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Abstract

Clustering became a classical problem in databases, data warehouses, pattern recognition, artificial

intelligence, and computer graphics. Applications in large spatial databases, point-based graphics etc.,

give rise to new requirements for the clustering algorithms: automatic discovering of arbitrary shaped

and/or non-homogeneous clusters, discovering of clusters located in low-dimensional hyperspace, detect-

ing cluster boundaries. On that account, a new clustering and boundary detecting algorithm, ADACLUS,

is proposed. It is based on the specially constructed adaptive influence function, and therefore, discovers

clusters of arbitrary shapes and diverse densities, adequately captures clusters boundaries, and it is

robust to noise. Normally ADACLUS performs clustering purely automatically without any preliminary

parameter settings. But it also gives the user an optional possibility to set three parameters with clear

meaning in order to adjust clustering for special applications. The algorithm was tested on various

2D data sets, and it exhibited its effectiveness in discovering clusters of complex shapes and diverse

densities. Linear complexity of the ADACLUS gives it an advantage over some well-known algorithms.

Index Terms

Clustering Algorithms, Data Mining, Density-based Clustering

I. Introduction

Clustering is a classical problem in databases, data warehouses, pattern recognition, and arti-

ficial intelligence. In last 10 years, clustering algorithms were significantly improved, and many

new features were implemented in them. Recently, due to development of point-based graphics

in computer geometry, a new application area for clustering algorithms has emerged [1]–[5]. It

brought new requirements to clustering procedures. To fit the geometrical applications, clustering

algorithms should be able to determine clusters of arbitrary geometrical shape, clusters of non-

uniform density, and clusters belonging to a low-dimensional hyperspace. The algorithms should

be robust even in the case when significant amount of noise is present. In some applications it
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is necessary to cluster according to the local conditions only. For geometrical applications and

classification problems it is often important not only to determine clusters (as subsets of data

points) but also to draw an accurate boundary between close neighboring clusters. For real-time

applications, it is also very important that clustering algorithms work sufficiently fast, preferably

with linear complexity with respect to the number of data points. Therefore, there is a strong

demand for development of new efficient and robust clustering algorithms.

Existing clustering approaches proposed in last 15 years include partitioning methods (K-

MEANS and K-MEDOIDS) [6], [7], hierarchical methods [8], [9], density-based methods [10]–

[12], model-based methods [13], [14], graph-based methods [15], [16], grid-based methods [17],

[18], etc., and their various combinations and improvements [19]–[22], etc. Some of these

methods became classical. They proved to be successful in detecting certain cluster structures.

Among well-known clustering algorithms there are PAM (partitioning around medoids) [7],

CLARANS (partitioning, medoid-based) [23], BIRCH (hierarchical) [9], OPTICS (hierarchical)

[24], CHAMELEON (hierarchical) [25], DBSCAN (density-based) [10], DENCLUE (density-

based) [11], CLIQUE (density-based and grid-based) [17], CURE (hierarchical) [8], AMOEBA

(graph-based) [15], AUTOCLUST (graph-based) [16], MCLUST (model-based) [26], etc.

Most of the clustering methods require setting of the user specified parameters or prior

knowledge to produce their best results. For example, partitioning methods such as K-MEANS

and K-MEDOIDS face the problem of prescribing the number of clusters in advance. Classic

hierarchical methods, such as single-linkage and complete-linkage methods, require setting of the

merge/ split conditions to end the clustering process. The representative density-based methods

DBSCAN and DENCLUE need to set density threshold parameter. Some other methods require

specific data points distribution [27].

Except for specific applications when we have complete knowledge about the data set to ensure

the validity of chosen parameters, these non-automatic methods are quite unstable because of the

probability of introducing human-generated bias and are not efficient because of time consuming

procedure of parameters tuning. So, it is important to develop a clustering method which can

perform data clustering automatically.

Another new requirement to clustering algorithms is discovering of arbitrary shape clusters.

Pure partitioning methods absolutely lack the ability to deal with clusters of arbitrary shape.

Hierarchical methods can detect clusters of relatively complicated, but still not arbitrary, only
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convex shape. Even improved hierarchical algorithms such as CURE cannot detect clusters of

very complicated shape. Although hierarchical clustering can be effective in knowledge discov-

ery, the cost of creating dendrogram could be prohibitively expensive since the corresponding

algorithms are at least quadratic with respect to the number of data points [11]. Arbitrary shaped

clusters can be detected by density-based algorithms such as DBSCAN and DENCLUE. The

basic assumption in DBSCAN is that each data point inside cluster must have at least the

certain number of data points in it’s neighborhood of the given radius. The primary idea here is

that density of the clusters should exceed some global threshold [10]. But this global threshold

assumption prevents DBSCAN to determine clusters of different density. DENCLUE, contrary to

DBSCAN exploits the idea of field function which efficiently measures local density and results

in a fast performance. Still, it has the similar difficulty in recognition the clusters of different

density. The reason is the same - dependence upon a predefined global threshold.

The distinguishing of different in density clusters is performed (to different extent) in modern

graph-based algorithms such as CHAMELEON, AMOEBA and AUTOCLUST. Among them

AUTOCLUST seems to be the most effective one. It is able to distinguish not only clusters of

different density, but also sparse clusters which are adjacent to high-density clusters. But all al-

gorithms can not recognize clusters with significantly non-uniform internal density which appear

in computer graphics applications (for example, in point-based graphics), pattern recognition,

and geo-image processing. In Fig.1, two examples of non-uniform density clusters are given.

Just by visual inspection, we can easily recognize those clusters whose density are gradually

changing inside, since the variation of discrimination according to the variation of density is

natural and important. Moreover, the complexity of all these algorithms exceeds O(N) because

they require the computation of Delaunay Diagrams of similar graphs. The total complexity is

estimated as O(N log N), where N is the number of data points. Graph-based algorithms are

efficient in spatial databases and geographical information systems (GIS), but their application

to computer geometry, for example, is limited due to non-linear performance and necessity of

total re-computation when the area of clustering is dynamically changing.

Another problem arising from computer geometry clustering is detection of clusters belonging

to low-dimensional hyperspaces. This problem becomes even more important due to recent de-

velopment of point-based graphics. It is associated with the problem of surfels [28] determination

for complex-shaped surfaces. When a surface is defined by the cloud of points unrelated to each
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Fig. 1. Examples of clusters with non-uniform density

other (for example, obtained from 3D scanning process), for a given point it is necessary to

determine it’s neighborhood consisting of such data points, which could be connected to it by

a sufficiently short path along the surface. Such determination requires accurate clustering in

Euclidean vicinity of a given data point taking in account that such vicinity can contain several

different surfels and/or noise.

In common clustering algorithms, boundary detection is usually not incorporated. But, as it

was mentioned above, the problem of cluster boundary definition arises, for example, in computer

geometry applications where we need to compute (and draw) an accurate boundary of a geometric

object determined by the set of points. In work [29], a definition of cluster as a solid described

by a set of points endowed with influence functions was introduced. Such definition is capable

not only to describe granular property of a cluster but also its boundary.

Classification problems give us another example when boundary detection of clusters is really

important. Knowledge of cluster boundaries makes it possible to classify new data without

repeating the clustering process [30]. Thus, detection of cluster boundaries is necessary for

reasoning about clusters [31].

Furthermore, for clustering problems, detection of noise or outliers is also an important task.

In some applications, such as point-based graphics, the definitions of noise and outliers are

different. Noise is caused by environmental factors and is not part of data. Outliers are the

original data points which do not belong to any cluster. In this paper, we consider outliers the
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same as noise. Many traditional methods can detect noise when the density of clusters does

not vary greatly. But it becomes quite a challenge to detect noise when the density of clusters

changes not only between clusters but also inside clusters.

In this paper, we propose a new algorithm ADACLUS (ADAptive CLUStering) based on local

adaptive influence function. It allows to automatically discover clusters of arbitrary shape and

different density (density can be different inside cluster as well as between clusters), to detect

cluster boundaries, and it is robust to noise. Contrary to many existing algorithms, ADACLUS

does not require any parameter pre-setting if it works in pure automatic mode. But it can also

work in manual mode when it gives the user a possibility to tune clustering process by setting

three parameters all of which have clear meaning reflecting possible preferences in particular

applications.

The rest of the paper is organized as follows. In Section 2, we describe new features of ADA-

CLUS and its relation to other methods. In Section 3 the basic ideas and necessary definitions

are introduced. Description of our new algorithm ADACLUS is presented by steps in Section 4.

Complexity analysis of the algorithm is given in Section 5. Results of the algorithm for several

test data sets are described in Section 6. The last Section contains conclusions and future work

directions.

II. New Features of ADACLUS and its Relation to Previous Algorithms

ADACLUS is an adaptive density-based clustering algorithm. Similar to the pioneer DEN-

CLUE algorithm, it is based on the general assumption that a ”natural” clustering partition of a

given data set situated in a metric space can be built through the use of the appropriate ”field

function” 1(i.e. data points integral influence function) which can be determined at any space

point ~X as the sum of influences of all data points at ~X . If the influence of any data point is

restricted to a limited distance from it, or if it is rapidly decreasing with this distance, then it is

enough to take into account only the influences of data points within some limited vicinity of

the given point. This approach (first used in DENCLUE) results in a fast algorithm performance:

the complexity of the algorithm could be made linear (or close to linear) with respect to the

number of data points. It is a very important advantage for computer geometry applications

1We called the density function in DENCLUE field function here.
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where real-time performance is essential. Another important (especially from geometrical point

of view) advantage of field function clustering is that the corresponding algorithms have good

capabilities to detect cluster boundaries [29], [32]. One more important advantage is that these

algorithms can efficiently eliminate outliers.

ADACLUS possesses new important features and at the same time preserves all listed above

advantages of function-based clustering algorithms. The main new feature of ADACLUS is that

the parameters of influence function are not global and not predefined. Contrary to the previous

density-based algorithms these parameters are not constant in ADACLUS. They are completely

adaptive to the local situation in the vicinity of the point in consideration. The control parameters

of ADACLUS could be set either automatically or manually. Generally, automatic settings work

fine, but the user is provided also with the option to tune ADACLUS clustering rule from purely

local-based to local-global-based one. In the latter case the influence function of ADACLUS

takes in the account both local and global information combining them in certain proportion.

The data points influence is modeled by adaptive piecewise linear function which ensure fast

and efficient performance. The reasons of choosing such function and its advantages over other

possible choices are described in the next section.

III. Basic Definitions

• Metric choice.

ADACLUS can work with any metric which defines the distance between points in space.In

ADACLUS we use another metric instead of Euclidean metric, ρ1. Namely, we use the

following definition of the distance between two points:

Definition 1:

ρ1( ~X1, ~X2) =
d∑

i=1

|xi
1 − xi

2| ∀ ~X1, ~X2 ∈ Rd. (1)

From topological point of view the metric ρ1 is equivalent to Euclidean metric, but results

in faster calculations. It is easy to see that ρ1 depends on the choice of coordinate system,

but it is not a disadvantage in our case. If there is no ”natural” coordinate system, associated

with the data, this dependance will not affect significantly the results of clustering. And

if there is such a coordinate system (which is the case for digital images or scanned data
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having intrinsic lattice structure), then the above coordinate-dependent form of metric ρ1

can even result in slightly more accurate performance of the algorithm.

• Influence function choice.

Similar to DENCLUE and other algorithms which use field functions for clustering, ADA-

CLUS also needs a predefined rule for measuring ”influence” of certain data point at any

point in the space. Once such rule is chosen, field function is obtained by summation of all

the influences of data points at the arbitrary space point.

In principle, ADACLUS, like DENCLUE, can work with any kind of influence function.

But in order to create really fast clustering algorithm it is reasonable to choose the simplest

(from the computational point of view) influence function which still preserves all necessary

features for clustering. It is also reasonable to choose such influence function, which depends

on meaningful parameters only. From both points of view, the Gaussian influence function

fGauss(~P , ~X) = c · e− ρ(~P, ~X)2

2σ2 , which is often used in density-based clustering to measure

influence of the data point ~P at the space point ~X , seems to be not the best choice. Indeed:

1) Gaussian function is not quite simple because it requires calculation of the exponent;

2) Except the case when distribution of data points is Gaussian (which is applicable to

special kind of model-based clustering only), Gaussian function is not better than many

other monotonic decreasing functions, which could be much simpler than Gaussian one;

3) The value of parameter σ in Gaussian function does not have any clear meaning if the

distribution of data points is not Gaussian.

4) The long tail of Gaussian distribution could increase the difficulty in the control of

field value. It will bring the problem of parameter setting.

Based on the expressed ideas, we propose the following simple, but flexible function which

models the influence of data points in ADACLUS (see Fig.2)

Definition 2: The influence of the data point ~P at any point ~X in the space is defined as

fa,b(~P , ~X) =





1, if 0 ≤ ρ1(~P , ~X) ≤ a,

b−ρ1(~P , ~X)
b−a

, if a < ρ1(~P , ~X) ≤ b,

0, if ρ1(~P , ~X) > b,

(2)
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Fig. 2. Parametric influence function used in ADACLUS

where the distance ρ1(~P , ~X) is calculated according to (1). Here parameter a denotes such

maximum distance from the data point ~P which is still considered as ”near” one. The

parameter b denotes such minimum distance from ~P which is already considered as ”far”

distance.

It is assumed that b ≥ a. Generally, there exists a non-zero gap between these thresholds,

i.e. b > a. Both a and b are fully adaptive in ADACLUS and their calculation is based on

the mixture of global and local information extracted from the data set.

In the case b = a the function fa,b(~P , ~X) transforms to the Square Wave influence function

which is used in DBSCAN:

fa,a(~P , ~X) =





1, if 0 ≤ ρ1(~P , ~X) ≤ a,

0, if ρ1(~P , ~X) > a.

Based on the Definition 2 we define the field function at any point ~X in the space as:

F ( ~X) =
N∑

i=1

fai,bi
(~Pi, ~X), (3)

where the values of parameters ai, bi which are used to calculate the influence of the data

point ~Pi at any space point ~X , are calculated for each ~Pi taking in account the mixture of
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information about the local distribution of data points in the R−neighborhood of ~Pi and

the global distribution of data points in the whole screen (area of clustering). Proportion of

this mixture is defined by the values of magnitude parameter G and radius R, which are

calculated as described below.

By differentiating (3) with respect to all the components of coordinate system, the follows

formula can be easily obtained for the gradient gradF =
(

∂F ( ~X)
∂x1 , . . . , ∂F ( ~X)

∂xd

)
. We define

here gradF as zero in all points where F ( ~X) is not differentiable.

(gradF )k =
∂F ( ~X)

∂xk
=

N∑
i=1

ci,k( ~X)

bi − ai

, (1 ≤ k ≤ d), (4)

where

ci,k( ~X) =





1, if ai < ρ1(~Pi, ~X) < bi and xk > pk
i ,

−1, if ai < ρ1(~Pi, ~X) < bi and xk < pk
i ,

0, in all other cases.

(5)

On the basis of a field function and threshold T the ADACLUS algorithm determines point-

based clusters and, in another version of the algorithm, boundary-based clusters which are

defined as follows

Definition 3: Given field function F and threshold parameter T, the cluster (or, strictly

speaking, point-based cluster) is such a subset C of the set of data points that

1) F (~P ) ≥ T for each data point ~P ∈ C;

2) ∀~Pi, ~Pj ∈ C there exists a continuous curve x = x(s), 0 ≤ s ≤ 1, such that x(0) =

pi, x(1) = pj, F (x(s)) ≥ T ∀s ∈ [0, 1];

3) it is impossible to add any more data points to C without violating properties 1) or 2).

Definition 4: Given field function F and threshold parameter T, the boundary-based cluster

is a connected component of the domain D = { ~X : F ( ~X) ≥ T}.
Definition 5: The boundary of the boundary-based cluster D = { ~X : F ( ~X) ≥ T} is simply

it’s boundary in the space. It is the domain (curve for 1-dimensional case, surface for 2-

dimensional case, and hyper-surface for high dimensional case) B = { ~X : F ( ~X) = T} or

a part of it.
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• Control parameters of ADACLUS.

ADACLUS depends on 3 scalar parameters which could be either calculated automatically

from the number of data points and their distribution on the screen (as described below),

or defined by the user. All these parameters have clear meaning which gives the user real

possibility to make ADACLUS more adapted for certain area of applications or to tune

clustering results in a specific case. These parameters are:

1) G ∈ [0, 1] - magnifier parameter. If G = 1 the clustering is purely local-based (i.e.

based on the ”fully magnified view”). If G < 1, then clustering is based on the mixture of

global and local information about the data set. Maximum portion of global information is

added when G = 0, but even in this case the algorithm remains local-adaptive. One can

imagine that G describes the ”magnifying glass” through which algorithm ”looks” at the

data while determining clusters. If G = 1, then algorithm ”looks through a microscope”, and

therefore performs clustering on a very local level. It results in the tendency to achieve small

”micro”-clusters. When G decreases, the ”microscope” is being continuously converted to

a simple glass without any magnification. The smaller G becomes the more the tendency

to glue neighboring small clusters into bigger ones increases. Parameter G must be chosen

(automatically or manually) before the algorithm starts.

2) The second parameter, T ≥ 0, is a threshold parameter. It determines a field function

value threshold which divides inner-cluster and outer-cluster domains in the data space. T

serves like a hierarchial parameter: big values of T result in more solid, dense inner-cluster

domains and in treating relatively sparse areas as outer-cluster domain. Contrary to the first

parameter, parameter T may be chosen (or altered) at the end of the clustering process,

because changing it’s value requires repetition only of the final step of the algorithm.

3) S, screen size, - natural number which gives the upper bound for the ”screen” linear size

in pixels. The term ”screen” is used here for the domain in data space where clustering

is performed. Without lost of generality, we assume that this domain is a d-dimensional

rectangular parallelogram which longest side does not exceed S pixels.

IV. ADACLUS Algorithm Description

ADACLUS algorithm performs clustering in several steps. Without lost of generality we will

assume in this section that the data set consists of N d−dimensional vectors: {~P1, ~P2, . . . , ~PN},
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~Pi = (p1
i , . . . , p

d
i ) ∈ Rd, and N > 1.

If not specified by the user, the values of parameters T and S are set automatically to T =

1, S = 1000. Here, the value T = 1 means that value of the field function for cluster boundaries

is set to 1. The value S = 1000 means that the distance between data points which is less than

1/1000 of the side length of the screen is considered as a very small one and such points are

glued together. Such value of S is quite natural for visual clustering and for computer geometry

purposes.

The parameter G is calculated during STEP 3 if it was not pre-defined by the user.

STEP 1. Quantization and integer-coding.

First, for each of d coordinate axes the minimum and maximum values of corresponding data

point component are determined: mk = min{pk
i , 1 ≤ i ≤ N},Mk = max{pk

i , 1 ≤ i ≤ N}, 1 ≤
k ≤ d. Then, for each 1 ≤ k ≤ d the interval [mk,Mk] is divided into S intervals (”quanta”)

∆k
j (1 ≤ j ≤ S) of equal length: ∆k

j = [mk +(j−1)Mk−mk

S
,mk +j Mk−mk

S
], where S is the screen

size parameter. Finally, each of d vector components of each data point is coded by a pair of

integers (the number of the component and the number of the interval to which this component

belongs):

pk
i → (k, p̃k

i ), if pk
i ∈ ∆k

epk
i
.

All further actions, related to all data points, are performed only with pairs of integers (k, j),

such that the corresponding interval ∆k
j is not empty (i.e. some data points components fall into

it). Evidently, the total number of such pairs does not exceed dN.

STEP 2. Minimal distances (MD) calculation.

For each data point ~Pi the corresponding minimal distance MD(i) from this data point to

other data points is calculated in the sense of metric ρ1. Since coordinates of data points were

already converted to integers during STEP 1, all the minimal distances will be expressed by

positive integers. It immediately follows from the definition of the metric ρ1 (see Definition 1)

and the assumption N > 1.

STEP 3. Parameter G automatic determination.
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One of the aims of ADACLUS is to serve computer-vision related problems, and therefore the

general idea here is to follow a ”human’s eye approach” in clustering. In automatic parameter

setting, the value of magnifier parameter G is chosen according to the number of data points

and their distribution on the screen. The exact formulas are given below, but in general, the rule

is as follows.

Parameter G is chosen close to 1 (maximum magnification) when there is not too many data

points in the screen and/or their distribution is approximately uniform inside the expected clusters.

In both cases, the clustering is based on local information only, without taking in account global

features of the whole picture. The reason is that if there is such a small amount of data points

that one can notice any of the data points ”at one glance”, then the ”natural eye-based” clustering

should depend exclusively on the local details of the data points distribution. Moreover, the small

number of data points is not enough to generate reliable global features of distribution which

could be useful for clustering. Below we assume that number of data points, starting from which

a human’s eye starts missing individual points and therefore the manner of discrimination starts

shifting from local to global one, is approximately 200 points. Another threshold - the number

of points, starting from which global features of the data set become fully important for the

human’s eye, - we choose as 2000. Both numbers are very approximative, but the clustering

results are quite robust to their variations.

In the case when the points are distributed uniformly inside clusters, there is also no need to

add global information to local one (for any number of points), because the global information

in this case tells us nothing new and important about the data point distribution properties. So,

in the both cases clustering can be performed purely locally. Vice versa, if there are many data

points and/or they are distributed quite irregularly with a lot of small details of distribution, then

it is natural to look at the whole picture more globally to unite tiny clusters rather than separate

them (if it is not the case in a certain application, user can always set the magnifier parameter

G manually). The calculations of G are performed in the following order.

First, based on the minimal distances which have been calculated during STEP 2, the values of

mean mMD = 1
N

∑N
i=1 MD(i) and standard deviation stdMD =

√
1

N−1

∑N
i=1(MD(i)−mMD)2

are calculated. Let us denote

t =
stdMD

mMD

.

January 1, 2007 DRAFT



13

Value of t is used in ADACLUS as an approximative measure of the deviation of data points

density inside clusters from the ”regular” one (i.e. uniform inside clusters). Let us show that, if

the density of data points inside clusters is approximately uniform, then the value of t should be

close to 1√
d
. First, we recall the fact that the uniform distribution of data points in clouds appears

as a consequence of their Poisson distribution in data space [33], [34]. Next, according to (1), the

minimal distance MD can be approximated by a sum of d independent one-dimensional minimal

distances, taken along the certain coordinate directions. It is known from probability theory that

in the case of Poisson distribution of data points in R, the distance between neighboring points

(i.e. minimal distance in our terminology) is distributed by the exponential law. Consequently,

the law of distribution of minimal distances MD in the case of uniform density clusters in Rd

can be well approximated by the law of distribution of a sum of d independent one-dimensional

variables distributed exponentially with locally the same parameter λ. Of course, λ can vary

from one cluster to another, but this does not create a problem because the following statement

is valid.

Lemma 1: Assume that η = ξ1 + . . . ξd, where ξ1, . . . , ξd are independent one-dimensional

random variables, distributed exponentially P (ξi < x) = 1 − e−λx, 1 ≤ i ≤ d, λ > 0. Then,

for any λ > 0:

tη =

√
E(η − Eη)2

Eη
=

1√
d
,

where Eζ denotes the mathematical expectation (mean value) of a random variable ζ .

Proof: For the exponential distribution,

Eξi =
1

λ
, E(ξi − Eξi) =

1

λ2
, 1 ≤ i ≤ d.

Consequently Eη = d
λ

and therefore independence of ξi implies that E(η−Eη) = d
λ2 . Therefore,√

E(η−Eη)2

Eη
= 1√

d
.

Lemma 1 implies that in the case of uniform (or approximately uniform) density of data points

inside each cluster, the value of t will be close to 1√
d
. When the distribution of points inside

clusters deviates from the uniform one, the value of t increases and t is a sensitive characteristic.

For example, for d = 2, the value of t will be about 1√
2
≈ 0.7 in the case of uniform density

clusters and about 1.0 for clusters which are already rather irregular in density.

Note, that we do not make here any assumptions about generator of the data set. The proposed

method of measuring density irregularity by the value of characteristic t is not model-based. It
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Fig. 3. Parameter G determination based on the values of G0 and G1

is applicable for any sort of data - stochastic or deterministic (chaotic, for example).

The value of magnifier parameter G is calculated as:

G = G0 + G1 −G0G1, (6)

where

G0 =





1, if N ≤ 200,

1− N−200
1800

if 200 ≤ N ≤ 2000,

0, if N ≥ 2000.

(7)

G1 =





1, if t ≤ 1/
√

d,

1− t−(1/
√

d)

1−(1/
√

d)
if 1/

√
d ≤ t ≤ 1,

0, if t ≥ 1.

(8)

In (7) and (8), the values of G0 and G1 model the ”magnifier factors” due to the number of data

points N and to the inner-cluster density irregularity characteristic t. The final ”magnification
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TABLE I

EXTREME G VALUES

G1\G0 0 1

0 0 1

1 1 1

rate” G is calculated in (6) by means of bilinear surface, Fig.3 (see, for example [35]) determined

by Table.I of extreme G values, where G0 and G1 are the entries of the table.

As it was mentioned above, we assume in (7) that 200 data points is a small enough number to

observe each of them separately and therefore, ”natural” clustering in this case should be purely

local-based. It is assumed that 2000 data points is a big enough number to make observation

of individual points impossible, forcing therefore the ”natural” clustering to be performed from

more global point of view. The thresholds t = (1/
√

d) and t = 1 used in (8), were already

validated above.

STEP 4. Calculation of the localization radius R.

In order to initiate the ADACLUS algorithm we first determine the size of the neighborhood

in which the local considerations will be performed for each data point. Taking in account the

value of G, which was calculated during STEP 3, the radius R of the ”ball” representing this

neighborhood is chosen as:

R = min{GRloc + (1−G)Rglob, 1/2
d
√

100 mMD}, (9)

Rloc = min{x : x ≥ Rglob, gMD
emp (x) = 0}, (10)

Rglob = min{x : Pemp(MD < x) = 0.9}, (11)

where gMD
emp (x) denotes the empirical density (frequency histogram) of the MD distribution

calculated in STEP 2, Rglob represents a 90% of this distribution, and Rloc is it’s first zero

greater than 90%. See Fig.4. Note that according to Definition 1, the ”R-ball” in Rd will be

represented by the d-dimensional cube with the side length 2R in Euclidean metric. The radius

R of this ”ball” is restricted to c ·mMD (c times average minimal distance between data points)

in order to keep the complexity of the calculations linear with respect to N for any kind of
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Fig. 4. Localization radius choice in ADACLUS

data set. The value of the coefficient c = 1/2 d
√

100 is chosen in such a way that the average

number of data points in a d-dimensional Euclidean cube with side length 2R is restricted to

approximate 100 data points maximum.

According to (9)-(11) the localization radius R is computed as the restricted mixture of

”global” and ”local” values of the neighborhood radius. The mixture is taken in the proportion,

determined by the parameter G (which was already calculated in STEP 3 or manually set by

the user). The value of Rglob represents ”10%-cut maximum” of the distribution of MD. 10%

margin is cut off taking in account the possibility of the outliers and for algorithm stability. If the

distribution of data points is approximately the same in different parts of the data set, then Rglob

gives a suitable value for the neighborhood radius. Otherwise, it may be not so. One example

is the situation when there are several dense parts in the data set which include majority of data

points, but there are also sparse areas which are big enough but contain a relatively small amount

of data, see Fig.5. If we are performing clustering from the global point of view, then, when we

cluster in sparse parts we should remember that they are really sparse. This information could

not be extracted locally - it comes from the global distribution of MD and is summarized in the

value of Rglob. So, for global-based clustering we can use this value. .

But if the aim is to perform clustering in sparse parts of the screen more locally, without taking

in account far away density characteristics, then the appropriate value of the neighborhood radius

should be determined by sparse areas not based on the whole MD distribution, but on it’s right

tail only. As we still do not want to be influenced by the outliers in this case, we choose Rloc
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Fig. 5. Example of a data set with non-uniform distribution of data points

- the first zero of MD histogram greater than 90%. It corresponds to the largest value of MD

which still belongs to sparse component of MD distribution, cutting the outliers off, see Fig.4.

Such value will be good for sparse areas, but it will also work for dense areas, because the final

decisions are made based on the microanalysis performed inside the R-neighborhood of the data

point. If this neighborhood was chosen too big, it will not spoil the results but rise the amount

of calculations. However, in the situation which we consider now, the total area of dense parts

is not very big in comparison to the whole screen, so the amount of extra calculations will be

reasonable.

The balance between these two situations is calculated by the formula (9) in accordance with

the value of parameter G.

STEP 5. Local microanalysis. Determination of ai and bi for each data point ~Pi.

After localization radius R was determined in STEP 4, for each data point ~Pi (1 ≤ i ≤ N), we

mark all data points belonging to its neighborhood NeR(~Pi) = {~P : ρ1(~P , ~Pi) ≤ R}, including
~Pi itself. And we consider the part of the whole MD distribution (built in STEP 2) which consists

of only those minimal distances, which are associated with the data points from NeR(~Pi). Let’s

denote the corresponding frequency histogram gMD; i
emp (x), it’s mean value mi

MD, and it’s standard
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Fig. 6. The choice of local parameters ai, bi in ADACLUS

deviation std i
MD.

Based on the histogram gMD; i
emp (x), we define ai as the ”typical minimum” of MD inside

NeR(~Pi) in order to eliminate the effect of local outliers and irregular dense area, which

represents ”typically small” value of MD in NeR(~Pi). More precisely, we define ai as following.

(see Fig.6)

ai =
di; 1 + di; 2

2
, (12)

where di; 1 is the biggest zero of gMD; i
emp (x) which does not exceed the mean:

di; 1 = max{x : x ≤ mi
MD, gMD; i

emp (x) = 0}, (13)

and di; 2 is 10%-fraction of the distribution gMD; i
emp (x) :

di; 2 = max{x : PMD; i(MD < x) = 0.1}. (14)

We use di; 1 to eliminate the potential effect cased by local outliers, which are the outliers

detected under local view. One example is the situation when the ”R-ball” of a data point in

sparse area includes several data points near to a dense cluster. We should not count these data

points in, since they are local outliers for the dense cluster. For the same reason, when the

”R-ball” of a data point in sparse area includes several data points belonging to a dense cluster,

we also need to cut these data points off. This is why we set di; 2.
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Finally, taking in the account ”3σ−rule”, we define bi based on the value of magnifier

parameter G as:

bi = ai + (4− 2G)std i
MD. (15)

So, the gap between ai and bi varies around ”3σ” ranging from 2 times of standard deviation

in the case of local clustering to 4 times of standard deviation in the case of maximum portion

of global information added.

STEP 6. Computation of the field function in all data points.

Based on the values ai, bi (1 ≤ i ≤ N) which are determined in STEP 5, we calculate the

field function F (~Pi) for all data points ~P1, . . . , ~PN by means of the formula (3).

STEP 7. Determination of the point-based clusters.

To determine point-based clusters (Definition 3), ADACLUS employs the standard hill-climbing

algorithm and applies the similar method for clustering procedure as [11]. The direction of the

hill-climbing is determined by the vector of the field function gradient, given in (4). After

clustering process, data points which can not be assigned to any clusters are labeled as outliers.

STEP 8. Determination of the boundary-based clusters and boundary detection.

Direct drawing exact cluster boundaries { ~X : F ( ~X) = T} according to the Definition 4 may

be time-consuming in the case of big screen, because it requires additional calculation of field

function F ( ~X) in many space points. (Note that in STEP 6 the field function was calculated for

data points only.) The total number of space points in the screen after quantization (see STEP

1) equals to Sd, which could be quite big number in comparison with N . But the amount of

calculations still can be reduced to O(N) by preliminary marking the space points, such that

the field function is greater than zero for them. This can be done together with calculation of

ai, bi during STEP 5. Namely, after bi was determined for a certain i, we mark all space points

in the ρ1−ball of bi-radius with the center in ~Pi : Nebi
(~Pi) = { ~X : ρ1( ~X, ~Pi) < bi}. This will

reduce the amount of calculation to O(N), where N is the number of space points in which the

field function is to be calculated during this step.
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V. Complexity Analysis: Linear Complexity of ADACLUS

The time complexity of ADACLUS is analyzed theoretically by steps below.

STEP 1. First step required dN operations for determining mk,Mk (1 ≤ k ≤ d) and another

dN operations for the coding procedure. The total complexity of this step is O(dN).

STEP 2. In order to make the complexity of this step linear with respect to N , the tables of

correspondence between quantum numbers (i.e. integers from 1 to S) and the data points which

have this number as the code of their k−th coordinate, are created for each 1 ≤ k ≤ d. These

tables are computed simultaneously with the coding procedure during STEP 1, so it requires

dN additional operations only. Based on the mentioned tables, the minimal distance (MD) is

calculated for each data point ~Pi by searching the nearest data point among only such data points
~Pj that their coordinate codes p̃k

j are neighboring to the coordinate code p̃k
i . It requires O(dN)

operations, so the total complexity of this step is O(dN), too.

STEP 3. In this step, the calculations are performed according to the formulas (6), (7), and

(8). The complexity of these calculations does not depend neither on N nor on d. It is constant.

STEP 4. Calculations in this step are performed according to the formulas (9), (10), and (11).

They are based on MD distribution which is obtained together with MD values during STEP 2

(without rising it’s complexity). Complexity of the STEP 4 does not depend neither on N nor

on d. It linearly depends on S only.

STEP 5. The complexity of this step equals to the complexity of calculation of the histograms

gMD; i
emp (x) for all data points ~Pi. All other calculations here consist in direct evaluation of the

expressions (12), (13), (14), and (15). In order to calculate the histogram gMD; i
emp (x) for ~Pi, it

is enough to determine all data points which belong to the vicinity NeR(~Pi). This could be

done based on the tables of correspondence between quantum numbers and the data points (see

complexity analysis for STEP 2). Therefore, the total complexity of the STEP 5 equals to O(cN),

where c is the average number of data points in the vicinity NeR(~Pi) for an arbitrary data point
~Pi. According to the definition of R in (9), there are not more than 100 data points in NeR(~Pi)

in average, so the complexity of the step does not exceed O(100N) which is linear with respect

to N and can be written as O(N).

STEP 6. According to (3), the complexity of this step in O(kN), where k is the average

number of data points influencing the arbitrary data point ~Pi (i.e. such ~Pj that faj ,bj
(~Pi) > 0).

It is easy to see that the same k represents also the average number of data points, which are
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influenced by a randomly chosen data point ~Pi. The data points, influenced by ~Pi are such and

only such data points ~Pj , that their distance to ~Pi is less than bi : ρ1(~Pi, ~Pj) < bi. According

to (12),(15), bi does not exceed ai + 4std i
MD, where ai is the typical minimum of the minimal

distance between data points in the R-neighborhood of ~Pi and std i
MD is the standard deviation

of this minimal distance in this neighborhood. The worst case, giving the largest number of

data points in the neighborhood of ~Pi, is evidently the case when typical minimum of MD

equals to typical MD in the neighborhood of ~Pi, i.e. when the distribution of data points in this

neighborhood is uniform (because the more there are MD’s larger than minimal ones, the less

will be the number of data points in the neighborhood of ~Pi). But in the case of approximately

uniform data points distribution in the neighborhood of ~Pi, according to Lemma 1, the value

of std i
MD will equal approximately to 1√

d
mi

MD, and according to (12)-(14), the value of ai for

exponential distribution of MD (corresponding to uniform distribution of data points) will not

exceed mi
MD. Consequently in the uniform case we have:

bi ≤
(

1 +
4√
d

)
mi

MD < 5mi
MD,

where mi
MD is average MD in the neighborhood of ~Pi. Consequently, in the case of uniform

density of data points around ~Pi, the average number of them in bi−neighborhood of ~Pi will be

approximately equal to 10d. For any other distribution, it will be smaller. Consequently,

k ≤ 10d.

It is theoretical upper bound for k. In real calculations, it is much smaller, because for

uniformly distributed data points, the magnifying parameter G is set to 1 (see(6),(8)) and in

this case, according to (15), bi = ai + 2std i
MD < 3mi

MD. So, the inequality for k turns to

k < 6d, which is still not a typical value but an upper bound.

We conclude that the complexity of this step is typically lower than O(6dN), which means

O(36N) in the case of R2 screen. Theoretical upper boundary for the complexity of this step

is O(10dN). This complexity is linear with respect to N .

STEP 7. The hill-climbing algorithm has linear complexity with respect to the number of

data points [11], so the complexity of this step is O(N).

STEP 8. The complexity of this step is O(N) as explained in the description of this step.
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TABLE II

SHAPE FEATURES OF TESTING DATASETS

Data- Shape Shape Data Number

set feature 1 feature 2 points of Outliers

name distribution

D1 Circular Non-concave Non-uniform 3

D2 Non-circular Concave Non-uniform 3

D3 Circular Concave Non-uniform 3

TABLE III

STATISTIC FEATURES OF TESTING DATASETS

Data- Number Mean Standard

set of data mMD deviation
stdMD

mMD

name points stdMD

D1 76 0.4714 0.3793 0.8045

D2 191 0.3242 0.3262 1.0062

D3 289 0.2980 0.2842 0.9537

Therefore, ADACLUS has linear complexity. The total complexity is O(N) with respect to

the number of data points N . It is O(dN) with respect to both data points number and dimension

d of the data space.

VI. Comparison and Performance Analysis

The proposed algorithm ADACLUS was implemented and tested on the following data sets.

We designed three testing data sets D1 to D3 with non-uniform distribution of data points inside

clusters. Generally, there are clusters of arbitrary shapes in the data sets. We differ two shape

features of clusters in our data sets: circular/non-circular, and concave/non-concave. The data

sets names, the shape and statistic features of these data sets are listed in Table.II and Table.III.

We applied ADACLUS and classic clustering methods such as K-MEANS, hierarchical Single

Linkage and Complete Linkage methods, and DBSCAN on D1 - D3 data sets. We choose
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these classic clustering methods because they are representative in this area, and standard

implementations of these methods are available. We can avoid the potential problems causing by

different implementations, which could lead us to bias in results comparisons.K-MEANS method

is still the most widely used method, and it is based on the optimization principles which form

a foundation for many well-known data mining techniques. We employed the squared Euclidean

distance and random selection of initial cluster centers for K-MEANS in our testing. Linkage

hierarchical methods have a good ability of handling clusters with some complicated shapes.

DBSCAN is another well known density-based clustering method for dealing with arbitrary

shape clusters and outliers. The implementation of DBSCAN is provided by the author and

all parameter settings are based on the instruction given in the original paper (k = 3 and

MinCard = 4 for our 2-dimensional data sets).

By comparing with those methods, we can have a more clear idea of the performance

of ADACLUS. The characteristics of ADACLUS such as extracting both global and local

information from data set and detecting outliers based on both global view and local view,

have been well demonstrated. All results provided here are generated by automatic setting of

parameters, which was described in Section IV. For the user who has a very clear expectation

of the data set, parameters also can be set based on his knowledge of data.

In Fig.7, the picture of D1, statistic information, cluster boundaries and clustering result of

D1 by ADACLUS are shown. The three clusters are well separated as well as three outliers.

In Fig.8, the clustering results of testing data set D1 by four classic clustering algorithms are

shown.

Data set D1 is a challenging data set with non-uniform density clusters and outliers. There

are three outliers and three clusters among which two clusters have relative uniform inner cluster

density but different inter cluster density and the biggest cluster has non-uniform inner cluster

density. The difficulty here is that the smallest cluster is very close to the biggest one. From the

clustering results, the ability of ADACLUS for discovering clusters based on both global and

local information is well demonstrated. K-MEANS and Single-linkage method can not separate

the clusters correctly. Complete-linkage method fails to detect the outliers. DBSCAN successes

in the outliers detection, but fails in separation of the nearby clusters.

In Fig.9, the picture of data set D2, statistic information, cluster boundaries and clustering

result of D2 by ADACLUS are shown.
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Fig. 7. The testing on data set D1 of ADACLUS: (a)The picture of data set D1; (b)The distribution of all minimal distances

of data set D1; (c)The boundary of data set D1 built by ADACLUS, T = 1; (d)Clustering result of D1 by ADACLUS

In Fig.10, the clustering results of testing data set D2 by four classic clustering algorithms

are shown.

Data set D2 is a very challenging one for most clustering algorithms. There are three clusters

together with three outliers among which one is very close to one cluster. There are two clusters

with non-uniform inner density. Based on visual inspection, we can easily notice the density

differences between clusters and outliers, although the smallest distance between one outlier to

the nearby cluster is smaller than the biggest distance between data points inside that cluster.
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Fig. 8. Clustering results of D1 by comparison methods: (a)Clustering result of testing data set D1 by K-MEANS; (b)Clustering

result of D1 by Single-linkage algorithm; (c)Clustering result of D1 by Complete-linkage algorithm; (d)Clustering result of

testing data set D1 generated by DBSCAN, where EPS = 0.8095
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Fig. 9. The testing on data set D2 of ADACLUS: (a)The picture of data set D2; (b)The distribution of all minimal distances

of data set D2; (c)The boundary of data set D2 built ADACLUS, T = 1; (d)The clustering result of data set D2 by ADACLUS

Except ADACLUS, no method can separate all clusters and detect all outlier correctly at the

same time.

In Fig.11, the picture of data set D3, statistic information, cluster boundaries and clustering

result of D3 by ADACLUS are shown.

In Fig.12, the clustering results of testing data set D3 by four classic clustering algorithms

are shown.

Data set D3 which is another very challenging data set to all well-known clustering methods.
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Fig. 10. Clustering results of data set D2 by comparison methods: (a)Clustering result of testing data set D2 by K-MEANS;

(b)Clustering result of D2 generated by Single-linkage algorithm; (c)Clustering result of D2 generated by Complete-linkage

algorithm; (d)Clustering result of testing data set D2 generated by DBSCAN, where EPS = 0.7432
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Fig. 11. The testing on data set D3 of ADACLUS: (a)The picture of data set D3; (b)The distribution of all minimal distances

of data set D3; (c)The boundary of data set D3 built ADACLUS, T = 1; (d)The clustering result of data set D3 ADACLUS

In the data set D3, there is one small cluster inside another cluster which is a big ring shape

cluster with non-uniform density. There is an outlier located inside the ring as well. It can be

observed from the results that the ADACLUS detects natural clusters even in this complicated

case. As it is seen from the Fig.12, other algorithms can not cluster this data set in the expected

way. K-MEANS method and Complete-linkage method can not discover the ring shape cluster

since they lack the ability to handle clusters with concave shapes. Single-linkage method suffers

from correct separation of clusters. DBSCAN fails in keeping the integrity of the ring shape
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Fig. 12. Clustering results of data set D3 by comparison methods: (a)Clustering result of testing data set D3 by K-MEANS;

(b)Clustering result of D3 generated by Single-linkage algorithm; (c)Clustering result of D3 generated by Complete-linkage

algorithm; (d)Clustering result of testing data set D4 generated by DBSCAN, where EPS = 0.6737

January 1, 2007 DRAFT



30

cluster and detecting one local outlier.
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Fig. 13. Clustering results of ADACLUS for data sets S1− S4, from (a) to (d) correspondingly

We also tested ADACLUS with some large data sets S1 − S4 proposed in work [36]. We

showed the results of clustering on the data sets with clusters boundaries. Fig.13 shows the

results of ADACLUS for testing data sets S1 − S4. The details of the data sets are listed in

Table.IV.

The S1−S4 data sets are two-dimensional data sets with 15 predefined clusters. The distances

between the clusters keep decreasing from data set S1 to S4. Fig.13 shows the results of
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TABLE IV

STATISTIC FEATURES OF DATA SETS S1− S4

Data- Number Mean Standard

set of data mMD deviation
stdMD

mMD

name points stdMD

S1 5000 0.0459 0.0497 1.0818

S2 5000 0.0547 0.0530 0.9677

S3 5000 0.0591 0.0550 0.9311

S4 5000 0.0534 0.0557 1.0426

ADACLUS. For data set S1, ADACLUS separated 15 clusters very well. Since the information

of local distribution of each cluster is used, outliers are detected by ADACLUS as well. Parts of

the data set inside boundaries are formed by data points with continuously changing density. The

areas where the field density changes suddenly are cut by ADACLUS. From data set S1 to S4,

the number of clusters keeps decreasing because of the decreasing distances between clusters.

For data set S4, we have only one big cluster for the whole data set. But based on the local

information, there are still many small isolated parts surrounding the big cluster which can be

regarded as outliers.

To test the capacity of ADACLUS in handling large data set with irregular shape and non-

uniform density distribution. We applied ADACLUS on two large data sets LD1 and LD2. The

statistic information of those data sets are list in Table.V. From the result, we can draw the

conclusion that ADACLUS is able to deal with quite large and complex data set, especially,

when data density inside clusters are changing as long as local outliers existing.

VII. Real World Application of ADACLUS

To illustrate the practical value of ADACLUS, we apply it on the real world data set collected

from European Topic Center on Air and Climate Change (ETC/ACC), which focuses on the

EU-ECCP (European Climate Change Programme), CAFE (Clean Air for Europe) and related

legislation, such as the Greenhouse Gas Monitoring Mechanism and the Air Quality Framework

Directive. To achieve those objectives, ETC/ACC established the European air quality database
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TABLE V

STATISTIC FEATURES OF LARGE DATA SETS LD1− LD2

Data- Number Mean Standard

set of data mMD deviation
stdMD

mMD

name points stdMD

LD1 4760 1.8511 1.2844 0.6939

LD2 8170 1.5252 0.7191 0.4714
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Fig. 14. Clustering result of large data set LD1 by ADACLUS

system which contains next to multi-annual time series of measurement data and their statistics for

a representative selection of stations throughout Europe. We chose the data set of the locations of

stations. From our clustering result shown in Fig.16 and Fig.17, the coverage of the stations over

Europe and the relationship between stations can be discovered especially by the building cluster

boundaries. People who work in this area can conduct further investigation in the distribution

of station locations based on our result. This result is generated automatically by ADACLUS.

We can also set the parameters according to the knowledge of data set, such as the coverage of

each station, to fit the specific application requirements. The statistic features of this data set is

shown in Table.VI.

ADACLUS allows automatically to discover clusters of arbitrary shape, different in density
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Fig. 15. Clustering result of large data set LD2 by ADACLUS

TABLE VI

STATISTIC FEATURES OF OUR REAL WORLD DATA SET

Data- Number Mean Standard

set of data mMD deviation
stdMD

mMD

name points stdMD

Real world data 5456 0.1061 0.2959 2.7903

and clusters of non-uniform density, to detect boundary of the clusters, and it is robust to outliers.

It was demonstrated that the algorithm has linear performance that is very important for real-

time applications. Although the proposed algorithm is generally automatic, the user is given the

possibility to tune the algorithm to his/her application by choosing values of three parameters

that have clear meaning. ADACLUS is also able to be applied in high dimensional applications

by extending the concepts of surface to hyper-surface and solid to hyper-solid.

VIII. Conclusion and Future work

In this paper, we proposed and described new clustering and boundary detection algorithm

ADACLUS. The algorithm is based on the introduced adaptive influence function. It allows

automatically to discover clusters of arbitrary shape, different in density and clusters of non-
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Fig. 16. The locations of stations throughout Europe

uniform density, to detect boundary of the clusters, and it is robust to noise. It was demonstrated

that the algorithm has linear performance that is very important for real-time applications.

Although the proposed algorithm is generally automatic the user is given possibility to tune

the algorithm to his/her application by choosing values of three parameters that have very clear

meaning.

The algorithm was tested on 2-dimensional data sets, and performance was compared with

performance of other well-known algorithms. As the next step in our research, we plan to apply

our algorithm to the real application data including the one in computer geometry for detection

of clusters belonging to a low-dimensional hyperspace.
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Fig. 17. Clustering result of ADACLUS
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