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Abstract

In this paper, a new spatial clustering algorithm TRICLUST based on Delaunay
Triangulation is proposed. This algorithm treats clustering task by analyzing sta-
tistical features of data. For each data point, its values of statistical features are
extracted from its neighborhood which effectively models the data proximity. By
applying specifically built criteria function, TRICLUST is able to effectively handle
data set with clusters of complex shapes and non-uniform densities, and with large
amount of noises. One additional advantage of TRICLUST is the boundary detec-
tion function which is valuable for many real world applications such as geo-spatial
data processing, point-based computer graphics, etc.
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1 Introduction

As spatial databases have been used in more and more areas, such as geo-
spatial data processing, biomedical data analysis, point-based graphics, etc,
the size of spatial database increases dramatically and the structure of data
becomes more and more complicated. To discover valuable information in
those databases, spatial data mining techniques [1,2] have been paid signifi-
cant attention during recent years. Clustering [3-5], or unsupervised learning,
plays an indispensable role in spatial data mining. Thus, a variety of spatial
clustering methods have been developed.

In general, clustering is a method to separate data into groups without prior
labeling so that the elements inside the same group are most similar as long
as elements belonging to different groups are most dissimilar. We can roughly
divide the main existing spatial clustering methods into five categories: parti-
tion methods [6,7], hierarchical methods [8-10], density-based methods [11-13],
graph-based methods [14-16], and learning-network methods [17,18]. All these
approaches have been proven successful in dealing with different data sets
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in different application domains. But there are still limitations of the most
existing famous clustering algorithms.

First, the performance of classic clustering algorithms always relies on users
specified parameters or prior knowledge of data. The traditional partition
method K-MEANS [6] and its derivative methods [19] need the user to input
the number of clusters in advance. Hierarchical methods like CURE [10] and
BIRCH [9] are sensitive to the values of pre-set parameters related to merging
condition. Model-based partition methods [20,21] make assumptions on data
distribution to achieve good results. But due to the increase of complexity of
data, it is very difficult to provide best fit parameters or assumptions before
clustering process. Moreover, most existing methods use global parameters, for
example, such as the EPS value for density-based method DBSCAN [11] and
the MinPts value for OPTICS [13]. The drawback is that global parameters
lack the ability to apply different discrimination criterion on different parts of
data with the specific local information. When the data distribution becomes
complex, by only employing global parameter, clustering algorithm can hardly
achieve the best result. The combination of both global and local information
should be considered when designing parameters.

Second, since the shape of expected clusters becomes more and more compli-
cated, the demand for clustering algorithm to detect clusters with arbitrary
shapes rises. Most existing clustering methods can not deal with clusters of
irregular shapes or clusters with different sizes, like CLARAS [19] and BIRCH.
The density-based methods DBSCAN and DENCLUE [12] are able to discov-
ery clusters with irregular shapes, but their abilities are still limited to han-
dling clusters of similar densities. In the work of new graph-based methods,
such as AMOEBA [15] and AUTOCLUST [16], the situation where clusters
have different density is studied. Cluster with high density surrounded by clus-
ter with low density can be correctly detected. However, when we think of this
problem further, we can notice that the density of clusters could be different
not only between clusters but also between the different parts of the same
cluster. In Fig.1, a 2-dimensional example of this situation is given. Although
the density varies inside those clusters, just by visual inspection, we can easily
discover those non-uniform clusters because of the gradually changing densi-
ties. Moreover, clusters with non-uniform density widely exist in real world
applications such as geo-spatial data processing and point-based graphics [22-
25]. But most existing clustering algorithms lack the capacity to analyze this
kind of data set. Thus, it is necessary to design a new method to fit this new
requirement.

Third, for real world applications, in addition to the variety of data distri-
butions, there are always noises introduced by systems during data collection
or data transformation procedures. The distribution of noise also significantly
influences the result of clustering. If the noises are isolated points, the ef-
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Fig. 1. Examples of clusters with non-uniform density

fect of them may be relatively trivial. Many methods such as DBSCAN and
Single-linkage hierarchical method, can deal well with the noises. But if the
noises form a chain which connects two clusters that should be separated
from each other, by using the above methods, the result will be totally not
expectable. This kind of problems is the so-called ”short bridges” problem
[16,26] or ”chaining effect” problem [3,27], or ”multiple bridges” [16] prob-
lem if there are several chains formed by noises. The well-known solution is
cut-point finding which only works for single bridge cases.

Last, the cluster boundary detection becomes more and more valuable for
many real world applications, such as geo-spatial data analysis and point-
based computer graphics. But there are quite few clustering methods with
this function. Moreover, from data classification prospective, knowledge of
cluster boundary makes it possible to classify new data without repeating the
whole clustering process [7]. Thus, methods with boundary detection will have
the advantage to deal with dynamic data sets.

In this paper, we treat clustering task by analyzing statistical features of data
and design our novel effective clustering algorithm TRICLUST using trian-
gulation. The proposed method TRICLUST is able to automatically detect
not only clusters with non-uniform inner density but also with short bridges
formed by noises. By developing this algorithm, we can effectively deal with
a wider range of data sets which have different distributions of data density
and noises. TRICLUST can also build the cluster boundaries by identifying
the data points on them for all clusters.

The rest of this paper is organized as following. In Section 2, the relation of
TRICLUST to previous methods is described. In Section 3 and 4 the defini-
tions used in TRICLUST and the basic idea of it are given. In Section 5 and
6, the algorithm description and theoretical analysis are provided. In Section
7 and 8, the performance comparisons with other clustering methods and real
world application are given. In the last section, conclusions are drawn and
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future work suggestions are given.

2 Relationship to Previous Works using Triangulation

The Delaunay Triangulation or Delaunay Diagram [28-30] is a method used
to build topology of data set. It represents proximity relationships of data by
building the connected graph. It has the important properties [14,31] such as
the nearest data points to a given spatial data point are always connected by
edges, which provide us a good description of proximity, and the circumcircle
(circumshpere for higher than 2-dimensional case) of every triangle does not
contain any other data points. It represents data topology explicitly by build-
ing the succinct graph. Based on it, we can conveniently extract information
such as statistical features from the graph. This kind of information can effec-
tively characterize the relationship between data points so that it can lead to
good clustering method.

There are a few methods developed based on Delaunay Triangulation, such
as the method proposed by Eldershaw and Hegland [14], AMOEBA [15], AU-
TOCLUST [16] and the method proposed by Hader and Hampercht [32]. The
approach of Hader and Hampercht applies Delaunay Triangulation as a path
building tool. After the graph is generated, along the paths found, the value of
the density function is checked to find the local maxima in order to start the
density-based clustering process. The approach proposed by Eldershaw and
Hegland as well as AMOEBA and AUTOCLUST mainly focus on classifying
the edges of the graph built by Delaunay Triangulation or Delaunay Diagram
into several groups. Then, by removing the inter-cluster edges, clusters are
isolated. Among these previous approaches, AUTOCLUST is the latest and
the most effective one. It applies Delaunay Diagram on the data set, then by
analyzing the statistic information extracted from the graph built by Delau-
nay Diagram, unusually long and short edges are removed. After the edges
recovery and bridges looking phases, the data set is separated into clusters
and outliers 1 . This method has an advantage that the values of the parame-
ters can be found from the statistic information of the edges of the graph. It
makes AUTOCLUST an effective clustering method. Comparing to its prior
method AMOBEA, AUTOCLUST has the ability to deal with more compli-
cated data sets, such as in which clusters are connected by multiple bridges
and/or nearby clusters are with different density, but the density inside these
clusters is still relatively uniform.

The proposed algorithm TRICLUST is also based on Delaunay Triangulation.

1 In this paper, when we analyze clustering results, we call a point which does not
belong to any clusters an outlier no matter it is a data point or a noise point.
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But our method has the following novel features:

(1) Data set with clusters of non-uniform density
First, we extended our concern on data distribution to non-uniform

inner cluster density cases, which have been introduced in Section 1.
Based on the needs risen recently in both research and application areas,
we developed a new algorithm which can be applied on wider range of
data sets. Thus, the variation of distribution of data density between and
inside clusters is one of our main concerns.

Second, if the density of data set varies not only between clusters but
also inside clusters, the classification of edges of the graph will be more
difficult, since the long edges could connect data points of the thin part
of the same cluster, and short edges could connect local outliers with
nearby clusters. The discrimination of edges in the way how it was done
in AMOBEA and AUTOCLUST, would be much more difficult in such
situation, moreover, for some complex data distribution, it could just fail.
Therefore, we use data point investigation instead of edge investigation
in our algorithm. The data points are classified into different categories
according to the statistic information which is extracted from their neigh-
borhood which are built by triangulation. An advantage of studying on
data points rather than edges is that we can minimize the effect of den-
sity variation and achieve a more clear description of data distribution.
In addition, the time complexity will decrease during the checking and
searching procedures, since, in general, there are more edges than data
points in a graph built by triangulation.

(2) New statistic features
In order to characterize data points based on data distribution, we

designed a few statistic features. Different from the ones used in previ-
ous methods, we consider on data point instead of edges together with
the effect of density changing both inter clusters and inner clusters. The
target which we study on and extract statistic information from is the
length of all edges inside the neighborhood of each data point. The neigh-
borhood for each data point is the sub-graph of Delaunay Triangulation.
The statistic features we applied here are mean of the length, standard
deviation of the length divided by mean, and the positive part of the
derivative of mean. The details of definitions of these statistic features
are given in Section 3.

3 Definitions

Here, we regard each data point as a point P in the n-dimensional data space
Rn. The data set D is a set of n-dimensional points D = {P1, . . . , PN}, and
N is the number of data points.
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Definition 1 Neighborhood:

The neighborhood Ne of one data point P is the sub-graph of the Delaunay
Triangulation of the data set. This neighborhood is constructed by all data
points which are directly connected to P based on Delaunay Triangulation and
all edges between those data points. We call two data points directly connected
if they are linked by the same edge of Delaunay Triangulation.

Definition 2 Mean of one data point:

The Mean of one data point P is the mean of the length of all edges inside its
neighborhood Ne. Mean(P ) is defined in 1.

Mean(P ) =
∑

Li∈Ne

|Li|/Me =
Me∑

i=1

|Li|/Me (1)

where |Li| denotes the Euclidean length of edge Li, and Me denotes the number
of edges in Ne.

Definition 3 Standard deviation (STD) of one data point:

The standard deviation of one data point P is the standard deviation of the
length of all edges inside P ’s neighborhood Ne. It is defined in 2.

STD(P ) =

√√√√
Me∑

i=1

(Mean(P )− |Li|)2/(Me − 1) (2)

where Mean(P ) is the mean of data point P .

Definition 4 The quotient of standard deviation (STD) divided by Mean of
one data point:

The quotient of STD divided by Mean of one data point P , which we denoted
as DM , is defined in 3.

DM(P ) = STD(P )/Mean(P ) (3)

Definition 5 The PDM value of one data point:

The PDM value of one data point Pi is the mean of positive parts of the
derivative of the Mean along all edges connected Pi to its neighboring data
points in its neighborhood Nei. The PDM is defined in 4.

PDM(Pi) =
Mp∑

j=1

PD(Pi, Pj)/Mp (4)
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where PD(Pi, Pj) is the positive part of the derivative of Mean along the edge
connected Pi and Pj. PD is defined in 5; Mp is the number of data points in
Nei with smaller Mean value than Mean(Pi).

PD(Pi, Pj) =





0, if Mean(Pi) ≤ Mean(Pj)

Mean(Pi)−Mean(Pj)

|L| , if Mean(Pi) > Mean(Pj)
(5)

where |L| is the length of the edge connected Pi and Pj.

4 Basic Ideas

The basic idea of TRICLUST, which is an effective clustering algorithm based
on Delaunay Triangulation, is to cluster data set by classifying all data points
into two categories. These two categories are inner cluster data points and
boundary data points. By using proposed statistic features extracted from
the neighborhood of data points, we build the criteria function according to
both global view and local view for different situations. We use K-MEANS
method as the threshold detecting method to choose the threshold of our
criteria function. The classification of data points is executed by applying this
threshold. Thus, the n-dimensional clustering problem can be transferred to
one dimensional classification problem. We will give the description of our
statistic features in more detail in this section with 2-dimensional examples.

Let us elaborate on basic ideas of TRICLUST.

• Statistic features calculated based on triangulation
The statistic features we employed in TRICLUST to classify one data

point are the Mean of it, DM which is the quotient of standard deviation
of it divided by its Mean, and PDM which is the mean of the positive parts
of the derivative of Mean.

To illustrate the meaning of the value of each statistic feature, we consider
the different locations of one data point inside its data set. In Fig.2, we show
all possible locations for one data point in a 2-dimensional data set. The
data point drawn with circle represents the situation when the data point is
located in the dense part of the cluster. The data point drawn with triangle
represents the situation when the data point is located in the thin (low
density) part of the cluster. The data point drawn with diamond represents
the situation when the data point is located on the cluster boundary. The
data point drawn with square represents the situation when the data point
is an outlier.

To give a clearer view of the meaning of statistic feature values in situa-
tions shown in Fig.2, we listed all situations with the corresponding neigh-
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Fig. 2. Illustration of all possible locations of one data point in the data set

borhood graph of the data point in Fig. 3. From the sub-pictures (A) to
(H), the neighborhood graphs of the center red points which are the data
points we are investigating into are shown. In each situation, the red center
point corresponds to the data point drawn with different symbols shown
in Fig.2. The neighborhood graphs are built by Delaunay Triangulation.
The situations of (A) and (B) represent the situations when the center data
points are located in the dense part of a cluster. The situations of (C) and
(D) represent the cases when the data points are in the thin part of a clus-
ter. The situations of (E) and (F) represent the cases when the center data
points are on the boundary of one cluster. And (G) and (H) represent the
cases when they are outliers. We provided two sub-pictures for each situa-
tion to illustrate that, as the center data point is in the same situation, the
different positions of the neighboring data points will not affect our study
on the statistic features extracted from its neighborhood.

Fig. 3. Different neighborhood graphs of the center data point regarding its different
locations in the data set

From the four types of situations shown in Fig.3, we can notice the dif-
ferences between those neighborhood graphs so that we are able to study
the variation of values of the statistic features defined in Section 3. For sit-
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uations in sub-picture (A) and (B), since the center data points are in the
dense part of a cluster, the Mean of them and the standard deviation STD
of them are both with small values, also the value of their DM and the
value of their PDM . For the situations in sub-picture (C) and (D), since
the center data points are located in the thin part of one cluster, the values
of Mean and STD of them become bigger than the ones in situation (A)
and (B). But the values of DM will not increase with the same extent, be-
cause the scale of the increase of STD and Mean is the same. The values
of PDM of the center points in these situations will also increase. For the
situations shown in (E) and (F), the center data points are on the boundary
of one cluster, thus, values of the Mean and the STD of them will both
increase. But they will not increase to the same extent, there will be more
increase of the values of STD than of Mean. Therefore, the values of DM
will increase greatly because of the different scales between increase of DM
and STD. The values of PDM of the center data points will also increase
dramatically since the sudden change of the derivative of Mean occurs. For
situations (G) and (H), since the center data points represent outliers, the
values of Mean of them will be much bigger than the values in previous sit-
uations. The values of STD and DM will also have big values. The values
of PDM in these situations will be also big. In general, they will be quite
similar to the values in situation (E) and (F), since the values of the Mean
of both the center data points and their neighbors which are data points on
cluster boundaries are big.

• Criteria Function
The three statistic features we used in TRICLUST have different char-

acteristics with respect to their capacities to reflect the data distribution.
Mean can distinguish inner cluster data point from boundary point in the
case when the densities of clusters are uniform and similar to each other.
But for non-uniform density clusters or clusters with different densities, such
as when sparse clusters are near to dense clusters, it can not work well. On
the other hand, DM is a good statistic feature for detecting non-uniform
density clusters. It has the strong ability to identify boundary data points
when both uniform and non-uniform density clusters exist. But it is very
sensitive to the irregular data distribution inside clusters. It means when
there are several data points inside the same cluster with quite different
distributions from others, such as when they are more close to each other
than to other data points, these data points may be identified as boundary
points by their DM value. PDM is more robust to the irregular data dis-
tribution inside clusters than DM . But for detecting boundary data points,
it is not as effective as DM , especially when ”short-bridges” exist.

Another important issue for modern clustering research is applying differ-
ent criteria on different parts of data set according to both global and local
information of it. It means that clustering data set under global view or
local view only can not achieve ideal result. We should combine the global
and local information based on certain data distribution and clustering re-
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quirement.
To maximize the advantage of each statistic feature and consider both

global and local information when we cluster our data set, we build the
criteria function by combining our three statistic features with different
weights. The values of these weights reflect the degree to which we want to
cluster the data set under global view or local view. In general, the bigger
size of the data set is, the more important is the global information; the
smaller size of the data set is; the more important is the local information.

Since the Mean of data point can serve as a good criterion under global
view, we let it play a more significant role when the size of our data set
is big. On the contrary, DM is a local and very sensitive criterion, when
the size of our data set is small, it should be in charge. PDM is a good
complement of DM with regard to dealing with irregular inner cluster data
points. And it is better than mean to detect boundary data points. So the
importance of PDM should increase when DM is not in charge. Thus, by
combining the three statistic features into one criteria function, we can have
good discrimination in classifying data points according to both global and
local views so that our algorithm TRICLUST is able to effectively detect
clusters with non-uniform density and is robust to noises, even when the
”short bridges” are existing.

The criteria function fc is defined as in 6, the value of it becomes the final
feature for every data point. For data point P , fc(P ) is:

fc(P ) = a ∗Mean(P ) + b ∗DM(P ) + c ∗ PDM(P ) (6)

where a, b, c are the weights which are defined in 7.

a =





N
2000

, N < Smin

1.9N+Smax/10−2Smin
Smax−Smin

, Smin ≤ N < Smax

2, N ≥ Smax

b =





1, N < Smin

1− N−Smin
2(Smax−Smin)

, Smin ≤ N < Smax

0.5, N ≥ Smax

c =





0.5, N < Smin

0.5N+0.5Smax−Smin
Smax−Smin

, Smin ≤ N < Smax

1, N ≥ Smax

(7)

where N is the number of data points inside the data set.
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The values of parameter a, b and c reflect the level to which we want to
cluster our data set under local or global view. If there is a small amount
of data points that one can notice any of the data points ”at one glance”,
then the natural clustering should depend exclusively on the local details of
the data points distribution. Moreover, the small number of data points is
not enough to generate reliable global features of distribution which could
be useful for clustering. We denote Smin as the number of data points,
starting from which human visual inspection starts missing individual points
and therefore the manner of discrimination starts shifting from local to
global one. Another threshold is Smax the number of points, starting from
which global features of the data set become fully important for human
visual inspection. These two thresholds should be estimated by biological
research of human vision for eye simulation cases or be selected based on
requirements of certain applications. Here, they are very approximatively
set to Smin = 200 and Smax = 10000, but the clustering results are quite
robust to their variations, which will be shown in Section 8.

5 Algorithm Description

The main steps of TRICLUST are elaborated in this section.

Step 1. Apply the Delaunay Triangulation on our data set to get the tri-
angulation graph of it. The length of all edges for each data point is also
calculated.
Step 2. Calculate the three statistic features for each data point according
to the definitions introduced in Section 3.
Step 3. Set the values of parameters a, b, c of the criteria function based on
the method proposed in Section 4. For every data point Pi, we calculate the
value of its final feature fc(Pi) which is the value of criteria function on the
data point Pi. After that, we get the distribution of the final feature values
for all data points by drawing the frequency histogram. We find the value
Rc of the frequency histogram. Rc is defined in 8.

Rc =





R1, if N ≤ 5000

min{R2, R1}, if N > 5000
(8)

R1 = min{x : gfc
emp(x) = 0}

R2 = min{x : Pemp(fc < x) = 0.97}

where gfc
emp(x) denotes the empirical density (frequency histogram) of the

fc distribution. R1 is the first zero. R2 is the 97% of the distribution. The
3% cut is for algorithm robustness when dealing with large data set. We
select the final feature values less than Rc for threshold deciding in the next
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step. In Fig.4, we provided an illustration of the frequency histogram of
final feature.

R1R2
Fig. 4. An illustration of frequency histogram of final feature

Step 4. By applying K-MEANS algorithm (the parameters setting for K-
MEANS: number of clusters equal to 2; initial cluster centers are the minima
and mean of the selected final feature values) on the final feature values
achieved from Step 3, we can get the threshold th which is used to distinguish
boundary data points from inner cluster data points. The data points with
the final feature value bigger than th are labeled as boundary data points
(this category also includes outliers). The rest data points are labeled as
inner cluster points.
Step 5. We start the clustering process by selecting the first inner cluster
data point Pi based on indexing. A new cluster Cj is generated by assigning
this data point Pi to it as its first element.
Step 6. The cluster expansion progress is executed by continuously adding
the inner cluster data points in the neighborhoods of the assigned data
points. After the first data point Pi is assigned to the new cluster Cj, we
initialize the cluster neighborhood Nedj which is a set of data points. Ini-
tially, it includes the data points in the neighborhood of Pi. We find all the
inner cluster data points inside Nedj. We assign these data points to Cj

and update the cluster neighborhood Nedj by adding data points in the
neighborhoods of all newly added data points. The achieved cluster neigh-
borhood Nedj does not include all data points which have already been
assigned to cluster Cj. After that, we add the inner cluster data points in
Nedj to cluster Cj and update Nedj until there is no suitable data point to
be assigned to cluster Cj. During the cluster expansion progress, we update
the index of one data point when it is assigned to a cluster.
Step 7. Repeat Step 5 and Step 6 until no new cluster can be generated. Till
now, the clustering process complete. All data points have been assigned to
clusters or labeled as outliers.
Step 8. If we want to build complete cluster boundaries for boundary de-
tection applications, besides the data points that have been already labeled
as boundary points, the boundary data points which are only connected to
their own clusters are also labeled. In 2-dimensional case, the data points
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which are the ends of such edge that belongs to only one triangle are also
labeled as boundary points.

6 Complexity Analysis

Since we are mainly interested in spatial data which is usually low dimensional,
the analysis here is for 2-dimensional cases. The time complexity of construct-
ing Delaunay Triangulation graph is O(NlogN), where N is the number of
data points. The time complexity of finding neighboring data points and cal-
culating the length of edges in the neighborhood for all data points is linear
to N . The most time consuming procedure is cluster neighborhood updat-
ing. Because average number of neighboring data points to one data point is
bounded [16,31], the time complexity of this procedure can be linear to N . So
the total time complexity of TRICLUST is O(NlogN).

The experimental testing of the time complexity of TRICLUST is shown in
Fig.5. The X direction is the number of data points. The Y direction is the
CPU time required by TRICLUST in second.
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Fig. 5. Time required by TRICLUST in seconds

7 Comparisons and Experimental Results Analysis

To show the capability of TRICLUST to handle data with complex distribu-
tion, we designed two 2-dimensional testing data sets D1 and D2. The new
challenges for clustering algorithms from the distribution of data, such as non-
uniform cluster density, complicated cluster shape, and short bridges built by
noises, are implemented in these testing data sets. By showing clustering re-
sults, the cluster boundaries built by TRICLUST, and the distributions of
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final feature values, the performance and characteristics of TRICLUST are
well demonstrated.
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Fig. 6. The testing on data set D1 of TRICLUST: (a)The graph built by triangula-
tion of D1; (b)The distribution of final feature values of D1; (c)The boundary data
points of D1 detected by TRICLUST; (d)The clustering result of D1 by TRICLUST

For comparison, we also applied classic clustering methods such as K-MEANS,
hierarchical Single Linkage, DBSCAN and AUTOCLUST on D1, D2 data sets.
We choose these classic clustering methods because they are representative in
this area, and standard implementations of these methods are available. We
can avoid the potential problems causing by different implementations, which
could lead us to bias in results comparisons. K-MEANS method is still the
most widely used method, and it is based on the optimization principles which
form a foundation for many well-known data mining techniques. We employed
the squared Euclidean distance and random selection of initial cluster centers
for K-MEANS in our tests. Single Linkage hierarchical method has a good
ability of handling clusters with complicated shapes. DBSCAN is another well
known density-based clustering method for dealing with arbitrary shape clus-
ters and outliers 2 . The implementation of DBSCAN is provided by its author
and all parameter settings are based on the instruction given in the original

2 In this paper, when we analyze clustering results, we call a point which does not
belong to any clusters an outlier no matter it is a data point or a noise point
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Fig. 7. Clustering results of data set D1 by comparison methods: (a)Clustering
result of D1 generated by K-MEANS; (b)Clustering result of D1 generated by
Single-linkage algorithm; (c)Clustering result of D1 generated by DBSCAN, where
EPS = 0.7937; (d)Clustering result of D1 generated by AUTOCLUST algorithm

paper (k = 3 and MinCard = 4 for our 2-dimensional data sets). AUTO-
CLUST is one famous clustering algorithm based on Delaunay Triangulation.
The implementation of AUTOCLUST is obtained from the GEOTOOLS pack-
age (http://geotools.codehaus.org/).

In Fig.6 and Fig.8, the Delaunay Triangulation graph of testing data set D1
and D2, the boundary data points of clusters in D1 and D2 detected by TRI-
CLUST, distribution of the final feature values of D1 and D2, and clustering
results of testing data sets D1 and D2 by TRICLUST are provided.

In data set D1, there are two clusters inside this data set together with four
outliers. The small round cluster is surrounded by the large ring shape cluster.
The densities of these two clusters are quite different that the round cluster
is denser than the ring shape cluster. Moreover, the density of ring shape
cluster is non-uniform comparing with the density of another cluster. These
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Fig. 8. The testing on data set D2 of TRICLUST: (a)The graph built by triangula-
tion of D2; (b)The distribution of final feature values of D2; (c)The boundary data
points of D2 detected by TRICLUST; (d)The clustering result of D2 by TRICLUST

two clusters are also very close to each other so that the smallest distance
between data points belonging to different clusters smaller than the largest
distance between data points of the ring shape cluster. From Fig.6, we can
notice that TRICLUST separated the two clusters very well and also found
the outliers.

In Fig.7, the clustering results of D1 by K-MEANS, Single Linkage method,
DBSCAN and AUTOCLUST are shown. None of them can get the ideal result.
K-MEANS separated the clusters into half and joined parts of two clusters
together. Single Linkage method, DBSCAN and AUTOCLUST are not able to
distinguish these clusters from each other at all. Comparing with the results
shown in Fig.6, the advantage of TRICLUST to handle clusters with non-
uniform density is well demonstrated.

In data set D2, there are three clusters together with three short bridges and
two isolated outliers. Comparing with the previous data sets, data set D2 is
more challenging because not only the clusters are with complex shapes but
also short bridges exist. From the clustering result by TRICLUST shown in
Fig.8, the good performance of it on D2 is clearly demonstrated.
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Fig. 9. Clustering results of data set D2 by comparison methods: (a)Clustering
result of D2 generated by K-MEANS; (b)Clustering result of D2 generated by
Single-linkage algorithm; (c)Clustering result of D2 generated by DBSCAN, where
EPS = 0.7598; (d)Clustering result of D2 generated by AUTOCLUST algorithm

In Fig.9, the clustering results of D2 by four comparison clustering methods
are shown. K-MEANS method can not discover two of the three clusters. Single
Linkage method and AUTOCLUST joined all three clusters together because
of the short bridges. DBSCAN joined two of the three clusters together.

We also tested TRICLUST with the famous CHAMELEON data sets which
have been regarded as benchmark data sets in this area. From Fig.10 to Fig.11,
the pictures of three CHAMELEON data sets C1 to C2 and clustering results
of them by TRICLUST are provided. In order to illustrate the results better,
we drew clusters with different symbols without outliers in those figures of
clustering results. All clusters in these CHAMELEON data sets have been
correctly detected by TRICLUST, even there are short bridges between clus-
ters. The ability of TRICLUST to deal with large complex data sets with
masses of noises is clearly shown.
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Fig. 10. (a)The picture of CHAMELEON data set C1; (b)The clustering result of
CHAMELEON data set C1 by TRICLUST
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Fig. 11. (a)The picture of CHAMELEON data set C2; (b)The clustering result of
CHAMELEON data set C2 by TRICLUST
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Fig. 12. An example of real world application of TRICLUST

In this section, all clustering results are generated according to the parameters
setting method proposed in Section 4. Users can also set the values of param-
eters based on their knowledge or special requirements. This algorithm also
can be applied on high dimensional data set due to Delaunay Triangulation
can be performed in any dimensional space [33,34].

8 Stability of TRICLUST to deviation of intrinsic parameters

In this section, we will discuss the stability of TRICLUST to three intrinsic
parameters: Smin, Smax in 7 and 5000 in 8.

Parameters Smin and Smax are designed to simulate clustering feature of
human vision: the more data points are inside the data set the less particu-
lar details in relatively small parts of data one can notice. In principle, these
two parameters should be estimated by research of human vision. But TRI-
CLUST algorithm appears to be robust to their deviation. The robustness of
TRICLUST to variation of these parameters is illustrated below by tests on
data set D2 and large data set C1, where Smin varies from 100 to 400 and
Smax from 5000 to 20000. In Table.1, we provide corresponding values of a,
b and c. The clustering results are the same as the ones shown in previous
section.

The number 5000 in 8 is large data set threshold. For large data set, we cut
3% to increase algorithm robustness. This is a standard statistical procedure.
The choice of large data set threshold highly depends on application and, in
general, the variation of it would not affect the performance of TRICLUST.
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Table 1
Variation of values of intrinsic parameters

a b c

Smin Smax D2 C1 D2 C1 D2 C1

5000 0.1694 2 0.9817 0.5 0.5183 1

100 10000 0.1344 1.6162 0.9910 0.6010 0.5090 0.8990

20000 0.1171 0.8453 0.9955 0.8015 0.5045 0.6985

5000 0.1313 2 0.9918 0.5 0.5082 1

200 10000 0.1153 1.6122 0.9960 0.6020 0.5040 0.8980

20000 0.1076 0.8485 0.9980 0.8030 0.5020 0.6970

5000 0.1395 2 1 0.5 0.5 1

400 10000 0.1395 1.6042 1 0.6042 0.5 0.8958

20000 0.1395 0.8367 1 0.8061 0.5 0.6939

9 Real World Application of TRICLUST

We applied TRICLUST on the real world data set collected from European
Topic Center on Air and Climate Change (ETC/ACC), which established the
European air quality database system which contains next to multi-annual
time series of measurement data and their statistics for a representative se-
lection of stations throughout Europe. In this example, we used TRICLUST
to study the distribution of the locations of stations for particular value of
certain air quality feature. Here, the data set is about the locations of stations
with more than 95% coverage for ozone value monitoring. The clustering re-
sult is shown in Fig.12. All 1181 stations have been divided into four clusters
according their location distribution under both global and location view. The
black dots represent stations that are far from others or with irregular loca-
tions. With TRICLUST, people who work in this area can conduct further
investigations on the relationship between station positions and the coverage
of stations. This result is generated automatically by TRICLUST. We can also
set the parameters according to the knowledge on data set to fit the specific
application requirements.

10 Conclusion and Future work

By the theoretical analysis and experimental tests shown above, the ability
of TRICLUST to handle data sets with clusters of complicated shapes and
non-uniform densities, and with large amount of noises is well demonstrated.
The specifically built criteria function based on statistical feature values ex-
tracted from triangulation graph serves as a flexible discrimination according
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to both global and local information, so that our algorithm can work effec-
tively. Moreover, the boundary detection function of TRICLUST has a good
potential for real application. In the future, we will employ more complex
statistical techniques, such as density estimation methods for our threshold
determination to fit certain application requirements. And we will extend our
algorithm to high dimensional applications where the efficiency of our method
need to be improved. For future applications, we plan to apply our algorithm
in environmental research for spatial analysis of large-scale data originating
from satellite imagery and grounded-based sensors, and geo-spatial data pro-
cessing.
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