Тема 3

Двойственность в задаче Канторовича.

Запишем задачу Канторовича в виде задачи линейного программирования из правой части формулы в теореме 2.1. Будем рассматривать ρ и π как векторы:

$$\rho^t = (\rho_{12}, \dots, \rho_{1n}, \rho_{21}, \dots, \rho_{2n}, \dots)$$
 и $\pi^t = (\pi_{12}, \dots, \pi_{1n}, \pi_{21}, \dots, \pi_{2n}, \dots)$

соответственно. Таким образом, нахождение минимума функционала Канторовича соответствует минимизации скалярного произведения $\rho^t \pi$. Чтобы получить обозначения теоремы 2.1, положим $b = \rho$ и $y = \pi$, тогда $b, y \in \mathbb{R}^{n^2}$.

Выпишем граничные условия также в терминах теоремы 2.1. Для этого в качестве c возьмем вектор-столбец из \mathbb{R}^{2n} , полученный последовательной записью векторов λ и μ , а матрицу A^t определим так. Обозначим через 0_n столбец высоты n, состоящий из одних 0, а через и 1_n такой же столбец из одних 1; пусть E_n обозначает единичную матрицу размера $n \times n$, тогда положим

$$A^{t} = \begin{pmatrix} 1_{n}^{t} & 0_{n}^{t} & \cdots & 0_{n}^{t} \\ 0_{n}^{t} & 1_{n}^{t} & \cdots & 0_{n}^{t} \\ \vdots & \vdots & \vdots & \vdots \\ 0_{n}^{t} & 0_{n}^{t} & \cdots & 1_{n}^{t} \\ E_{n} & E_{n} & \cdots & E_{n} \end{pmatrix}.$$

Легко видеть, что граничные условия имеют вид $A^ty=c$, а условие $y\geq 0$ соответствует неотрицательности элементов матрицы π . Итак, во введенных выше обозначениях двойственная задача (II) — это, в точности, транспортная задача Канторовича.

Выясним, как выглядит исходная к ней задача (I). Для этого мы представим векторстолбец $x \in \mathbb{R}^{2n}$ в виде двух последовательных векторов $\varphi, \psi \in \mathbb{R}^n, \ \varphi^t = (\varphi_1, \dots, \varphi_n), \ \psi^t = (\psi_1, \dots, \psi_n)$. Тогда в задаче (I) мы должны искать супремум скалярного произведения

$$c^{t}x = \lambda^{t}\varphi + \mu^{t}\psi = \sum_{i=1}^{n} (\lambda_{i}\varphi_{i} + \mu_{i}\psi_{i})$$

при условии $Ax \leq b$, где

$$A = \begin{pmatrix} 1_n & 0_n & \cdots & 0_n & E_n \\ 0_n & 1_n & \cdots & 0_n & E_n \\ \vdots & \vdots & \ddots & \vdots \\ 0_n & 0_n & \cdots & 1_n & E_n \end{pmatrix}.$$

Запишем это последнее условие в явном виде. Имеем $\varphi_i + \psi_j \leq \rho_{ij}$ при всех $1 \leq i,j \leq n$. Тем самым, из теорем 2.1 и 1.5 вытекает следующий результат.

Теорема 3.1. Пусть $\lambda, \mu \in \Delta(X)$ — произвольные вероятностные меры на метрическом пространстве (X, ρ) . Тогда

$$k_{\rho}(\lambda,\mu) = \sup_{\varphi,\psi \in \mathbb{R}^n} \left\{ \sum_{i} (\lambda_i \varphi_i + \mu_i \psi_i) \mid \varphi_i + \psi_j \le \rho_{ij}, 1 \le i, j \le n \right\},\,$$

причем существуют φ и ψ , удовлетворяющие описанным выше условиям, для которых $k_{\rho}(\lambda,\mu) = \sum_{i} (\lambda_{i}\varphi_{i} + \mu_{i}\psi_{i}).$

Положим

$$\Phi_{\rho} = \left\{ (\varphi, \psi) \in \mathbb{R}^n \times \mathbb{R}^n : \varphi_i + \psi_j \le \rho_{ij}, \ 1 \le i, j \le n \right\}$$
$$J_{\lambda, \mu}(\varphi, \psi) = \sum_i (\lambda_i \varphi_i + \mu_i \psi_i) = \lambda^t \varphi + \mu^t \psi.$$

Тогда, по теореме 3.1,

$$k_{\rho}(\lambda,\mu) = \sup_{(\varphi,\psi)\in\Phi_{\rho}} J_{\lambda,\mu}(\varphi,\psi).$$

Назовем пару $(\varphi, \psi) \in \Phi_{\rho}$ оптимальной для (λ, μ) , если $k_{\rho}(\lambda, \mu) = J_{\lambda, \mu}(\varphi, \psi)$.

Лемма 3.2. Для каждой пары $(\varphi, \psi) \in \Phi_{\rho}$ выполняется $\varphi \leq -\psi$.

 \mathcal{A} оказательство. Для i=j имеем $\varphi_i+\psi_j=\varphi_i+\psi_i\leq 0,$ что и требовалось. \square

Напомним, что отображение $f\colon Z\to W$ метрических пространств называется лип-шицевым, если существует $L\ge 0$ такое, что $|f(z)f(z')|\le L|zz'|$ при всех $z,z'\in Z$. Каждое такое число L называется константой Липшица, само отображение f называется L-липшицевы, а точная нижняя грань констант Липшица L — растяжением отображения f и обозначается через $\mathrm{dil}\, f$. Семейство всех L-липшицевых функций на метрическом пространстве X обозначим через $\mathrm{Lip}_L(X)$.

Лемма 3.3. Для $\psi \in \mathbb{R}^n$ выполняется $(\psi, -\psi) \in \Phi_\rho$, если и только если $\psi \in \text{Lip}_1(X)$, а последнее равносильно условию $(-\psi, \psi) \in \Phi_\rho$.

Доказательство. Условие $(\psi, -\psi) \in \Phi_{\rho}$ для любых $1 \leq i, j \leq n$ равносильно условию $\psi_i - \psi_j \leq \rho_{ij}$ при всех $1 \leq i, j \leq n$, что эквивалентно условию $|\psi_i - \psi_j| \leq \rho_{ij}$ для любых $1 \leq i, j \leq n$, а это и есть условие 1-липшицевости, т.е. $\varphi \in \text{Lip}_1(X)$. Аналогично поступаем с условием $(-\psi, \psi) \in \Phi_{\rho}$.

Найдем теперь максимальное $\varphi \in \mathbb{R}^n$, для которого при фиксированном $\psi \in \mathbb{R}^n$ выполняется $(\varphi, \psi) \in \Phi_\rho$. Для любого φ , $(\varphi, \psi) \in \Phi_\rho$, имеем $\varphi_i \leq \rho_{ij} - \psi_j$, поэтому $\varphi_i \leq \min_j (\rho_{ij} - \psi_j)$ для всех i. Положим $\psi_i^c = \min_j (\rho_{ij} - \psi_j)$, тогда, учитывая неотрицательность λ и μ , получаем следующий результат.

Следствие 3.4. Для любого $\psi \in \mathbb{R}^n$ выполняется $(\psi^c, \psi) \in \Phi_\rho$, u для любого φ , $(\varphi, \psi) \in \Phi_\rho$, имеем $\varphi \leq \psi^c$. Кроме того, для любых $\lambda, \mu \in \Delta(X)$ u $(\varphi, \psi) \in \Phi_\rho$ выполняется $J_{\lambda,\mu}(\varphi, \psi) \leq J_{\lambda,\mu}(\psi^c, \psi)$. Таким образом, если (φ, ψ) — оптимальная пара для (λ, μ) , то (ψ^c, ψ) — также оптимальная пара для (λ, μ) .

Лемма 3.5. Для каждого $\psi \in \mathbb{R}^n$ имеем $\psi^c \in \text{Lip}_1(X)$.

Доказательство. По определению, имеем

$$\psi_i^c - \psi_j^c = \min_p(\rho_{ip} - \psi_p) - \min_q(\rho_{jq} - \psi_q).$$

Пусть r таково, что $\min_p(\rho_{ip}-\psi_p)=\rho_{ir}-\psi_r$, тогда

$$\psi_i^c - \psi_j^c = \rho_{ir} - \psi_r - \min_q(\rho_{jq} - \psi_q) \le \rho_{ir} - \psi_r - (\rho_{jr} - \psi_r) \le \rho_{ij},$$

что и требовалось.

Лемма 3.6. Для любых $\lambda, \mu \in \Delta(X)$ имеем

$$k_{\rho}(\lambda, \mu) \le \sup_{\theta \in \text{Lip}_1(X)} \sum_i (\lambda_i - \mu_i) \theta_i.$$

Доказательство. Пусть (φ, ψ) — оптимальная пара для (λ, μ) , существующая в силу теоремы 3.1, т.е. $k_{\rho}(\lambda, \mu) = J_{\lambda,\mu}(\varphi, \psi)$. По следствию, пара (ψ^c, ψ) также оптимальна для (λ, μ) , поэтому $k_{\rho}(\lambda, \mu) = J_{\lambda,\mu}(\psi^c, \psi)$. По лемме 3.2, откуда $\psi \leq -\psi^c$, поэтому

$$k_{\rho}(\lambda,\mu) = \sum_{i} (\lambda_{i} \psi_{i}^{c} + \mu_{i} \psi_{i}) \leq \sum_{i} (\lambda_{i} - \mu_{i}) \psi_{i}^{c} \leq \sup_{\theta \in \text{Lip}_{1}(X)} \sum_{i} (\lambda_{i} - \mu_{i}) \theta_{i},$$

где последнее неравенство имеет место в силу леммы 3.5.

Лемма 3.7. Для любых $\lambda, \mu \in \Delta(X)$ имеем

$$k_{\rho}(\lambda, \mu) \ge \sup_{\theta \in \text{Lip}_{1}(X)} \sum_{i} (\lambda_{i} - \mu_{i}) \theta_{i}.$$

Доказательство. В следующей цепочке неравенство имеет место в силу леммы 3.3:

$$k_{\rho}(\lambda,\mu) = \sup_{(\varphi,\psi)\in\Phi_{\rho}} J_{\lambda,\mu}(\varphi,\psi) \ge \sup_{\psi\in\operatorname{Lip}_{1}(X)} J_{\lambda,\mu}(\psi,-\psi) = \sup_{\psi\in\operatorname{Lip}_{1}(X)} \sum_{i} (\lambda_{i} - \mu_{i})\psi_{i},$$

что и требовалось.

Положим

$$J_{\lambda,\mu}(\theta) = \sum_{i} (\lambda_i - \mu_i)\theta_i = (\lambda - \mu)^t \theta.$$

Леммы 3.6 и 3.7 приводят к следующему результату.

Теорема 3.8. Для любых $\lambda, \mu \in \Delta(X)$ имеем

$$k_{\rho}(\lambda,\mu) = \sup_{\theta \in \text{Lip}_1(X)} J_{\lambda,\mu}(\theta) = \sup_{\theta \in \text{Lip}_1(X)} \sum_i (\lambda_i - \mu_i) \theta_i.$$

Положим

$$V_0(X) = \left\{ v \in V(X) : \sum_i v_i = 0 \right\},$$

$$\operatorname{Lip}_L^0(X) = \operatorname{Lip}_L(X) \cap V_0,$$

$$p \colon V(X) \to V_0(X), \ p \colon v \mapsto v - \frac{\sum_i v_i}{n} (1, \dots, 1).$$

Отметим, что p — линейное отображение, переводящее каждую аффинную гиперплоскость $\sum_i v_i = a$ параллельным переносом в аффинную гиперплоскость $V_0(X)$, при этом точка $(1/n)(a,\ldots,a)$ переходит в 0.

Предложение 3.9. Имеем $p(\operatorname{Lip}_L(X)) = \operatorname{Lip}_L^0(X)$, причем для любого $v \in V_0(X)$ и любого $\theta \in \operatorname{Lip}_L(X)$ выполняется $v^t \theta = v^t p(\theta)$.

Доказательство. Для любого $\theta \in \operatorname{Lip}_L(X)$ имеем $p(\theta)_i - p(\theta)_j = \theta_i - \theta_j \leq L\rho_{ij}$, поэтому $p\left(\operatorname{Lip}_L(X)\right) \subset \operatorname{Lip}_L^0(X)$. Кроме того, для каждого $\theta \in \operatorname{Lip}_L^0(X)$ имеем $p(\theta) = \theta$, так что p сюръективно.

Докажем теперь второе утверждение. Выберем произвольные $v \in V_0(X), \theta \in \mathrm{Lip}_L(X)$ и положим $c = (\sum_i \theta_i)/n$, тогда

$$v^t p(\theta) = v^t (\theta - c(1, \dots, 1)) = v^t \theta,$$

где последнее равенство выполняется в силу того, что $\sum_i v_i = 0$.

Следствие 3.10. Для любого $v \in V_0(X)$ имеем

$$\sup_{\theta \in \operatorname{Lip}_L(X)} v^t \theta = \sup_{\theta \in \operatorname{Lip}_L^0(X)} v^t \theta.$$

B частности, для любых $\lambda, \mu \in \Delta(X)$ выполняется

$$k_{\rho}(\lambda,\mu) = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} (\lambda - \mu)^{t}\theta = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} J_{\lambda,\mu}(\theta).$$

3.1 Задание метрики Канторовича нормой

Определим функцию $g_{\rho} \colon V_0(X) \to \mathbb{R} \cup \{+\infty\}$ так:

$$g_{\rho}(v) = \sup_{\theta \in \text{Lip}_{1}(X)} v^{t}\theta = \sup_{\theta \in \text{Lip}_{1}^{0}(X)} v^{t}\theta.$$

Лемма 3.11. Для каждого $v \in V_0(X)$ выполняется $g_{\rho}(v) < \infty$. Иными словами, функция g_{ρ} отображает $V_0(X)$ в \mathbb{R} .

Доказательство. Возьмем произвольное $\theta \in \operatorname{Lip}_1^0(X)$, тогда $\sum_i \theta_i = 0$, откуда

$$|v^{t}\theta| = \left|\sum_{i} v_{i}\theta_{i}\right| = \left|\sum_{i} v_{i}\left(\theta_{i} - \frac{\sum_{j} \theta_{j}}{n}\right)\right| = \left|\sum_{i} \frac{v_{i}}{n} \sum_{j} (\theta_{i} - \theta_{j})\right| \leq$$

$$\leq \sum_{i} \frac{|v_{i}|}{n} \sum_{j} |\theta_{i} - \theta_{j}| \leq \sum_{i,j} \frac{|v_{i}|}{n} \rho_{ij} =: D < \infty,$$

где величина D не зависит от выбора θ .

Теорема 3.12. Функция g_{ρ} является нормой на $V_0(X)$.

Доказательство. Докажем положительную определенность функции g_{ρ} . Функция g_{ρ} неотрицательна, так как для каждого $\theta \in \operatorname{Lip}_{1}^{0}(X)$ выполняется $-\theta \in \operatorname{Lip}_{1}^{0}(X)$. При v=0 имеем $g_{r}(v)=\sup 0^{t}\theta=0$. Функция g_{ρ} невырождена: выберем произвольное ненулевое $v\in V_{0}(X)$, для него возьмем любое $L>\max_{i\neq j}\frac{v_{i}-v_{j}}{\rho_{ij}}$ и положим $\theta=v/L$, тогда $\theta\in\operatorname{Lip}_{1}^{0}(X)$ и $v^{t}\theta=v^{t}v/L>0$, так что $g_{\rho}(v)>0$.

Докажем теперь положительную однородность g_{ρ} . Выберем произвольное $\alpha \in \mathbb{R}$ и $v \in V_0(X)$, тогда

$$g_{\rho}(\alpha v) = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} \alpha v^{t} \theta = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} |\alpha| v^{t} \theta = |\alpha| g_{\rho}(v).$$

Наконец, проверим субаддитивность g_{ρ} . Для этого выберем произвольные $v,w\in V_0(X)$, тогда

$$g_{\rho}(v+w) = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} (v+w)^{t}\theta = \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} (v^{t}\theta + w^{t}\theta) \leq$$

$$\leq \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} v^{t}\theta + \sup_{\theta \in \operatorname{Lip}_{1}^{0}(X)} w^{t}\theta = g_{\rho}(v) + g_{\rho}(w),$$

что и требовалось.

Следствие 3.13. Для любых $\lambda, \mu \in \Delta(X)$ выполняется $k_{\rho}(\lambda, \mu) = g_{\rho}(\lambda - \mu), m.e.$ метрика Канторовича порождена нормой g_{ρ} .

Норму g_{ρ} обозначим через $\|\cdot\|_{\rho}$ и будем называть *нормой Канторовича-Рубинштейна*. Положим $e_{ij}=(e_i-e_j)/\rho_{ij},\,i\neq j.$

Предложение 3.14. Имеем $||e_{ij}||_{\rho} = 1$.

Доказательство. По теореме 1.5, выполняется $k_{\rho}(e_i, e_j) = \rho_{ij}$.

Обозначим через B_X единичный в смысле нормы $\|\cdot\|_{\rho}$ шар в $V_0(X)$ с центром в 0, а через R_X — выпуклую оболочку векторов e_{ij} , $i \neq j$.

Теорема 3.15. Имеем $B_X = R_X$.

Прежде чем доказывать эту теорему, приведем ряд фактов из теории выпуклых множеств, в частности, напомним определение поляры и докажем ряд нужных нам фактов о ней. Наше изложение частично следует [5].

3.2 Выпуклые подмножества арифметического пространства и поляры

В этом разделе через \mathcal{L} мы обозначили произвольное линейное пространство (над полем вещественных чисел).

Напомним, что подмножество $W \subset \mathcal{L}$ называется выпуклым, если для любых точек $x,y \in W$ отрезок [x,y] также лежит в W. Приведем два удобных аналитических представления отрезка:

$$[x,y] = \{\lambda_1 x + \lambda_2 y \mid \lambda_1 \ge 0, \ \lambda_2 \ge 0, \ \lambda_1 + \lambda_2 = 1\} = \{(1-\lambda)x + \lambda y : \lambda \in [0,1]\}.$$

Далее, для любого множества $V \subset \mathcal{L}$ через conv V обозначим пересечение всех выпуклых множеств $W \subset \mathcal{L}$, содержащих V. Множество conv V называется выпуклой оболочкой множества V. Так как пересечение выпуклых множеств выпукло, conv V является выпуклым подмножеством в \mathcal{L} .

Лемма 3.16. Для любого подмножества $V \subset \mathcal{L}$ имеем

conv
$$V = \left\{ \sum_{i=1}^{n} \lambda_{i} v_{i} \mid v_{i} \in V, \ i = 1, ..., n, \ (\lambda_{1}, ..., \lambda_{n}) \ge 0, \ \sum_{i=1}^{n} \lambda_{i} = 1, \ n \in \mathbb{N} \right\}.$$

Доказательство. Обозначим правую часть равенства из утверждения леммы через V^c . Кроме того, подмножество в V^c , сформированное из сумм, состоящих ровно из n слагаемых, обозначим через V_n^c . Ясно, что $V_1^c \subset V_2^c \subset \cdots$ и $V^c = \bigcup_{n=1}^{\infty} V_n^c$.

Покажем сначала, что $V^c \subset \text{conv } V$. Последнее равносильно тому, что $V_n^c \subset \text{conv } V$ при всех n. Доказательство проведем индукцией по n.

Если n=1, то каждая сумма $\sum_{i=1}^n \lambda_i v_i$ имеет вид $v_1 \in V$, но все множества W, пересечение которых равно $\operatorname{conv} V$, содержат V, поэтому все такие v_1 лежат в $\operatorname{conv} V$. Итак, мы проверили, что $V_1^c \subset \operatorname{conv} V$.

Если n=2, то $\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2$, поэтому при фиксированных v_1 и v_2 множество всех таких сумм (при соответствующих условиях на λ_i) образует отрезок $[v_1,v_2]$. В силу выпуклости всех W, отрезок $[v_1,v_2]$ содержится в каждом из них, поэтому он содержится и в соnv V. Таким образом, $V_2^c \subset \text{conv } V$.

Предположим теперь, что для всех $m < n, \ n \geq 3$, мы доказали включение $V_m^c \subset \operatorname{conv} V$. Возьмем произвольную сумму $\sum_{i=1}^n \lambda_i v_i$, положим $\Lambda_k = \sum_{i \neq k} \lambda_i$, тогда $\Lambda_k \geq 0$ и $\Lambda_k + \lambda_k = 1$, поэтому существует не более одного нулевого Λ_k , и так как $n \geq 3$, некоторое из Λ_k должно быть отличным от нуля. Пусть для определенности $\Lambda_k \neq 0$, тогда определены $\mu_i = \lambda_i/\Lambda_k, \ i \neq k$. Ясно, что $\mu_i \geq 0$ и $\sum_{i \neq k} \mu_k = 1$. По индукции, $\bar{v} := \sum_{i \neq k} \mu_i v_i \in \operatorname{conv} V$ и $v_k \in \operatorname{conv} V$, поэтому

$$\sum_{i=1}^{n} \lambda_i v_i = \Lambda_k \frac{\sum_{i \neq k} \lambda_i v_i}{\Lambda_k} + \lambda_k v_k = \Lambda_k \sum_{i \neq k} \mu_i v_i + \lambda_k v_k = \Lambda_k \bar{v} + \lambda_k v_k \in \text{conv } V$$

в силу доказанного выше.

Покажем теперь, что $V^c \supset {\rm conv}\, V$. Для этого достаточно проверить, что V^c выпукло. Имеем

$$v := (1 - \lambda) \left(\sum_{i=1}^{n} \lambda_i v_i \right) + \lambda \left(\sum_{i=1}^{m} \lambda_i' v_i' \right), \ \lambda \in [0, 1],$$

но

$$\sum_{i=1}^{n} (1 - \lambda)\lambda_i + \sum_{i=1}^{m} \lambda \lambda_i' = 1 - \lambda + \lambda = 1,$$

поэтому $v \in V^c$.

Следствие 3.17. Пусть $V = \{v_1, \ldots, v_n\} \subset \mathcal{L}$, тогда

$$\operatorname{conv} V = \left\{ \sum_{i=1}^{n} \lambda_i v_i \mid \lambda_i \ge 0, \ \sum_{i=1}^{n} \lambda_i = 1 \right\},\,$$

в частности, если $\mathcal{L} = \mathbb{R}^d$, то $\operatorname{conv} V - \kappa$ омпактное подмножество \mathbb{R}^d .

Доказательство. Докажем компактность conv V. Рассмотрим отображение

$$f: \mathbb{R}^n \to \mathbb{R}^d, \ f: (\lambda_1, \dots, \lambda_n) \mapsto \sum_{i=1}^n \lambda_i v_i,$$

тогда f — линейно и, значит, непрерывно. Множество

$$\Delta^{n-1} := \left\{ (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \mid (\lambda_1, \dots, \lambda_n) \ge 0, \ \sum_{i=1}^n \lambda_i = 1 \right\}$$

компактно, и conv $V=f(\Delta^{n-1}),$ поэтому conv V также компактно как непрерывный образ компакта. \square

3.2.1 Поляры

Пусть $W \subset \mathbb{R}^d$ — произвольное непустое множество, тогда *полярой* называется следующее подмножество \mathbb{R}^d :

$$W^* = \{ y \in \mathbb{R}^d : y^t w \le 1 \text{ для всех } w \in W \}.$$

Пример 3.18. (1) Пусть $W = \{a\}$, тогда $W^* = \{y \in \mathbb{R}^d : y^t a \leq 1\}$, поэтому W^* или содержащее 0 полупространство для $a \neq 0$, или $W^* = \mathbb{R}^d$ при a = 0.

- (2) Для непустых $W_1, W_2 \subset \mathbb{R}^d$ имеем $(W_1 \cup W_2)^* = W_1^* \cap W_2^*$.
- (3) Пусть $W=B_r(0), r>0,$ замкнутый шар с центром в начале координат и радиусом r, тогда $W^*=B_{1/r}(0)$ (мгновенно вытекает из предыдущего пункта).

Замечание 3.19. Поляра W^* является пересечением всего \mathbb{R}^d и полупространств, поэтому W^* всегда выпукло, даже если таковым не является W. Более того, если $W \neq \{0\}$, то $W^* \neq \mathbb{R}^d$.

Приведем еще ряд нужных нам свойств поляры.

Лемма 3.20. Пусть V — непустое подмножество \mathbb{R}^d . Тогда

(1) ecau
$$V \subset W \subset \mathbb{R}^d$$
, mo $V^* \supset W^*$;

(2) $ecnu W = conv V, mo V^* = W^*.$

Доказательство. Доказательство первого пункта очевидно. Докажем второй.

Из первого пункта вытекает, что $V^*\supset W^*$, поэтому остается проверить, что $V^*\subset W^*$. Берем произвольный $y\in V^*$, тогда для любого $v\in V$ выполняется $y^tv\leq 1$. Для доказательства того, что $y\in W^*$, мы должны проверить выполнение неравенств $y^tw\leq 1$ для всех $w\in W$. Однако каждый такой w, в силу леммы 3.16, имеет вид $\sum_{i=1}^n \lambda_i v_i$, где v_i и λ_i — как в цитированной лемме, но тогда

$$y^{t}w = y^{t} \sum_{i=1}^{n} \lambda_{i} v_{i} = \sum_{i=1}^{n} \lambda_{i} y^{t} v_{i} \le \sum_{i=1}^{n} \lambda_{i} = 1,$$

что и требовалось.

Лемма 3.21. Пусть $W \subset \mathbb{R}^d$ — непустое замкнутое выпуклое множество (например, $W = \text{conv } V, \#V < \infty$). Предположим, что $0 \in W$, тогда $W^{**} = W$.

Доказательство. Покажем сначала, что $W \subset W^{**}$. Выберем произвольный $w \in W$, тогда для каждого $y \in W^*$ выполняется $w^t y \leq 1$, но это означает, что $w \in W^{**}$, поэтому $W \subset W^{**}$.

Проверим теперь, что $W\supset W^{**}$. Предположим противное, т.е. что существует $a\in W^{**}\setminus W$. По лемме 2.4, существует аффинная гиперплоскость $H\subset \mathbb{R}^d$, строго разделяющая W и a. Пусть H^+ и H^- — открытые полуплоскости, ограниченные H, причем $a\in H^+$ и $W\subset H^-$, в частности, $0\in H^-$.

Выберем ненулевой вектор $\nu \in \mathbb{R}^d$, перпендикулярный H и направленный в H^+ , тогда $H = \{x \in \mathbb{R}^d : \nu^t x = \alpha\}$, причем $\alpha > 0$, так как $0 \in H^-$ и ν направлен в H^+ . Положим $c = \nu/\alpha$, тогда $H = \{x \in \mathbb{R}^d : c^t x = 1\}$. Кроме того, $c^t a > 1$ и $c^t w < 1$ для всех $w \in W$. Однако последнее условие гарантирует, что $c \in W^*$, но, так как $a \in W^{**}$, имеем $c^t a \leq 1$, противоречие.

Замечание 3.22. Ниже мы используем лемму 3.21 для доказательства теоремы 3.15. Сейчас же приведем еще одно приложение этой леммы.

Обозначим через e_i вектора стандартного базиса арифметического пространства \mathbb{R}^d . Напомним, что пространство линейных функционалов $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ называется $\partial soŭ-$ ственным или сопряженным $\kappa \mathbb{R}^d$; это пространство обозначим через $(\mathbb{R}^d)'$. Выбирая в $(\mathbb{R}^d)'$ двойственный базис $e^1, \ldots, e^d, e^i(e_j) = \delta^i_j$, мы можем отождествить $(\mathbb{R}^d)'$ с \mathbb{R}^d , и тогда $\varphi(v) = \varphi^t v$.

Если на \mathbb{R}^d задана произвольная норма $\|\cdot\|$, то на $(\mathbb{R}^d)'$ определяется ∂ войственная норма $\|\cdot\|_*$ так:

$$\|\varphi\|_* = \sup\{\varphi^t v : v \in \mathbb{R}^d, \|v\| \le 1\}.$$

Таким образом, если $B_1(0) \subset \mathbb{R}^d$ обозначает единичный шар с центром в 0 относительно нормы $\|\cdot\|$, т.е. $B_1(0) = \{v \in \mathbb{R}^d : \|x\| \le 1\}$, то единичный шар в $(\mathbb{R}^d)'$ будет полярой к $B_1(0)$, т.е. равен $B_1(0)^*$. Аналогичным образом определяется *второе сопряженное пространство* $(\mathbb{R}^d)''$ как сопряженное с $(\mathbb{R}^d)'$, и это пространство наделяется нормой $\|\cdot\|_{**}$ аналогичным образом. Но тогда единичный шар с центром в 0 во втором сопряженном пространстве будет равен $B_1(0)^{**}$. По лемме 3.21, имеем $B_1(0)^{**} = B_1(0)$, поэтому второе сопряженное пространство, вместе с определенной выше нормой, изометрично исходному нормированному пространству. Это свойство называется рефлексивностью.

3.3 Доказательство теоремы 3.15

Вернемся к доказательству теоремы 3.15.

Доказательство. Заметим, что условие $\theta \in \operatorname{Lip}_1^0(X)$ равносильно выполнению всех условий $\theta^t e_{ij} \leq 1$ при $i \neq j$. Таким образом, $\operatorname{Lip}_1^0(X)$ является полярой множества $\{e_{ij}: i \neq j\}$. По лемме 3.20, $\{e_{ij}: i \neq j\}^* = R_X^*$, таким образом, $\operatorname{Lip}_1^0(X) = R_X^*$. С другой стороны, по определению нормы $g_\rho = \|\cdot\|_\rho$, единичный шар B_X является полярой для $\operatorname{Lip}_1^0(X)$, так что $B_X = \operatorname{Lip}_1^0(X)^* = R_X^{**}$. Заметим, что $0 \in R_X$, поэтому, в силу леммы 3.21, имеем $B_X = R_X^{**} = R_X$, что и требовалось.

Определение 3.23. Многогранник $R_X := \text{conv}\{e_{ij} : 1 \leq i, j \leq n, i \neq j\}$ называется фундаментальным для метрического пространства X.

Интересно разобраться, как связана комбинаторная структура фундаментального многогранника и свойства определяющей его метрики ρ . В частности, если все ненулевые расстояния в метрике ρ равны 1, то фундаментальный многогранник является выпуклой оболочкой корней простой алгебры Ли A_n , см. [24].

Приведем примеры фундаментальных многогранников, взятые нами из [24].

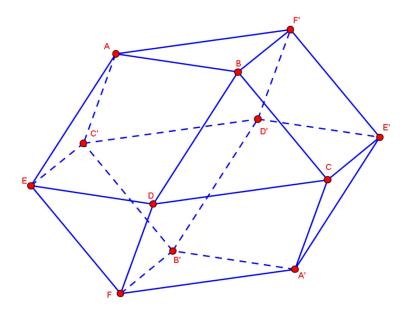


Рис. 3.1: Трехмерный фундаментальный многогранник, соответствующий четырехточечному пространству, в котором все ненулевые расстояния равны 1.

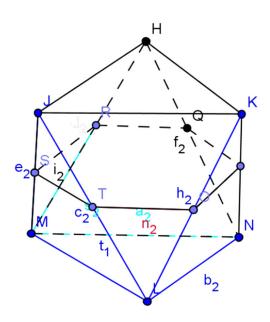


Рис. 3.2: Трехмерный фундаментальный многогранник, соответствующий четырехточечному пространству $\{1,2,3,4\}$, в котором $|4i|=1/2,\ i=1,2,3,$ а оставшиеся три ненулевых расстояния равны 1.