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History: Thomas Harriot (1585)

Sir Walter Raleigh’s problem:

To develop a formula that would allow to know how many cannonballs can
be in a given stack simply by looking at the shape of the pile.

Harriot discovered that for sufficiently large pile the highest density gives
the so-called face centered cubic (FCC) packing. For the FCC packing the
density is:

π

3
√

2
≈ 0.74048
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Face Centered Cubic (FCC) packing
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History: Johannes Kepler (1611)

J. Kepler. The Six-Cornered Snowflake, 1611
In this little booklet Kepler examined several questions:
– Why honeycomb are formed as hexagon?
– Why the seeds of pomegranates are shaped as dodecahedra?
– Why the petals of flowers are most often grouped in fives?
– Why snowflakes are shaped as they are?

The Kepler Conjecture (1611):
The highest density of a packing of 3-space by equal spheres = 0.74048. . .

Hilbert’s Problem 18:3 (1900):
“How can one arrange an infinite number of equal solids, of given form,
most densely in space, e.g., spheres with given radii. . . How can one fit
them together in a manner such that the ratio of the filled space to the
unfilled space be as great as possible?”

Oleg R. Musin Sphere packings in low dimensions MFTI, December 20, 2019 4 / 51



History: Gregory vs. Newton (1694)

On May 4, 1694 David Gregory paid
a visit to Cambridge for several days
nonstop discussions about scientific
matters with the leading scientist of
the day Isaac Newton. Gregory mak-
ing notices of everything that great
master uttered. One of the points dis-
cussed, number 13, in Gregory’s mem-
orandum was 13 spheres problem.
Newton: k(3) = 12 vs.
Gregory: k(3) = 13 (The main Gre-
gory argument was: area of the unit
sphere ≈ 14.9× area of a spherical
cap of radius 30◦.)

The Newton – Gregory
problem = The thirteen

spheres problem
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The most symmetrical configuration, 12 billiard balls around another, is
achieved if the 12 balls are placed at positions corresponding to the
vertices of a regular icosahedron.
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History: Lattice sphere packing

Carl Friedrich Gauss (1831): The FCC packing is the unique densest
lattice sphere packing for dimension three.

Hérmit (1850,1874); Lebesgue (1856); Selling (1874);
Minkowski (1883), . . . , Mahler (1992).

Korkine & Zolotareff: n = 4 (1872), n = 5 (1877).

Blichfeldt (1925, 1929, 1935): n = 6, 7, 8.

Cohn & Kumar (2009): n = 24.
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History: Packing in the plane

Axel Thue provided the first proof that this was optimal in 1890, showing
that
The hexagonal lattice is the densest of all possible circle packings, both
regular and irregular.
However, his proof was considered by some to be incomplete. The first
rigorous proof is attributed to László Fejes Tóth in 1940.
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History: Hales (1998) and Viazovska (2016)

In 1998, Thomas Callister Hales, following the approach suggested by
László Fejes Tóth in 1953, announced a proof of the Kepler conjecture.
Hales’ proof is a proof by exhaustion involving checking of many individual
cases using complex computer calculations. On 10 August 2014 Hales
announced the completion of a formal proof using automated proof
checking, removing any doubt.

In 2016, Maryna Viazovska announced a proof that the E8 lattice
provides the optimal packing in eight-dimensional space, and soon
afterwards she and a group of collaborators (Cohn, Kumar, Miller,
Radchenko) announced a similar proof that the Leech lattice is optimal in
24 dimensions.
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History: Schütte & v. d. Waerden (1953)

Reinhold Hoppe thought he had solved the thirteen spheres problem in
1874. However, there was a mistake — an analysis of this mistake was
published by Thomas Hales: The status of the Kepler conjecture,
Mathematical Intelligencer, 16 (1994), 47-58.
Finally, the thirteen spheres problem was solved by Kurt Schütte and
Baartel Leendert van der Waerden in 1953. They had proved:

k(3) = 12.
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It’s not the end of the story about 13 spheres ...

John Leech(1956) : two-page sketch of a proof k(3) = 12.
. . . It also misses one of the old chapters, about the “problem of the
thirteen spheres,” whose turned out to need details that we couldn’t
complete in a way that would make it brief and elegant.
Proofs from THE BOOK, M. Aigner, G. Ziegler, 2nd edition.
W. –Y. Hsiang (2001);
H. Maehara (2001, 2007);
K. Böröczky (2003);
K. Anstreicher (2004);
M. (2006)
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k(4) is not less than 24

n = 4: There are 24 vectors with two zero components and two
components equal to ±1; they all have length

√
2 and a minimum distance

of
√

2. Properly rescaled (that is, multiplied by
√

2), they yield the centers
for a kissing configuration of unit spheres and imply that k(4) ≥ 24. The
convex hull of the 24 points yields a famous 4-dimensional regular
polytope, the “24-cell”, discovered in 1842 by Ludwig Schläfli. Its facets
are 24 regular octahedra.
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The kissing problem in four dimensions

O.R. Musin, The kissing number in four dimensions // Annals of
Math. 168 (2008), 1-32.

The proof relies on a combination of Delsarte’s method and the irreducible
contact graph method.
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The kissing problem in four dimensions

f4(t) = 53.76t9−107.52t7+70.56t5+16.38t4−9.83t3−4.12t2+0.434t−0.016

Lemma

Let P = {v1, . . . , vm} be unit vectors in R4 (i.e. points on the unit sphere
S3). Then

S(P) =
∑
k,`

f4(vk · v`) ≥ m2.

Lemma

Let P = {v1, . . . , vm} be a kissing arrangement on the unit sphere S3 (i.e.
vk · v` ≤ 1

2). Then

S(P) =
∑
k,`

f4(vk · v`) < 25m.
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The graph of y = f4(t)

Oleg R. Musin Sphere packings in low dimensions MFTI, December 20, 2019 18 / 51



Theorem

k(4) = 24

Proof.

Suppose P is a kissing arrangement on S3 with m = k(4). Then P
satisfies the assumptions in the lemmas. Therefore,

25m > S(P) ≥ m2

From this m < 25 follows, i.e. m ≤ 24. From the other side: m ≥ 24,
showing that

m = k(4) = 24
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Status 2019: Kissing numbers

The only exact values of kissing numbers known:

n lattice regular polytope

k(1) = 2 A1

k(2) = 6 A2 hexagon
k(3) = 12 H3 icosahedron
k(4) = 24 ?D4 ?24-cell
k(8) = 240 E8

k(24) = 19650 Λ24

In 1979: V. I. Levenshtein and independently A. Odlyzko and N.J.A.
Sloane using Delsarte’s method have proved that k(8) = 240, and
k(24) = 196560.
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Packing by spherical caps

If unit spheres kiss the unit sphere S ,
then the set of kissing points is the ar-
rangement on S such that the angular
distance between any two points is at
least 60◦. Thus, the kissing number
is the maximal number of nonoverlap-
ping spherical caps of radius 30◦ on S.
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Error–correcting spherical codes

C. E. Shannon in [“A mathematical
theory of communication”,1948] pro-
posed to apply packings of the unit
spheres by spherical caps of given ra-
dius r for coding theory.

The main application of this theory is
in the design of signals for data trans-
mission and storage.
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Tammes’ problem

Tammes’ problem. How must N congruent non-overlapping spherical
caps be packed on the surface of a unit sphere so that the angular
diameter of spherical caps will be as great as possible
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Tammes’ problem

It is named after a Dutch botanist who posed the problem in 1930 while
studying the distribution of pores on pollen grains. [Tammes P.M.L., “On
the origin of number and arrangement of the places of exit on pollen
grains”. Diss. Groningen, 1930.]

This question is also known as the problem of the “inimical dictators”:

Where should N dictators build their palaces on a planet so as to be as far
away from each other as possible?
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The Tammes problem

Let X be a finite subset of S2. Denote

ψ(X ) := min
x ,y∈X

{dist(x , y)}, where x 6= y .

Then X is a spherical ψ(X )-code.

Denote by dN the largest angular separation ψ(X ) with |X | = N that can
be attained in S2, i.e.

dN := max
X⊂S2

{ψ(X )}, where |X | = N.
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The Tammes problem

L. Fejes Tóth (1943): N = 3, 4, 6, 12,∞

K. Schütte, and B. L. van der Waerden (1951): N = 5, 7, 8, 9

L. Danzer (1963): N = 10, 11

R. M. Robinson (1961): N = 24

M. & Tarasov: N = 13 and N = 14
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N dN
4 109.4712206
5 90.0000000
6 90.0000000
7 77.8695421
8 74.8584922
9 70.5287794

10 66.1468220
11 63.4349488
12 63.4349488
13 57.1367031
14 55.6705700

....... ..................
15 53.6578501
16 52.2443957
17 51.0903285
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Contact graphs

The contact graph CG(X ) is the graph with vertices in X and edges
(x , y), x , y ∈ X such that

dist(x , y) = ψ(X )
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N=13

The contact graph Γ13 :=CG(P13) with ψ(P13) ≈ 57.1367◦
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Tammes’ problem for N = 13

The value d = ψ(P13) can be found analytically.

2 tan

(
3π

8
− a

4

)
=

1− 2 cos a

cos2 a

d = cos−1
(

cos a

1− cos a

)
.

Thus, we have a ≈ 69.4051◦ and d ≈ 57.1367◦.

Oleg R. Musin Sphere packings in low dimensions MFTI, December 20, 2019 30 / 51



Tammes’ problem for N = 13

Theorem (M. & A. Tarasov). The arrangement of 13 points P13 in S2 is
the best possible, the maximal arrangement is unique up to isometry, and
d13 = ψ(P13).
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Tammes’ problem for N = 14

Theorem (M. & A. Tarasov) The arrangement of 14 points P14 in S2 is
the best possible and the maximal arrangement is unique up to isometry.
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Figure: An arrangement of 14 points P14 and its contact graph Γ14 with
ψ(P14) ≈ 55.67057◦.
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Packing spheres by spheres: Methods

I. Area inequalities. L. Fejes Tóth (1943); for d > 3 Coxeter (1963) and
Böröczky (1978)

II. Distance and irreducible graphs. Schütte, and van der Waerden (1951);
Danzer (1963); Leech (1956);...

III. LP and SDP. Delsarte et al (1977); Kabatiansky and Levenshtein
(1978); Odlyzko & Sloane (1978); Bachoc and Vallentin (2008); ...
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Papers

O. R. Musin and A. S. Tarasov, The strong thirteen spheres problem,
DCG, 48 (2012) 128–141.

O. R. Musin and A. S. Tarasov, Enumeration of irreducible contact graphs
on the sphere, J. of Math Sciences, 203 (2014), 837–850

O. R. Musin and A. S. Tarasov, Extreme problems of circle packings ...,
Proc. Steklv. Inst.,288 (2015), 117–131

O. R. Musin and A. S. Tarasov, The Tammes problem for N=14,
Experimental Math., 24:4 (2015), 460–468

O. R. Musin and A. V. Nikitenko, Optimal packings of congruent circles
on a square flat torus, DCG, 55:1 (2016), 1–20.
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Properties of the maximal contact graph GN , N = 13, 14.

1 It is a planar graph with N vertices.

2 The degree of a vertex is 0,3,4, or 5.

3 All faces are polygons with m=3,4,5, or 6 vertices.

4 If there is an isolated vertex, then it lies in a hexagonal face.

5 No more than one vertex can lie in a hexagonal face.
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Proof of Theorems

The proof consists of two parts:
(I) Create the list LN of all graphs with N vertices that satisfy 1–5;
(II) Using linear approximations and linear programming remove from the
list LN all graphs that do not satisfy the geometric properties of GN
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The list L13

To create L13 we use the program plantri (Gunnar Brinkmann and
Brendan McKay). This program is the isomorph-free generator of planar
graphs, including triangulations, quadrangulations, and convex polytopes.
The program plantri generates 94,754,965 graphs in L13. Namely, L13
contains 30,829,972 graphs with triangular and quadrilateral faces;
49,665,852 with at least one pentagonal face and with triangular and
quadrilaterals; 13,489,261 with at least one hexagonal face which do not
contain isolated vertices; 769,375 graphs with one isolated vertex, 505 with
two isolated vertices, and no graphs with three or more isolated vertices.
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Square packings

Obviously, the optimal packing in the torus could not be worse than the
optimal packing in the unit square. Here are some results for the small
number of disks in the square (Schaer & Meir (1965), Schaer (1965), and
Melissen (1994)). Here d denotes the distance between the centers.
Corresponding configurations are shown in Figure 1.
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N 2 3 4 5 6 7 8 9

d ≈ 0.586 0.509 0.500 0.414 0.375 0.349 0.341 0.333

Figure: The optimal configurations for the square
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The formal statement

The problem is: for a given number N ≥ 1 of points, find the maximal
r ∈ R+ such that N circles of radius r could be put on the square flat
torus T = R2/Z2 without overlapping, or, equivalently, to find the
maximal d ∈ R+ such that there are N points on the torus with pairwise
distances not less than d (where d = 2r).
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N = 7, 8

Theorem (M. & A. Nikitenko). There are three, up to isometry or up
to a move of a free disk, optimal arrangements of 7 points in T2 which are
shown in Figures 7.1 - 7.3 where d(7) = 1

1+
√
3
≈ 0.3660.

Corollary (M. & A. Nikitenko). There is one unique, up to isometry,
optimal arrangement of 8 points in T2, which is shown in Figure 8 where
d(8) = d(7) = 1

1+
√
3
≈ 0.3660.
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Optimal packings of circles on a square flat torus: 7.1

Figure: The first optimal configurations for N=7
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Optimal packings of circles on a square flat torus: 7.2

Figure: The second optimal configurations for N=7
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Optimal packings of circles on a square flat torus: 7.3

Figure: The third optimal configurations for N=7
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Figure 8

Figure: The optimal configuration for N=8
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Furthure work: densest sphere packings in four dimensions

O. R. Musin, Towards a proof of the 24–cell conjecture // Acta Math
Hungar., 155 (2018), 184–199

O. R. Musin, An extension the semidefinite programming bound for
spherical codes, arXiv:1903.05767
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The four dimensional lattice packing D4

The checkerboard lattice Dn := {(x1, . . . , xn) ∈ Zn : x1 + . . .+ xn even}

D∗4 = D4

The Voronoi cell of D4 is the regular 24-cell

The density ∆4 = π2/16 = 0.6169...

The densest packing by unit spheres in four dimensions is
conjectured to be the D4

The center density=∆/B:
CD4 = 0.12500;
Cohn–Elkies bound = 0.13126;
de Laat – de Oliveira Filho – Vallentin = 0.130587
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The 24–cell conjecture

Consider the Voronoi decomposition of any given packing P of unit
spheres in R4. The minimal volume of any cell in the resulting Voronoi
decomposition of P is at least as large as the volume of a regular 24–cell
circumscribed to a unit sphere.

Oleg R. Musin Sphere packings in low dimensions MFTI, December 20, 2019 48 / 51



dim=4: uniqueness of the maximal kissing arrangement

LP bound [Odlyzko & Sloane; Arestov & Babenko] = 25.558...

M. (2003): k(4) < 24.865

C. Bachoc & F. Vallentin (2008): S7(4) = 24.5797...

H. D. Mittelmann & F. Vallentin (2010)
S11(4) = 24.10550859...
S12(4) = 24.09098111...
S13(4) = 24.07519774...
S14(4) = 24.06628391...

F.C. Machado & F.M. de Oliveira Filho (2018)
S15(4) = 24.062758...
S16(4) = 24.056903...
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LP and SDP bounds

N ≤ f (1)

f0

N ≤ f (1) + ĥ(n,T , f )

f0

N2 ≤ F (1, 1, 1) + 3(N − 1)B

f0

N2 ≤ F (1, 1, 1) + 3(N − 1)B + 3N ĥ(n,T , g)

f0
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Thank you

Oleg R. Musin Sphere packings in low dimensions MFTI, December 20, 2019 51 / 51


