
infimum is taken over all nontrivial finite subsets of X , consisting of at most n vertices is
denoted by sgrn(X ) and is called the degree n Steiner–Gromov ratio of the space X . At
last, the value inf sgrn(X ), where the infimum is taken over all positive integers n > 1 is
called the Steiner–Gromov ratio of the space X and is denoted by sgr(X ), or by sgr(X),
if it is clear what particular metric on X is considered. Notice that sgrn(X ) is a non-
increasing function on n. Besides, it is easy to see that sgr2(X ) = 1 and sgr3(X ) = 3/4
for any nontrivial metric space X .

Assertion 5.19 The Steiner–Gromov ratio of an arbitrary metric space is not less than
1/2. There exist metric spaces whose Steiner–Gromov ratio equals to 1/2.

Recently, A. Pakhomova, a student of Mechanical and Mathematical Faculty of
Moscow State University, obtained an exact general estimate for the degree n Steiner–
Gromov ratio, see [35].

Assertion 5.20 (A. Pakhomova) For any metric space X the estimate

sgrn(X ) ≥ n

2n− 2

is valid. Moreover, this estimate is exact, i.e. for any n ≥ 3 there exists a metric space
Xn such that sgrn(Xn) = n/(2n− 2).

Also recently, Z. Ovsyannikov [36] investigated the metric space of all compact subsets
of Euclidean plane endowed with Hausdorff metric.

Assertion 5.21 (Z. Ovsyannikov) The Steiner ratio and the Steiner–Gromov ratio of
the metric space of all compact subsets of Euclidean plane endowed with Hausdorff metric
are equal to 1/2.

5.11 Steiner Subratio

Let X = (X, ρ) be an arbitrary metric space, and let M ⊂ X be some its finite subset.
Recall that by smt(M,ρ) we denote the length of Steiner minimal tree joiningM . Further,
for nontrivial subsets M , we define the value

ssr(M) = mf(M,ρ)/ smt(M,ρ)

and call it by the Steiner subratio of the set M . The value inf ssr(M), where infimum is
taken over all nontrivial finite subsets of X consisting of at most n > 1 points, is denoted

30



by ssrn(X ) and is called the degree n Steiner subratio of the space X . At last, the value
inf ssrn(X ), where the infimum is taken over all positive integers n > 1, is called the
Steiner subratio of the space X and is denoted by ssr(X ), or by ssr(X), if it is clear what
particular metric on X is considered. Notice that ssrn(X ) is a nonincreasing function on
n. Besides, it is easy to see that ssr2(X ) = 1 for any nontrivial metric space X .

Proposition 5.22 ssr3(Rn) =
√
3/2.

The next result is obtained by E. I. Filonenko, a student of Mechanical and Mathe-
matical Department of Moscow State University, see [34].

Proposition 5.23 (E. I. Filonenko) ssr4(R2) =
√
3/2.

Conjecture 5.24 The Steiner subratio of the Euclidean plane is achieved at the regular
triangle and, hence, is equal to

√
3/2.

Recently, A. Pakhomova obtained an exact general estimate foe the degree n Steiner
subratio, see [35].

Proposition 5.25 (A. Pakhomova) For any metric space {X} the estimate

ssrn(X ) ≥ n

2n− 2

is valid. Moreover, this estimate is exact, i.e. for any n ≥ 3 there exists a metric space
Xn such that ssrn(Xn) = n/(2n− 2).

Also recently, Z. Ovsyannikov [36] investigated the metric space of all compact subsets
of Euclidean plane endowed with Hausdorff metric.

Proposition 5.26 (Z. Ovsyannikov) Let C be the metric space of all compact subsets
of Euclidean plane endowed with Hausdorff metric. Then ssr3(C) = 3/4 and ssr4(C) =
2/3.

References

[1] A.O. Ivanov, and A.A. Tuzhilin. Branching Solutions to One-Dimensional Varia-
tional Problems. Singapore, New Jersey, London, Hong Kong, 2001. 342 p.

[2] A.O. Ivanov, and A.A. Tuzhilin. Extreme Networks Theory. Moscow, Izhevsk, 2003.
406 p. [In Russian.]

[3] A.O. Ivanov, and A.A. Tuzhilin. One-dimensional Gromov minimal filling problem.
// Sbornik: Mathematics. 2012. V. 203, No 5. P. 677-726 [Matem. sb. 2012. T. 203,
No 5. S. 65-118].

[4] V.A. Emelichev, at al. Lections on Graph Theory. Moscow, 1990. 384 p. [In Russian.]

[5] B. Chazelle. The soft heap: an approximate priority queue with optimal error rate. //
Journal of the Association for Computing Machinery. 2000. V. 47, No 6. P. 1012-1027.

[6] A.O. Ivanov and A.A. Tuzhilin. The geometry of inner spanning trees for planar
polygons. // Izvestiya: Mathematics. 2012. V. 76, No 2. P. 215–244 [Izv. RAN. Ser.
Matem. 2012. T. 76, No 2. S. 3-36].

31



[7] A.O. Ivanov and A.A. Tuzhilin. The Steiner problem in the plane or in plane minimal
nets.// Mathematics of the USSR-Sbornik. 1993. V. 74, No 2. P. 555–582 [Matem.
Sb. 1991. T. 182, No 12. S. 1813-1844].

[8] F.K. Hwang. A linear time algorithm for full Steiner trees. // Oper. Res. Letter.
1986. V. 5. P. 235–237.

[9] Z.A. Melzak. On the problem of Steiner. // Canad. Math. Bull. 1960. V. 4. P. 143–
148.

[10] A.O. Ivanov and A.A. Tuzhilin. Solution of the Steiner problem for convex bound-
aries. // Russian Mathematical Surveys. 1990. V. 45, No 2. P. 214-215 [Uspekhi
Matem. Nauk. 1990. T. 45, No 2(272). S. 207-208].

[11] E.N. Gilbert and H..O. Pollak. “Steiner minimaltrees.” // SIAM J. Appl. Math.
1968. V. 16, No 1. P. 1–29.

[12] D. Cieslik. The Steiner ratio. Springer, 2001. 256 p.

[13] D.Z. Du, F.K. Hwang. The Steiner ratio conjecture of Gilbert–Pollak is true. //
Proc. Nat. Acad. Sci. 1990. V. 87. P. 9464–9466.

[14] D.Z. Du, F.K. Hwang. A proof of Gilbert–Pollak Conjecture on the Steiner ratio.
// Algorithmica. 1992. V. 7. P. 121–135.

[15] A.O. Ivanov and A.A. Tuzhilin. The Steiner Ratio GilbertPollak Conjecture Is Still
Open. Clarification Statement. // Algorithmica. 2012. V. 62. No 1–2. P. 630–632.

[16] P.O. de Wet. Geometric Steiner Minimal Trees. PhD Thesis. UNISA, Pretoria, 2008.

[17] D.Z. Du and W.D. Smith. Disproofs of Generailzed Gilbert–Pollack conjecture on
the Steiner ratio in three and more dimensions. // Combin. Theory. 1996. V. 74.
Ser. A. P. 115–130.

[18] W.D. Smith and J.M. Smith.On the Steiner ratio in 3-Space. // J. of Comb. Theory.
1995. V. 65. Ser. A. P. 301–322.

[19] R.L. Graham and F.K. Hwang. A remark on Steiner minimal trees. // Bull. of the
Inst. of Math. Ac. Sinica. 1976. V. 4. P. 177–182.

[20] N. Innami and B.H. Kim. Steiner ratio for Hyperbolic surfaces. // Proc. Japan
Acad. 2006. V. 82. Ser. A. No 6. P. 77–79.

[21] D. Cieslik, A. Ivanov and A. Tuzhilin. Steiner Ratio for Manifolds. // Mat. Zametki.
2003. V. 74. No 3. P. 387-395 [Mathematical Notes. 2003. V. 74. No 3. P. 367-374].

[22] M. Gromov. Filling Riemannian manifolds. // J. Diff. Geom. 1983. V. 18. No 1.
P. 1–147.

[23] A.O. Ivanov, A.A. Tuzhilin. Steiner Ratio. The State of the Art. // Matemat.
Voprosy Kibern. 2002. V. 11. P. 27–48 [In Russian].

[24] PA. Borodin. An example of nonexistence of a steiner point in a Banach space. //
Matem. Zametki. 2010. V. 87. No 4. P. 514–518 [Mathematical Notes. 2010. V. 87.
No 4. P. 485-488].

[25] A.O. Ivanov, Z.N. Ovsyannikov, N. P. Strelkova, A.A. Tuzhilin. One-dimensional
minimal fillings with edges of negative weight. // Vestnik MGU, ser. Mat., Mekh.
2012. No 5. P. 3–8.

32



[26] A.Yu. Eremin. Formula calculating the weight of minimal filling. // Matem.
Sbornik. 2012. [To appear].

[27] Z.N. Ovsyannikov. Pseudo-additive metric spaces and minimal fillings. // Vestnik
MGU. 2013. [To appear].

[28] K.A. Zareckii. Constructing a tree on the basis of a set of distances between the
hanging vertices. // Uspehi Mat. Nauk. 1965. V. 20. No 6. P. 90-92. [In Russian].

[29] J.M. S. Simões-Pereira. A note on the tree realizability of a distance matrix. // J.
Combinatorial Th. 1969. V. 6. P. 303–310.

[30] E.A. Smolenskij. About a Linear Denotation of Graphs. // J. vych. matem. i matem.
phys. 1962. V. 2. No 2. P. 371–372. [In Russian].

[31] S. L. Hakimi, S. S. Yau. Distane matrix of a graph and its realizability. // Quart.
Appl. Math. 1975. V. 12. P. 305–317.

[32] O.V. Rubleva. Additivity Criterion for finite metric spaces and minimal fillings. //
Vestnik MGU, ser. matem., mekh. 2012. No 2. P. 8–11.

[33] M. Gromov. Hyperbolic groups. // in book: S.M. Gersten, ed. Essays in Group
Theory. 1987. Springer.

[34] E. I. Filonenko. Degree 4 Steiner subratio of Euclidean plane. // Vestnik MGU, ser.
matem., mekh. 2013. To appear.

[35] A. S. Pakhomova. Estimates for Steiner–Gromov ratio and Steiner subratio. // Vest-
nik MGU, ser. matem., mekh. 2013. To appear.

[36] Z.N. Ovsyannikov. Steiner ratio, Steiner–Gromov ratio and Steiner subratio for the
metric space of all compact subsets of the Euclidean space with Hausdorff metric. //
Vestnik MGU, ser. matem., mekh. 2013. To appear.

33


