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A method is suggested of computer gluing of 2D projective images of the same
object obtained from different points in the space. This problem is well-known in
computer geometry 5, 6, 1. The suggested method is based on a general approach
to recognize similar fragments in perturbated sets of objects which was suggested
by A.T.Fomenko and the author 3, 4. The corresponding algorithm has a linear
complexity with respect to the total number of pixels in the images and to the
number of groups of values which appear in the pixels. Keywords : Computer
geometry, Multiple view computer geometry, Computer vision, Computer graph-
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mappings.

1. Introduction

One of the important problems in modern computer geometry is a problem
of creating efficient computer algorithms for gluing together 2D projective
images of the same object obtained by central projection from different
points in the space. Such a problem arises in multiple view geometry,
in stereophotogrammetry, etc. See for example 1, 5, 6. The solution of
this problem requires computer algorithms of the recognition of conjugate
points. But algorithms of this kind are either not very efficient or require
specific additional information which in many cases may not be available.

From purely geometrical point of view this problem could be formulated
as a problem of computation of a projective mapping F , which bounds two
(in general case - unknown) domains D1 and D2, which belong to the same
affine coordinate map of a projective plane RP 2. See Figure 1. In order to
solve this problem one must have an ability to recognize some pairs of points
which correspond to each other by means of an unknown projective mapping
F. In applications such points are sometimes called conjugate points with
respect to F or simply conjugate points. We will follow this terminology.
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Figure 1.

In this paper we suggest an algorithmic method of computer recognition
of conjugate points - mostly for the case when the given 2D images are color
(which implies that there is a sufficiently large number of possible values
which could appear in the pixels of the images). This method is based on
a general approach to the recognition of similar fragments in perturbated
sets of objects which was suggested by A.T.Fomenko and the author 3, 4.
The corresponding algorithm has a linear complexity with respect to the
total number of pixels in the images and to the number of groups of values
which appear in the pixels. We assume that the rule of making such groups
was fixed at the very beginning.

It is known from projective geometry that in order to completely define
a projective mapping F : RP 2 �→ RP 2 it is enough to know (absolutely
precisely) two sets, each consisting of four arbitrary points in RP 2, such
that one of these sets is mapped to another by mapping F. In practical situ-
ations, however, one can not determine such points with absolute precision.
They are obtained with some error. So, it is necessary to make estimations
of the stability of the computed value of F with respect to admissible per-
turbations of the initial data. Such stability could be characterized by the
value of the determinant of the coefficient matrix for the system of linear
equations which determine the elements of F. In Section 3 this determinant
is calculated which makes it possible to formulate a rule of optimal choice
of the configuration of conjugate points.
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2. A method of recognition of conjugate points, based on
the distribution of shifts between bounded patterns

Assume that we have two photo (or video) images E1 and E2, which were
obtained by two different cameras. Assume that the same 3D object X

appears on both images E1 and E2. It means that we have two images
of the same object X, which were obtained by central projection from two
different points in the space by means of two different, generally non-parallel
planes of projection. See Figure 1. The configuration of the centers and
planes of projection is unknown. It is also unknown whether the pictures
of the object X cover the whole images E1, E2 or only some parts of them.

We will call two points (in the discrete case - pixels) of the images E1

and E2 respectively conjugate if the same point of X was projected to these
two points.

Let us assume that both images E1 and E2 are digital or were already
digitized. Assume that each of them is represented by a square matrix
of size n × n. The value of the matrix element (ij) is a vector eij

k which
characterizes the balance of colors and the intensity at the pixel (ij).

Assume that the set of possible values of eij
k consists of many sufficiently

different values. In our case we consider two values as sufficiently different
if they can not (except for the cases of influence of random perturbations)
appear in conjugate points of images E1 and E2.

We assume that the set of possible values of eij
k was divided into finite

quantity m of groups of values close to each other (i.e. we consider grouped
sample). We will call these groups patterns and denote them by a1, . . . , am.
We denote the set of all possible patterns by

I = {a1, . . . , am}.
Each of the images Ek(k = 1, 2) is represented as an n× n matrix with

pattern numbers 1 ≤ eij
k ≤ m as matrix elements.

We will assume that m is large enough. It will be so, for example, in
the case of color images. In the case of black and white or grayscale images
it is possible to increase the value of m by considering the whole block
d × d, (d > 1) of pixels as an elementary cell of matrix Ek(k = 1, 2).

Our purpose is to build an efficient algorithmic procedure of the recog-
nition of conjugate cells of the images E1 and E2 in the situation when
there is no apriori information about the object X and its location on the
images E1 and E2. All information concerning the conjugate cells and their
vicinities should be taken from the original images E1 and E2 which are
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ordinary pictures and do not carry any additional facilities for recognition.
In this article we consider the case when the vertical axes of the rec-

tangular images E1 and E2 respectively approximately correspond to each
other. It will be so, for example, if the columns and rows of both matri-
ces E1 and E2 approximately represent horizontal and vertical planes in
the space. This is the case for many applications when the cameras are
positioned either horizontally or vertically. If not, the algorithm could be
modified to take in account a possible rotation.

We will follow the non-parametric approach to the recognition of similar
fragments suggested in the works of A.T.Fomenko and the author 3 4.

Assume that the size n of the matrices E1, E2 has the form n = Np

for some natural numbers N and p. Consider the division of the matrices
E1, E2 into square blocks of size p× p containing p2 matrix elements each.
The number of such blocks in E1 or E2 is equal to N2. We will denote them
by Eαβ

k , 1 ≤ k ≤ 2, 1 ≤ α, β ≤ N :

Eαβ
k = {eij

k : (α − 1)p < i ≤ αp, (β − 1)p < i ≤ βp}.
In our algorithm we will interpret the blocks Eαβ

k as fragments consisting
of pixels sufficiently close to each other. The number p (block size) is a
parameter which should be chosen according to the concrete application.
We will assume that p ≥ 2.

Definition 2.1. .
The shift of two cells eij

1 ∈ E1 and ei′j′
2 ∈ E2 is the vector ρ with two

natural numbers as components:

ρ(eij
1 , ei′j′

2 ) = (i′ − i, j′ − j). (1)

Definition 2.2. .
We call two patterns ni, nj ∈ I bounded (with respect to the pair of

matrices E1 and E2 with fixed division to blocks) if they appeared in the
same block of any of these two matrices:

∃k ∈ {1, 2}, ∃α, β ∈ {1, . . . , N} : ni, nj ∈ Eαβ
k .

If the patterns ni, nj ∈ I (1 ≤ i, j ≤ m) are bounded we will denote
this by ni ∼ nj .
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If two cells eij
1 ∈ E1 and ei′j′

2 ∈ E2 contain a pair of bounded patterns
respectively we will also call these cells bounded and denote this by eij

1 ∼
ei′j′
2 .

In particular, any pattern which appeared in any of the images E1, E2,

is bounded with itself with respect to matrices E1, E2,.
We consider the cells and patterns which appear in these cells as ele-

ments of the matrices E1, E2 (or their blocks) and use the same symbol ”∈”
in both cases.

We will start with the following construction. Using given matrices
E1, E2 consider a random choice of two cells in E1 and E2 respectively. The
corresponding probability space Ω, Σ,P is defined as follows. Let Ω = E1×
E2, Σ = 2Ω and P be the uniform distribution on Ω given by P{ω} = 1/n2

for any ω ∈ Ω. Denote the cell randomly chosen from E1 by eij
1 (ω), and the

cell randomly chosen from E2 by ei′j′
2 (ω). Indices i = i(ω), j = j(ω), i′ =

i′(ω), j′ = j′(ω) are random here but for simplicity we omit the argument
ω.

Denote by b1 = b1(ω) the pattern which appeared in the first chosen
cell eij

1 (ω) ∈ E1, and by b2(ω) the pattern which appeared in the second
chosen cell ei′j′

2 (ω) ∈ E2.
Let us define the random variable ξ = ξ(ω) on Ω, Σ,P which is the shift

between the chosen cells:

ξ(ω) = ρ(eij
1 (ω), ei′j′

2 (ω)). (2)

Then with probability one ξ takes values in the domain of the natural
2-dimensional lattice: {(i1, i2) : 1 − n ≤ i, j ≤ n − 1}.

Assume that there exists at least one pair of bounded cells belonging to
E1 and E2 respectively. This assumption is natural in our case, i.e. when
E1 and E2 represent two different images of the same object X. In this
case, even in the presence of some perturbations, there should exist such a
pair of patterns close to each other (i.e. belonging to the same block) in
one image that at least one of them appears in another image also. This is
enough for existence of bounded pairs of patterns.

This assumption implies that the probability P(A) of the event A is
greater then zero:

A = {ω : b1(ω) ∼ b2(ω)}. (3)
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Event A means that the chosen pair of patterns is bounded (see Defin-
ition 2.2).

The first stage of our algorithm of the recognition of conjugate points
includes a procedure of elimination of comparison of most pairs of frag-
ments belonging to E1 and E2 respectively. This elimination is based on a
preliminary analysis of the following two distributions:

f0(i, j) = P{ξ(ω) = (i, j)}, (4)

f1(i, j) = P{ξ(ω) = (i, j)|A} (1 − n ≤ i, j ≤ n − 1) (5)

Here f0 denotes the unconditional distribution of the above defined ran-
dom variable ξ on the natural lattice in R2, and f1 denotes its conditional
distribution under the condition A defined in (3).

We will need the explicit form of the function f0. It is given in the
following two lemmas.

Lemma 2.1. For any 1 − n ≤ i, j ≤ n − 1 the following relations hold:

f0(i, j) = f0(−i, j) = f0(i,−j) = f0(−i,−j). (6)

Proof. Denote by V the clockwise rotation of a square matrix to the
angle of 90o :

V (eij
k ) = ej,n+1−i

k (1 ≤ k ≤ 2, 1 ≤ i, j ≤ n).

The transformation V is an automorphism on the set of cells of a matrix
Ek. Therefore V could be considered as an automorphism of Ω = E1 × E2

which in the discrete case always preserves uniform distribution: P{V ω} =
P{ω}. Furthermore, if both matrices E1 and E2 were rotated by the same
angle, then the shift vector between any pair of cells belonging to E1 and
E2 respectively rotates by the same angle. Therefore:

f0(i, j) = P {ξ(ω) = (i, j)} = P {ξ(V ω) = (i, j)} = P {ξ(ω) = (−i, j)}
= f0(−i, j).

Similarly:

f0(i, j) = P
{
ξ(V 2ω) = (i, j)

}
= P {ξ(ω) = (−i,−j)} = f0(−i,−j),
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f0(i, j) = P
{
ξ(V 3ω) = (i, j)

}
= P {ξ(ω) = (i,−j)} = f0(i,−j).

This completes the proof of the lemma.
According to this lemma, in order to find the distribution f0 it is enough

to calculate f0(i, j) for i, j ≥ 0. This is done in the following lemma.

Lemma 2.2. Let 0 < i, j ≤ n − 1. Then

f0(i, j) = P {ξ(ω) = (i, j)} =
1
n2

− i + j

n3
+

ij

n4
, (7)

f0(i, 0) =
1
n2

− i

n3
, (8)

f0(0, j) =
1
n2

− j

n3
, (9)

f0(0, 0) =
1
n2

. (10)

The distribution f0 does not depend on the entries of matrices E1 and
E2. It is determined by their size n only.

Proof. Let us prove (7). The probability that the shift (i, j) appears
between two chosen cells eij

1 (ω) and ei′j′
2 (ω) according to the uniform dis-

tribution P is equal to the ratio of the number of appropriate chances to
the total quantity of chances. The total quantity of chances is equal to
n4 (the number of pairs of cells belonging to E1 and E2 respectively). In
our case the number of appropriate chances is equal to the number of such
cells in E1, that there exists another cell in E2 such that its shift from the
first one is equal to (i, j). It is clear that if such a cell in E2 exists then it
is defined uniquely by the first one. Notice that the number of cells in a
square matrix n × n such that there exists another cell shifted from it by
(i, j), is equal to n2 − ni − nj + ij. Consequently we have

f0(i, j) =
n2 − ni − nj + ij

n4
=

1
n2

− i + j

n3
+

ij

n4
.

Relations (8)-(10) could be proved by similar considerations. This com-
pletes the proof of the lemma

Comment. It is easy to see that the function f0 does not change if the
shift vector between the cells eij

1 ∈ Eαβ
1 and ei′j′

2 ∈ Eα′β′
1 is defined by the

following formula instead of (1):
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ρ̃(eij
1 , ei′j′

2 ) = (α′ − α, β′ − β′). (11)

The difference between f1 and f0 has a spike at the values of typical
shifts between the conjugate cells of the matrices E1 and E2

3, 4. This
spike could be recognized by standard statistical procedures. In this way
the typical shift between conjugate cells is determined.

The suggested algorithm of determining the conjugate cells in the ma-
trices E1 and E2 includes two stages. At the first stage the functions f0 and
f1 are calculated and compared by statistical procedures. As a result of
this comparison the typical shifts between bounded patterns (with respect
to E1 and E2) are determined. They are interpreted as shifts between con-
jugate cells 3, 4. Algorithmically, this stage of calculations could be done
during one path through the set of the cells of the matrices E1 and E2. For
fixed N and m the complexity of the corresponding calculations is linear
with respect to the total number of cells 2n2.

At the second stage the conjugate pairs of pixels are determined finally.
At this stage we do not need to compare all pairs of fragments of the
matrices E1 and E2 respectively. It is enough to consider only pairs of
blocks (Eαβ

1 , Eα′β′
2 ), which contain sufficiently many such bounded pairs of

cells that they are shifted to the typical values, determined at the first stage.
This approach significantly decreases the amount of pairs of fragments in E1

and E2 which should be analyzed for the existence of conjugate cells. For
the final determination of conjugate cells the standard statistical procedures
(which are commonly used in this situation) could be used. But in many
applications it is enough just to find the intensity peaks in both fragments
under consideration.

It should be stressed that we do not assume that the representations
of the object X in E1, E2 could be transformed to one another by some
shift or, more generally, by some affine mapping. This transformation is
assumed to be projective. But according to our assumptions there will still
exist a range of typical shifts between conjugate points. See Figure 2. It
is because of the assumption that the rows and columns of both matri-
ces E1, E2 approximately represent horizontal and approximately vertical
planes in the space (consequently images E1 and E2 are not rotated by a
large angle one with respect to other). Otherwise our algorithm requires a
certain modification to take into account the angle of rotation.

Let us discuss briefly the problem of the statistical determination of
significant spikes of the difference (f1 − f0) – i.e. such spikes which corre-
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Figure 2.

spond to the typical shifts between conjugate points. To do this we need
to eliminate random spikes of the difference (f1 − f0).

In order to analyze random spikes let us assume that there are no con-
jugate points in the given images E1 and E2. Then it is natural to assume
that E1 and E2 are independent random elements defined on some proba-
bility space (Ω1, Σ1,P1). In this case the random variable ξ and event A

(see (2), (3)) could be defined on the product (Ω1, Σ1,P1)×(Ω, Σ,P). If E1

and E2 are independent then ξ is independent from A. Consequently the
distributions f0 and f1 considered on Ω1 ×Ω1 will coincide. It follows from
lemma 2.2 that f0 in this case will be determined by the same formulas
(7)-(10). Consequently, the distribution f1, defined on the product Ω1 ×Ω,

will be determined by formulas (7)-(10). For a concrete ω1 (i.e. condition-
ally for concrete matrices E1 and E2) the distribution f1 can differ from f0,

but if n is large enough then this difference will be small for a wide class of
distributions P1 (according to the central limit theorem). In applications
the value of n is usually greater then 1000 which is enough to make random
spikes of the difference f1 − f0 much smaller than the spike corresponding
to conjugate points.

Lemma 2.3 below suggests a possible method to eliminate random spikes
of f1 − f0. We will prove it under the following assumptions.

Assume that the given pair of square matrices (E1, E2) of size n × n

is a result of some (arbitrary) stochastic experiment (Ω1, Σ1,P1). Without
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loss of generality we will assume that (E1, E2) = ω0
1 ∈ Ω1 is an elementary

event of Ω1 and that an arbitrary ω1 ∈ Ω could be represented by a pair of
square matrices of size n × n which contain natural numbers in the range
1...m as their matrix elements.

Consider the above described construction (Ω, Σ,P) of the uniform ran-
dom choice of two cells from the matrices ω1 = (E1, E2) Then on the
product (Ω1, Σ1,P1)× (Ω, Σ,P) we can define random variable ξ and event
A by the same relations (2) and (3).

Let us define the functions f0, f1 (i.e. unconditional and conditional
distributions of ξ) by the relations similar to (4), (5) with the only difference
that we take the product measure P1 × P instead of the measure P. It
follows from lemma 2.2 that the function f0 in this situation will still be
defined by the same formulas (7) -(10).

Below ω1 and ω will denote not only elements of the probability spaces
Ω1 and Ω1, but also subsets of the form ω1 × Ω and ω × Ω1 in Ω1 × Ω1.

Let us fix some ε > 0, 1 − n ≤ i, j ≤ n − 1 and define an event on
Ω1 × Ω1 by

Aε
ij = {(ω1, ω) : P {ξ = (i, j)|A, ω1} − P {ξ = (i, j)|A} ≥ ε} . (12)

Let us define the functions f1(i, j) − f0(i, j) by the same formulas (4),
(5) as above.

If ξ and A are independent then the event Aε
ij consists of such elementary

events (E1, E2) × ω, that the difference f1(i, j) − f0(i, j), calculated from
(E1, E2) at the point (i, j) is not less then ε.

Then the following lemma holds.

Lemma 2.3.
Assume that ξ and A are independent. Then ∀ε > 0, 1 − n ≤ i, j ≤

n − 1 :

P
{
Aε

ij |A
} ≤ f0(i, j)

f0(i, j) + ε
. (13)

Proof. Fix some ε > 0, 1 − n ≤ i, j ≤ n − 1. Denote by B the event
B = {ξ = (i, j)}. According to the assumptions of the lemma, events B

and A are independent. Therefore using (12) we have:
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P {B|A} =
P {BA}
P {A} =

∑
ω1

P {BAω1}
P {A} =

=

∑
ω1

P {B|Aω1}P {Aω1}
P {A} =

∑
ω1

P {B|Aω1}P {ω1|A}

≥
∑

ω1⊂Aε
ij

P {B|Aω1}P {ω1|A}

≥
∑

ω1⊂Aε
ij

(P {B|A} + ε)P {ω1|A}

= (P {B|A} + ε)P
{
Aε

ij |A
}

.

The events B and A are independent, so the above formula implies:

P
{
Aε

ij |A
} ≤ P {B|A}

P {B|A} + ε
=

P {B}
P {B} + ε

=
f0(i, j)

f0(i, j) + ε
. (14)

This completes the proof of the lemma.

3. The stability of determination of the projective mapping
using a configuration of conjugate points

Let us recall some notions from projective geometry.
For any nonzero vector x ∈ R3 denote by x̂ the straight line parallel

to x and passing through 0. Any such line determines uniquely a point
on the projective plane RP 2 and could be considered as an element of
RP 2 : x̂ ∈ RP 2. For an x̂ ∈ RP 2 its homogeneous coordinates are coor-
dinates of x in R3. The multiplication of homogeneous coordinates by an
arbitrary coefficient λ 	= 0 does not change the point in RP 2. Homogeneous
coordinates are denoted by (x1 : x2 : x3). The affine coordinates of a point
x̂ ∈ RP 2 are defined as follows. Fix some plane π in R3 such that 0 	∈ π

and fix some basis on it. We say that x̂ ∈ RP 2 belongs to the affine map π

if and only if the line x̂ intersects the plane π in R3. The affine coordinates
of the point x̂ ∈ RP 2 in the affine map π are defined as the coordinates of
their point of intersection in the basis which was fixed on π.

Assume that some orthonormal basis {e1, e2, e3} was fixed in R3. We
will fix the affine map S3 which is generated by the plane x3 = 1 with basis
{e1, e2} on it. Without loss of generality we assume that the domains which
are mapped into one another by the unknown projective mapping F belong
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to the map S3. The affine coordinates in S3 of a point x̂ = (x1 : x2 : x3) ∈ S3

are (x1/x3, x2/x3).
Consider four points in the space RP 2. We will say that they are in

general position if and only if any three of them represented by straight
lines in R3 passing through 0, do not belong to any plane.

Theorem 3.1. (see. for example 2). Assume that {P1, P2, P3, P4} and
{Q1, Q2, Q3, Q4} are two sets of four points from RP 2 each. Assume that
both these sets are in general position in RP 2. Then there exists a unique
projective mapping such that it maps Pi into Qi for all i = 1, 2, 3, 4.

In order to analyze the stability of the computation of this mapping we
need an explicit form of a system of linear equations for it.

We will denote a point from RP 2 and any vector corresponding to it in
R3 by a same letter. Assume that two sets of four points {P, Q, R, T} ⊂
RP 2 and {P ′, Q′, R′, T ′} ⊂ RP 2 in general position are given and all these
points belong to the affine map S3. Denote by F = (fij) (1 ≤ i, j ≤ 3)
the 3 × 3 square matrix which defines a linear mapping R3 → R3 which
corresponds to the projective mapping which maps Pi into Qi for all i =
1, 2, 3, 4. Such a matrix is not uniquely defined – it could be multiplied by
an arbitrary nonzero coefficient. In order to define it uniquely assume that

P = (p1, p2, 1), Q = (q1, q2, 1), R = (r1, r2, 1), T = (t1, t2, 1),

P ′ = (p′1, p
′
2, 1), Q′ = (q′1, q

′
2, q

′
3), R′ = (r′1, r

′
2, r

′
3), T ′ = (t′1, t

′
2, t

′
3)(15)

and

F (P ) = P ′, F (Q) = Q′, F (R) = R′, F (T ) = T ′. (16)

We write:

ap = p′1, bp = p′2, aq =
q′1
q′3

, bq =
q′2
q′3

,

ar =
r′1
r′3

, br =
r′2
r′3

, at =
t′1
t′3

, bt =
t′2
t′3

. (17)

The four vector relations (16) represent a system of 12 linear scalar
equations with 9 unknown coefficients fij of the matrix F and 3 unknown
coordinates q′3, r

′
3, t

′
3. It could be written in the following form:
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Ax = y, (18)

where

x = (f11, f12, f13, f21, f22, f23, f31, f32, f33, q
′
3, r

′
3, t

′
3)

T ,

y = (ap, 0, 0, 0, bp, 0, 0, 0, 1, 0, 0, 0)T ,

A =




p1 p2 1 0 0 0 0 0 0 0 0 0
q1 q2 1 0 0 0 0 0 0 −aq 0 0
r1 r2 1 0 0 0 0 0 0 0 −ar 0
t1 t2 1 0 0 0 0 0 0 0 0 −at

0 0 0 p1 p2 1 0 0 0 0 0 0
0 0 0 q1 q2 1 0 0 0 −bq 0 0
0 0 0 r1 r2 1 0 0 0 0 −br 0
0 0 0 t1 t2 1 0 0 0 0 0 −bt

0 0 0 0 0 1 p1 p2 1 0 0 0
0 0 0 0 0 0 q1 q2 1 −1 0 0
0 0 0 0 0 0 r1 r2 1 0 −1 0
0 0 0 0 0 0 t1 t2 1 0 0 −1




The proof of the following lemma is due to E.S.Skripka.

Lemma 3.1. . The determinant of the matrix A is proportional to the
product of the areas of triangles �PQR,�PRT,�PQT, and �Q′R′T ′.
The relation holds:

|detA| = 16S�PQRS�PRT S�PQT S�Q′R′T ′ (19)

Proof. Direct calculation shows that:

detA =

(q2p1−q1p2−r1q2−r2p1+r2q1+r1p2)(−t2p1+r2p1+t2r1−t1r2+t1p2−r1p2)
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×(q2p1−q1p2−t1q2−t2p1+t2q1+t1p2)(btaq−btar+bqar+brat−braq−bqat)

Note that the absolute values of the factors on the right hand side of
this relation are equal to the areas of following triangles multiplied by 2:

|q2p1 − q1p2 − r1q2 − r2p1 + r2q1 + r1p2| = 2S�PQR,

| − t2p1 + r2p1 + t2r1 − t1r2 + t1p2 − r1p2| = 2S�PRT ,

|q2p1 − q1p2 − t1q2 − t2p1 + t2q1 + t1p2| = 2S�PQT ,

|btaq − btar + bqar + brat − braq − bqat| = 2S�Q′R′T ′ .

Let us prove for example the last formula (see. Figure 3):

S�R′Q′T ′ = |SR′Q′DF + ST ′R′FE − ST ′Q′DE | =

=
∣∣∣∣(Q′D + R′F )

bq − br

2
+ (T ′E + R′F )

br − bt

2
− (T ′E + Q′D)

bq − bt

2

∣∣∣∣ =

=
∣∣∣∣Q

′D
2

(bt − br) +
R′F
2

(bq − bt) +
T ′E
2

(br − bq))
∣∣∣∣ =

=
∣∣∣aq

2
(bt − br) +

ar

2
(bq − bt) +

at

2
(br − bq)

∣∣∣ =

=
1
2
|btaq − btar + bqar + brat − braq − bqat|.

The remaining tree formulas can be proved similarly. This completes
the proof of the lemma.

it follows from this lemma that in order to perform a robust calculation
of the projective mapping with help of given conjugate points one should
try to choose such a configuration of conjugate points that the product of
the areas of 4 triangles built on them is as large as possible.
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Figure 3.
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