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Abstract

In our previous work [1] the multidimensional diffusion model for
computer animation of diffuse ink painting was suggested. In diffuse
painting final image is a result of ink diffusion in absorbent paper.
A straightforward diffusion model however is unable to provide very
specific features of real diffuse painting. In particular, it can not
explain the appearance of certain singularities in intensity of color in
the image which are very important features of diffuse ink painting. A
multidimensional diffusion model which we propose proves to provide
the intensity distributions very similar to those in real images.

In [1] only few calculations in the case of a circle as an initial zone
were presented. Now we modify the model and present the results of
more accurate calculations for an initial zone of arbitrary shape.

Keywords : Multidimensional diffusion processes, Nijimi, Colloidal
liquid, Computer animation.

1 Introduction

Diffuse ink painting (in Japanese - 'Sumie’) is a kind of ink painting on a
special paper with high absorbency. The ink used in ’Sumie’ is a colloidal
liquid which consists from water and solid particles of carbon distributed in
it. Glue is also added. Diffuse ink painting phenomenon is a new topic in



Figure 1: Examples of diffuse ink painting

computer graphics. Although some previous papers discussed the modeling
of painting strokes ([5, 4, 7]) and liquid flow ([3, 6]), the diffuse ink effect
was not analyzed.

When a drop of diffuse ink falls on the surface of highly absorbent paper,
it begins to spread throughout the paper. As a result of this process, the
final image appears to be sufficiently bigger then the initial zone to which
the ink was directly applied. See Fig. 1.

The remarkable feature of diffuse ink image is a kind of black border
which appears along the edge of the initial zone (i.e. zone where ink was
directly applied to paper). One can see that the intensity of color along the
border of the initial zone is higher then inside the zone.

Outside the initial zone there finally appears a sufficiently large gray zone
with not very high, but more or less homogeneous intensity of color. The
border of this zone appears to be rather irregular, ‘feathery’. This gray zone
is one where ink is not directly applied to paper. Carbon particles collect
there as a result of diffusion.

We will call such distribution of color intensity in the image as initial
zone - black border - gray zone distribution.

The typical intensity diagram of diffuse ink image (i.e. the diagram of
surface density of carbon particles within a certain point of the image) is
shown in Fig. 3. This figure correspond to the case when ink was initially
applied in a central symmetrical area on the paper (i.e initial zone is a disk).
Note, that in this case, there appears a peak in intensity, right in the center.

This article is concerned with a problem of numerical simulation and
computer animation of the phenomena of diffuse ink painting. In order to
solve this problem authors suggested in [1] a mathematical model of a 2-
dimensional diffusion process with the above mentioned initial zone - black
border - gray zone intensity distribution in the image area (see Fig. 3).
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Figure 2: Distribution of color intensity in a stain which was made on the paper
by diffuse ink. Three zones of different intensity appear in the image: 1. initial
zone where ink was directly applied to paper; 2. black border - a dark line along
the border of the initial zone; 3. gray zone - the area where solid particles of
the ink collect as a result of diffusion.
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Figure 3: Typical diagram of surface density of carbon particles within a certain
point of the image for real 'Sumie’ painting. The horizontal axis corresponds to
the distance r of a certain point from the center of the image, and vertical axis
represents the value of gray color intensity within that point.
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Figure 4: Initial distribution of water and carbon in a round stain made by a
drop of diffuse ink on the surface of the paper.

2 A phenomenological model for initial zone -
black border - gray zone distribution of intensity
in diffuse ink painting image

In this section will briefly remember the phenomenological model for diffuse
ink painting from [1].

Let us assume that the temperature is constant. Then the diffusion
coefficient for carbon particles depends only on a concentration of carbon
particles in water. The higher this concentration is - the slower diffusion
might be. But the concentration of carbon in water changes with time in
each point of the image. Thus, the diffusion coefficient for the motion of
carbon particles can strongly depend on time and on the point of the image.

Consider an initial distribution of water and carbon particles density as
shown in Fig. 4.

Due to spread of water outside of initial zone, the density of carbon in
water will decrease inside this zone. The sharpest decrease of this density
will occur near the bor der of initial zone because gradient of density function
is maximal there. Consequently, it seems that distribution of water density
would soon become like the distribution shown in Fig. 5.

As to carbon particles, they can diffuse only in water (not in the paper
itself). As mentioned above, the diffusion coefficient for the motion of carbon
particles can depend on a concentration of these particles in water. Diffusion
slows down when concentration is too high.

After diffusion starts, the density of water along the border of initial
zone begins to fall very rapidly with time. Consequently, the concentration
of carbon particles in water (i.e. ratio carbon to water) rises sharply along
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Figure 5: Distribution of water and carbon in the stain made by diffuse ink on
the surface of the paper after the diffusion process starts.

the boundary of initial zone. Thus, along this boundary diffusion of carbon
particles can sharply slow down because of high local concentration of carbon
particles with respect to the local concentration of water. It can result in
the appearance of a barrier for carbon particles near the border of initial
zone. Many carbon particles which diffuse to the boundary of initial zone
from inner parts of this zone, begin to slow down there and can not leave the
vicinity of the border. After water dries up they remain near the boundary.
That is how black boundary effect may occur.

Some carbon particles which are able to overcome this barrier, appear
outside the initial zone. Those particles immediately fall into a zone where
there is much more water than carbon. Although there might be little water
outside the initial zone, the decrease in the number of carbon particles can
be even greater than decrease of water density. In this case, concentration
of carbon particles in water appears to be sufficiently low outside of initial
zone which results in a diffusion with maximal rate for carbon outside the
initial zone. Carbon particles there diffuse freely in water and draw a gray
zone around initial zone. In this gray zone, intensity of gray color will be
approximately constant. Due to the effects described above, the gray zone
will be separated from initial zone by a dark line - black boundary. Therefore
the density distribution function will look as shown on Fig. 3.

3 Continuous mathematical model and it’s discrete
approximation

Let us choose some Cartesian coordinate system (x,y) on the surface of the
paper. Time variable will be denoted by ¢t. Consider a touch of brush with



diffuse ink to the surface of the paper at the moment ¢ = 0. Assume that at
the first moment ¢ = 0, densities of water and carbon particles are constants
Cy and Cs respectively, in the initial zone Dy (i.e. in the area where brush
touched the paper).

Let g(x,y,t) denote the surface density of water in the point (z,y) on
the paper at the moment ¢, (¢ >= 0). Similarly, let us denote by f(z,vy,1)
the surface density of carbon particles on the paper.

At the beginning, the distributions of water and carbon in the paper are
as follows

g(xayao) :Cla f(mayao) :CQ (:I;ay) EDO;

f(xayao) =0, f(mayao) =0 (x,y) ¢ Dy.
In [1] we suggested the model in which the densities of water and carbon

particles on the paper surface change with time according to the following
system of differential equations:
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Boundary conditions are zero as point (z,y) tends to infinity. Practically
we assume that a sheet of paper is large enough so that water will dry up
before reaching the edge of the paper.

In above equations the coefficient % characterizes the speed of drying
process of the water. Coefficients p and ¢ determine a flow of water on the
surface of paper. Such flow may be present due to special structure of the
paper or due to gravitational effects in the case when the sheet of paper
is fixed not horizontally. Parameter a determines the diffusion of water on
the surface of the paper. If the paper structure is not homogeneous then
a will be not constant. It can depend on coordinates (x,y) in the case, for
example, when the paper was manufactured in such a way that there exist
some typical directions of paper fibers, which are different in different parts
of the paper sheet.

The choice of function Z (%) is important. This function determines how
the diffusion rate of carbon particles depends on the concentration of carbon
in the water. Our calculations show that properties of intensity distribution
in the final image can strongly depend on the shape of the curve y = Z(z).

We performed a number of numerical experiments in order to determine
the appropriate shape of function Z. It turns out that the initial zone -
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Figure 6: Behavior of a function Z (%) which results in appearance of initial zone
- black boundary - gray zone distribution phenomenon in diffuse ink painting
simulation.

black boundary - gray zone distribution phenomenon occurs in the case
when function Z is concave in the interval of it’s rise (i.e. in the vicinity of
zero, because for sufficiently large values of argument, function Z should be
constant: rate of diffusion for the motion of carbon particles will not change
when water is added provided that there was already enough water).

In order to obtain computer animation of evolution of diffuse ink image on
the paper, we solve the system of partial differential equations (1) numerically
on a grid.

Assume that a sheet of paper is placed horizontally and that the paper
is homogeneous: p,q = 0 and a = const. In this case the system (1) could
be written in a follows way

dg
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of g
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Here we use the following notations:

g = g(x,y,t) - the surface density of water,

f = f(z,y,t) - the surface density of carbon,

A - rate of water drying,

a - rate of water diffusion,

Z = Z(g/f) - a given function, which determines the dependence of
carbon diffusion rate on the local concentration of the carbon in water in
a certain point on the paper. In our calculations we choose function Z as
follows:

= a*Ag— g,
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where Zj, Z, are some constants.

We will approximate the quasi-linear system (2) on a discrete grid of the
size N X N, presenting the square area on the paper. The space step of
the grid is denoted by h, the time step is denoted by 7. We use the implicit
method of discretization with alternating direction [8]. Finally, we obtain
the following system of linear equations on the grid. Here 0 <4,7 < N.
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In the above equations we use the following notations:
;; and g;'; denote the approximations for the functions f and g respectively
in the node (z j) of the grid at the time layer n;
f;b j : and gz j% denote the approximations for the functions f and g
respectively in the node (7, j) at the intermediate time layer n + %;
VA i Zf;ij denote the values:
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To solve the system (4) it is necessary to know the values Z;; on the future
level n + % These values were determined approximately in the calculation
process by the following recursive method.

1 1
1) At first step we calculate f: ; ? from (4) using Zj; instead of ZZ-JFZ
L I
and gZ ;-rz from (3). Using these values we calculate ZZ j 2 from (5).

1 1
2) Then using obtained values of ZZ ;_2 we find fi?? j+ 2 from (4) once more.

1 1
3) Using new values of f;b j > we find again the values of ZZ j ? from (5).

1
4) With new values of Z»n-+2 we go to step 2). This cycle was repeated

2-3 times until the values of f i 3 become stable.
In order to solve the system of equations (3)(4)) we will rewrite it in the
follows form:
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To simplify the formulas we will use the following notations:



a? 2a2 2

2% g2
n _ ] n n
Lij = += % (9i5-1 — 2915 + 9i'j+1),
n+2 9
ntd 295 a®, n+l nti | il
Gy,i" = — ﬁ(gi—l,j —2g;; %+ 9i11%)
n—l—% n—|—§
Ay Zy,ij ntd  Ziif1y
Lig  — h2 "’ Ligg = h2 7
n+% n+%
oty 2 Zui T iy
Lij = 7 h2 ’
n n
TH“% 2 i ZZ B 7] 1 (ZZ BY) +Z21]+1)f1] +ZZ Z,j+1fi,j+1
Fl'i' - )
) T h2
n+1 n+1
An+1 _ Z2 T2y nt+l _ Zz;i;j+1 (10)
2515 h2 '’ 2317 B2
n+1 n+1
crtl — 2 + Za;i itg ZZZJH (11)
2515 T h2 ’
n+ 5 n4+ 5 n+% n+i 5 n4+ 5 n+% n+%
ntl 2f; N Zviit fialy — (Zy® + 208 )05 2+ 2oy AT
2513 - T h2 .

With these notations the system (6)(7) obtains the form:

T L
Ag;_1% —Cg;; * + By’ = =Gl
A n+1 —-C n+1 B n+1 _ G"JF%
9ij—1 9ij T BG4 = —Gayj
n+2 n+2 n+2 n+2 n+% n+% o n
11] fz 1Z_] fzg +Blzj fi+1,j - _Flij7
n+1 n+1 n+1 n+1 n+1 n+1 _
A2 K] fz,jfl 21] f BZ K] fz,j+1 - F2 zg

(12)

(13)

The initial conditions for the system (12)(13) are defined by the form of
the initial stain Djpitiq, the density of ink in Djugtiq1, and the assumption
that the sheet of paper is large enough and therefore the stain will not diffuse

to the edge of paper.

g’Z - 07 f’LT]L:07 vn7 ZZO7ZZN7JZO7-7:N7
9 = w, fi=c i, J € Dinitial;
gz(']j = 0, fz[; =0, 0] g Dinitiar;
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Here w denotes the initial quantity of water and ¢ denotes the initial
quantity of carbon in a pixel of the grid in the initial stain area Djpiziqi-

The solution of the system (12) for water density for the time layer (n+1)
is obtained by the follows numerical procedure (see [8]).

At first step, using already calculated values of g;; on the time layer n,
1

for each fixed 1 < j < N — 1 we obtain all values {g?;rg,i =N-1,...,1}
on the intermediate time layer n + % :

1

+1
ggjz = 0
7’L—|—,l n+L .
9i; © = all+lgi+1?j +/8i1+17 1=N-1,N-2,...1,
where
B
L N 1 f— . —
a; = 0 aHl_m, i=1,...,N —1;
AB} + G .
pio= 0 5i1+1=ﬁ 1=1,...,N —1;
(2

Then for each fixed 1 < 7 < N — 1 we obtain all values {g?jﬂ,j =
N —1,...,1} on the time layer n +1:

gNt = 0
anjJrl = O‘?%-lg;fjt:l"'@zﬂ’ j=N-1,N—-2,...1.
where
B
2 _ 0 2 _ . .
af = 0 Ozj+1—m, j=1,...,N —1;
j
1
AR+ GY2
2 2 J 2;1j .
= 0 1= A5 =1,...,N - 1;
g lm=—c—ga

After the determination of water density on time layer n + 1, the density
of carbon on the same layer is obtained from the system (13). The numerical
procedure for carbon is given by similar formulas. But now we need to use
the additional recursive procedure which was mentioned above. Of course
it is possible to change the system (13) to a more simple standard form, so
that it’s solution could be obtained without recursion. But the approach
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which we use improves the accuracy of the result in the case when function
Z is nonlinear ([8]).
At the beginning, for each fixed 1 < 7 < N — 1 we calculate first-step
1
approximations for the values { fg-+2 ,i=N —1,...,1} on the intermediate
time layer n + % by the formulas:

1
f]T\Lﬁ.E = 0
] )
ntg 1 n+3 1 .
fij = fiy 0y, t=N-1LN-=-2..1,
where
n+%

I — 0 L Liing ) . .
a; = 0 o = e, 771 T i=1,...,N -1
(Chif —ai Ay f)

n+i
ATl 4 oo
1 . 1 _ 1;3,5 Mi 1;ij _ )
i = 0 5i+1— = T 1=1,...,N —1; (14)
Cn+2 1An+2
Lig — Y

At the first step the coefficients of, |, 8}, are calculated not on the
time layer n + %, as it is required by the system (13), but on the time

layer n. It means that A7, ., BT, ;,CT; ; in (14) are initially determined by

formulas (8)(9) with 2" i replaced by Z". As a result we obtain first-step
1

. . n+3
approximations for fij 2. Then we use them to calculate more accurate

n+i . n+2 .
values of Z. ?. Next, we repeat the same calculations of f;; * using new

1

values of Z""2. This cycle is repeated several (usually 2-3) times.
After this, using the same recursive procedure, for each fixed 1 < ¢ <
N — 1 we obtain all values {f*"!,j = N —1,...,1} on the time layer n+1 :

v

n+l .
iN - 07
n+l __ 2 n+1 2 M
fz.. = aj+lgi,j+1+ﬁj+1’ j=N-1,N—-2...1.
where
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e
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Step 0 Step 17 Step 44 Step 0 Step 1 Step 3
® ® ® J ° .

Step 80 Step 121 Step 161 Step 11 Step 41 Step 75

Step 230 Step 299 Step 366 Step 121 Step 164 Step 205

Figure 7: Two time-sequences of images of a round black stain, produced on the
paper by a drop of diffuse ink. On the left: a® = 1;\ = 0.05; Zy = Z; = 0.5;
initial quantity of water w = 3; quantity of carbon ¢ = 0.5. On the right:
a? =0.02X=0.1;Zy = Z; = 2.5;w = 3;¢ = 0.5. Computer animation.

All calculations are then repeated on the next time layer.

4 Results of computer simulation

Fig. 7 shows two results of calculations in the case of round stain which was
made on the paper by a drop of diffuse ink. Model parameters for these
two images have different values which results in their different appearance.
Water and carbon were initially distributed uniformly in the stain. Calculations
were made on the 300 x 300 pixels grids, initial diameter of the stain was
20-30 pixels. A initial zone - black boundary - gray zone distribution of color
intensity could be observed on this picture.

Fig. 8 and Fig. 9 show the results of calculations for several initial zones
of different shape. Values of parameters of the model were chosen here as
follows: a? = 0.02; X\ = 0.1; Zy = Z; = 2.5; initial quantity of water in the
stain w = 3; quantity of carbon in the stain ¢ = 2. Water and carbon in
the stain are initially distributed uniformly. Calculations were made on the
450 x 450 pixels grids.

Next figures present several examples of calculations which show how the
variation of model parameters changes the resulting image.

Fig. 10 and Fig. 11 consist from several pictures. Each picture shows
the sequence of images produced by the computer simulation. From picture
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Step 0 Step 21 Step 54 Step 0 Step 4 Step 16
Step 76 Step 102 Step 138 Step 34 Step B2 Step 101
Step 162 Step 195 Step 250 Step 128 Step 161 Step 218

Figure 8: Time-sequences of images of initial stains of different shapes.l.

Computer simulation.

Step 0 Step 23 Step 45 Step 0 Step 31 Step 53
Step 73 Step 111 Step 138 Step 81 Step 113 Step 145
Step 170 Step 194 Step 228 Step 174 Step 203 Step 236

Figure 9: Time-sequences of images of initial stains of different shapes.ll.

Computer simulation.
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Step 0 Step 17 Step 43 Step 0 Step 14 Step 41
Step 80 Step 121 Step 161 Step 78 Step 117 Step 156
Step 230 Step 299 Step 366 Step 220 Step 280 Step 339

Figure 10: Changing of the resulting image when the water diffusion rate
parameter a® decreases. Left picture: a? = 0.5. Right picture: a? = 0.1
Computer simulation.

to picture the water diffusion rate parameter a® decreases from the value
a®? = 0.5 to the value a® = 0.005. All other parameters keep constant values:
A =0.1; Zy = Z; = 0.5; initial quantity of water in the stain w = 3; quantity
of carbon in the stain ¢ = 0.5. Water and carbon are initially distributed
uniformly. Calculations were made on the 300 x 300 pixels grids.

Fig. 12 and Fig. 13 show several pictures produced by computer simulation
with increasing rate of water drying A. The value of A changes from A = 0.05
to A = 0.4. All other parameters keep constant values: o = 0.02; Zy = Z; =
2.5; initial quantity of water w = 3; quantity of carbon ¢ = 1. Water and
carbon are initially distributed uniformly. Calculations were made on the
450 x 450 pixels grids.

Fig. 14 and Fig. 15 show a number of pictures produced by computer
simulation with increasing quantity of carbon in the ink. The value of
carbon quantity parameter ¢ changes here from ¢ = 0.5 to ¢ = 5. All other
parameters keep constant values: a? = 0.03;A = 0.1, 2y = Z; = 2.5;w = 3.
Water and carbon are initially distributed uniformly. Calculations were
made on the 450 x 450 pixels grids.

Finally, on Fig. 16 we present a number of pictures produced by computer
simulation with increasing parameters Zp, Z;. All other parameters keep
constant values: a?> = 1;\A = 0.05,w = 3,¢ = 0.5. Water and carbon are
initially distributed uniformly. Calculations were made on the 300 x 300
pixels grids.
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Step 0

®

Step 2

Step b

Step 0

Step

Step 2

Step 15 Step 43 Step 69 Step 4 Step b Step 1
Step 106 Step 141 Step 175 Step 26 Step 56 Step 79

Figure 11: Continuation of the previous figure. Left picture: a? = 0.02. Right
picture: a? = 0.005. Computer simulation.

Step 0 Step 13 Step 32 Step 0 Step 11 Step 21
Step 82 Step 138 Step 172 Step 44 Step 82 Step 107
Step 217 Step 248 Step 292 Step 138 Step 160 Step 189

Figure 12: Changing of the resulting image when the water drying rate A

increases.
simulation.

Left picture::

A = 0.05.

16

Right picture:

A = 0.1.

Computer



Step 0 Step 9 Step 14 Step 0 Step 6 Step 10
Step 24 Step 43 Step 57 Step 15 Step 23 Step 30
Step 77 Step 90 Step 108 Step 39 Step 46 Step b6

Figure 13: Continuation of the previous figure. Left:

A =0.2, right: A=0.4.

Step 0 Step § Step 32 Step 0 Step 8 Step 32
Step 54 Step 83 Step 121 Step B4 Step 83 Step 121
Step 146 Step 181 Step 237 Step 146 Step 181 Step 237

Figure 14: Changing of the resulting image when the carbon quantity in ink
(parameter c) increases. Left picture: ¢ = 0.5. Right picture: ¢ = 1. Computer

simulation.
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Step 0 Step § Step 32 Step 0 Step 8 Step 32
Step 54 Step 83 Step 121 Step B4 Step 83 Step 121
Step 146 Step 181 Step 237 Step 146 Step 181 Step 237

Figure 15: Continuation of the previous figure.

Computer simulation.

Left: ¢ = 0.5, right:c = 1.

Step 0 Step 33 Step 86 Step 0 Step 33 Step 86
Step 160 Step 241 Step 322 Step 160 Step 241 Step 322
Step 460 Step 731 Step 1381 Step 460 Step 731 Step 1381

Figure 16:

Changing of the resulting image when the parameters Zy, Z;
increase. In presented images the values Zy = Z; = 0.1 and Zy = Z; = 04

were used. All other parameters keep constant values. Computer simulation.

18



~tep 7R

Figure 17: Photo of sumie painting (left) and example of computer simulation
(right). Here the fragment of Fig. 7 (right) was used.
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5 Summary and Conclusions

A new approach to computer animation of complicated phenomenon of
diffuse ink painting was proposed in [1]. According to this approach, diffusion
of diffuse ink (colloidal liquid) on the surface of the paper should be considered
as two separate diffusion processes. In [1] it was shown by simple calculations
that the proposed model was able to produce images with singularities in
color intensity very similar to real diffuse ink painting images.

In the present paper we carry out new more accurate calculations based
on implicit numerical method with alternating direction for solving P.D.E.
system (2). The results of calculations show that the proposed model is
able to simulate diffuse ink painting. It is possible to control the images by
changing values of model parameters. The proposed model could be useful
for example in computer software in order to produce computer graphics
with different types of ”Sumie”-like effects.
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