ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2025, Vol. 46, No. 3, pp. 983-1000. (€ Pleiades Publishing, Ltd., 2025.

Non-degenerate Singularities of a Three-dimensional Billiard
Bounded by an Ellipsoid in a Hooke Potential Field

G. V. Belozerov”

(Submitted by A. M. Elizarov)

Lomonosov Moscow Stale Universily, Moscow, 119991 Russia
Received November 27, 2024; revised December 25, 2024; accepted January 10, 2025

Abstract—Consider the problem of motion of a material point under the action of an elastic force of
coefficient k inside a triaxial ellipsoid whose center coincides with the center of the force field. Such
a dynamical system is Liouville integrable in the piecewise-smooth sense. For the attractive and
repulsive cases (k > 0 and k < 0, respectively), we describe the Liouville foliation of the system in
small neighborhoods of regular layers as well as layers containing nondegenerate critical points.
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1. INTRODUCTION

Currently, the qualitative theory of integrable Hamiltonian systems (hereinafter referred to as IHS) is
actively studied. Such systems arise quite often in various problems of physics, mechanics and geometry.

The most geometrically illustrative IHS are integrable billiards and their generalizations. T he
integrability of the billiard in the region bounded by an ellipse was noted in the work of G.D. Birkhoff[1].
Billiards in flat regions bounded by arcs of confocal quadrics are also integrable. Such systems started
to be studied with respect to the Liouville equivalence in the works of V. Dragovich and M. Radnovich
[2, 3] and V.V. Vedyushkina (Fokicheva) [4, 5]. In addition, V.V. Vedyushkina classified all locally flat
topological billiards bounded by arcs of confocal ellipses and hyperbolas, as well as regions obtained
by gluing elementary regions along convex (see [6]) and arbitrary (see [7, 8]) boundary segments. The
billiard table equivalence was defined (see also [9]), and the Fomenko invariants (i.e., rough molecules)
and the Fomenko—Zieschang invariants (labeled molecules) were calculated for each nonequivalent
billiard table.

Also V.V. Vedyushkina introduced and considered a new class of integrable billiards—billiards on
table-books, i.e., CW-complexes glued from elementary flat confocal regions along some common
(isometric) sections of boundaries. To each edge of the gluing e there is assigned a permutation o,
which defines the dynamics of a material point falling on this edge. The material point moving along the
ith sheet of the book and hitting the edge e with a velocity vector v continues its motion from the point
of impact with the velocity vector reflected relative to e along the sheet numbered o.(#). The billiards
on table-books realize Liouville foliations of many important IHS. Moreover, according to the results
of V.V. Vedyushkina and [.S. Kharcheva, the billiard books model all three-dimensional bifurcations of
the IHS (see [10]), and also realize the Liouville foliation bases of all IHS of two degrees of freedom on
surfaces of constant energy (see[11]).

In addition to topological billiards and billiard books, there are other integrable generalizations of the
classical billiard inside an ellipse. These include billiards with integrable potentials [12—15], billiards in
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984 BELOZEROV

the Minkowski plane [16], billiards with slipping [17], evolutionary force billiards [18, 19] and confocal
billiards on quadrics [20].

The present paper is devoted to the study of the Liouville foliation topology of a three-dimensional
billiard in a Hooke potential field inside an ellipsoid. Note that in the case of two degrees of freedom,
a similar problem was studied by I.LF. Kobtsev in [12, 13] and S.E. Pustovoitov in [14, 15]. The
classical three-dimensional billiard inside an ellipsoid (i.e., the system in absence of external forces)
was considered by V. Dragovich and M. Radnovich in [3]. In this paper, they constructed a bifurcation
diagram of such a billiard and described the regular layers of the Liouville foliation. G.V. Belozerov in [21]
described regular layers and their 1-bifurctions for all three-dimensional billiards bounded by confocal
quadrics. Homeomorphism classes of the isoenergetic surfaces of such systems were found.

Previously, the author has found homeomorphism classes of nonsingular surfaces of constant energy
of the billiard inside a triaxial ellipsoid in a Hooke potential field (see [22]). The purpose of this paper is
to study the Liouville foliation structure of this system near regular layers as well as layers containing
nondegenerate critical points. In the next paragraph we give the explicit form of the first integrals of this
billiard and prove formulae of separating variables. Then in the third paragraph we describe the regions
of possible motion and construct the bifurcation diagrams. In the fourth paragraph we describe Liouville
foliation in the neighborhood of regular layers. After that in the fiith paragraph we study the topology of
the Liouville foliation in the neighborhood of layers containing nondegenerate critical points. Note that
the method of work described in the final paragraph is based on the property of conservation of a part of
the action variables at bifurcations of non-zero rank. A.T. Fomenko used a similar method to describe
the fundamental properties of 3-atoms (see [23]), and N.T. Zung to prove the theorem on the semi-local
form of nondegenerate singularities of the [HS (see[24, 25]).

2. STATEMENT OF THE PROBLEM. INTEGRABILITY

2 2 2
Let & be an ellipsoid in R? given by the cquatlon — 4+ % + Z— = 1, where a > b > c. Consider the

following dynamical system. A material point of umt mass moves inside the region D bounded by the

ellipsoid € in a Hooke potential field of coefficient k. We assume that the center of the force field coincides
with the origin. We will assume that the reflection from the boundary of £ is absolutely elastic. Such
a dynamical system will be called by billiard in a Hooke potential field inside the ellipsoid, and the
region D by billiard table.

Let us describe the phase space of this system. To do this, consider the subset M6 = {(z,v) € TR?|
x € D,v # 0} of TR3 with induced topology. Due to the billiard reflection we need to identify all pairs

(z1,v1), (z2,v9) of M? such that
1=z €&, ||lnll=|lval, v1—v2 L TyE.

Let us denote this equivalence relation on M® by ~. The set M® = M®/ ~ with the factor-topology is
the phase space of the system under consideration.

Note that one of the first integrals of our billiard is the total mechanical energy

1 k ;
H=2(#"+9"+ %) + 5 (a® +4° + 2%).

This function is continuous on M.

The phase space M° due to the reflection from the boundary is, in general, not a smooth manifold. We
denote by M?® the union of smooth pieces of M®. Note that on M the form w = dv, A da + dvy A dy +
dv, N dz (here vy, vy, v, are the components of a velocity vector in Cartesian coordinates) is correctly
defined. It has the continuous limit at breakpoints of M5 (i.e., on the boundary of the table D). For such
systems, A.T. Fomenko introduced the notion of integrability by Liouville in the piecewise-smooth

sense. We will say that on M?® there is a Liouville integrable Hamiltonian system in the piecewise-
smooth sense with a Hamiltonian function H if
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NON-DEGENERATE SINGULARITIES OF A THREE-DIMENSIONAL 985

l. the dynamics a the point on M? is defined by the vector field
;O0H 0

H: Ty
v dxt Oz’

2. there exist continuous on M% and smooth on {‘Eﬂ’ functions Fy and F5 such that the set H, Fy, Iy
is involutive and functionally independent on M6,

Remark 1. In some cases, it is possible to introduce a smooth structure at all points of the “break™ of
the manifold M© so that the form w and the functions H, Fy, and F; also become smooth. The question
of smoothing the manifold M® was considered by V.F. Lazutkin [30] and E.A. Kudryavtseva [31].

Proposition 1. The billiard in a Hooke potential field inside an ellipsoid is an integrable
Hamiltonian system in the piecewise-smooth sense. The additional first integrals of this system
are the following

_ c+ b,._z !’.1+Cr.2 a+b .9
= 5% + 5 Y 5%
1 ‘ . k ;
2B (K} + K, + K?) + = ((b+¢)z® + (a + c)y® + (a + b)2?),

b L b, 1 . r k .
Fy = %a’:z + %fg}z - %22 =5 (aKZ +bK. 4+ cK?) + 5 (bex? + acy® + abz?) .

Here K., K, and K, are components of the angular momentum vector.

Proof. Actually this fact follows from the classical result of Jacobi about the integrability of the
geodesic flow on a fouraxial ellipsoid in an elastic force field (see [26]). Nevertheless, we will find the
explicit form of the additional first integrals of our billiard. To do this we will use the method described
by V.V. Kozlov in [27]. Namely we will search for additional first integrals F; and F3 of our system in the
form Fy = I) 4+ f1, Fs = Is + fo, where I; and Iy are additional quadratic first integrals of the problem
without the potential, and f; and f> are functions depending on spatial variables only. It is convenient to
take the following additional first integrals of the billiard without the potential

_c+b gy a+c., at+bd,,
=3 x” + 2 Y 5 z

cb., ac., ab, 1, _ , p 9
IQ = E-’I-' + ?TJ + ?Z — 5 ((IRT +bI{y +CKZ) i

Here K, K,, and K, are components of the angular momentum vector.

Note that if F; and F5 are the first integrals of the problem without reflection, then these functions
will be the first integrals of our billiard. Indeed, under the reflection 7; and I do not change since they
are the first integrals of the problem without potential, and the functions f; and fs will not change too
since they depend on the spatial variables only.

Equating to zero the time derivatives of Fy and F» and using Newton’s equations of the problem
without reflection, we obtain

—k((c+ b)ai + (a -+ c)yj + (a+ b)z2) + B frie + 8, fri + Oz frz =0,
—k(cbzi + acyy + abzz) + Oz fax + Oy fayy + 0. f22 = 0.

I

Lo s ;
—E(I{§+R§+K§),

The variables in the equations are separated and we can easily find their partial solutions
k : .
fi=5(b+092® + @+ )y’ + (@ +b)2%),
fo= g (bca:z + acy® + abz2) .

So, the additional first integrals of our system have the required form.

It remains to prove that the functions H, Fy, and F3 are functionally independent and the equality
{F1,Fy} = 0 is true. The latter fact is verified by direct calculations. The functional independence of
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Fig. 1. Three non-degenerate confocal quadrics.

D(T, I, 1)
D(&,y,2)

where T is the kinetic energy of the material point, does not equal zero almost everywhere. Since the

D(H,Fy,F)
D(&,9,2)

holds. O

H, Fy, and F5 follows from the following considerations. It turns out that the determinant

potential energy and the functions fi, fo depend on spatial variables only, the equality

D(T, 5, 1)
D(&,y, 2)
Studying the integrability of the geodesic flow on an ellipsoid Jacobi showed that in elliptic coordi-
nates the variables in the geodesic equations are separable. The same property holds for the geodesic
equations on an ellipsoid in an elastic force field [26]. Therefore, it is very reasonable to rewrite the

equations of motion of our system in elliptic coordinates. Let us recall their definition. To do this, let us
associate the family of confocal quadrics with the ellipsoid £.

Definition 1. A Jamily of confocal quadrics in three-dimensional Euclidean space is the set of
quadrics given by the equation

B =N(e=Na®+ (@@= N =Ny +(a=A)(b=N)z" = (a = A)(b = A)(c = A), (1)

where a > b > c¢ > 0 are fixed numbers, and X is a real parameter. If the parameter of a quadric
of the Jamily is equal to a, b or ¢, then the quadric is called degenerate, otherwise it is called
non-degenerate.

Remark 2. Note that degenerate quadrics are coordinate planes. If A € (—oc, ¢), then the corres-
ponding quadric is an ellipsoid, if A € (¢, b), then it's a one-sheeted hyperboloid, if A € (b, a), thenit's a
two-sheeted hyperboloid (see Fig. 1). The quadric of parameter 0 is the ellipsoid £.

The family of confocal quadrics has many remarkable properties. Let us list some of them.

1. The tangent planes at the points of intersection of two confocal quadrics are orthogonal.

2. Through each point P € R? pass exactly three confocal quadrics (considering multiplicity). If P
does not lie in any of the coordinate planes, then one of these quadrics is an ellipsoid, the second
is a one-sheeted hyperboloid, and the third is a two-sheeted hyperboloid.

If we map to each point in R? a triple of numbers (A1, A2, A3), where A1, Ao, and A3 are the ascending-
ordered parameters of the confocal quadrics passing through this point, then we obtain a coordinate
system that in each coordinate octant will be single-valued, smooth, and regular.

Definition 2. The triple of the functions (A1, A2, \3) is called the elliptic coordinates in R,
Note that A\; € (—o0,¢], A2 € [¢,b], and A3 € [b, a).
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Proposition . /n the elliptic coordinates, the variables of our system are separated and the
equations of motion in them are the following

- 2v/2 —
= i(/\a' — X)X — k) Vg )

Herei=1,2,3V(z)= (fg —zf1 + 22h — g(a —2z)(b—2)(c— z)) (a—2)(b—2)(c—z2), and f1, fa,

and h are values of the first integrals Fy, F», and H, respectively.

We omit the proof of this proposition since it is technical. However, the formula of separating variables
2 is very important for describing the topology of the Liouville foliation of the system.

3. REGIONS OF POSSIBLE MOTION. BIFURCATION DIAGRAMS

To describe the regions of possible motion, we need to study the properties of the polynomial
V(z) from the Proposition 2. Indeed, if for given values fi, f2, h and a point with elliptic coordinates
(A1, A2, Ag) the inequalities V' (XA;) = 0,4 = 1, 2, 3 are true, then at least one velocity vector is defined at
this point. And if at least one of the inequalities is not true, then no trajectory passes through this point
at the common level of the first integrals.

The following proposition describes the structure of the roots of the polynomial V' (z).

Proposition 3. The polynomial V (z) has 6 real roots taking multiplicity into account.

Proof. We know that the elliptic coordinates satisfy the restrictions A\; € (—oo;¢|, A2 € [¢, b], and
A3 € [b,a]. The points a, b, ¢ are the roots of V/(z). Therefore, in the case of general position inside the
intervals (—oo; c], [e, b], and [b, a] there must be found sub-intervals Ay, Ay, and As, respectively, inside
which the polynomial V(z) takes positive values and vanishes on the boundary. The total number of
boundary points of the intervals A; is either five or six.

Note that the intervals A; and A; can intersect at either a, b, or c only. But in this case, the polynomial
V (2) to the right and left of the intersection point of A; and A; is positive. So, this point is a multiple root
of V(z). It follows that V(z) has at least 5 real roots, each of which is a boundary point of the interval
A;. Since the degree of the polynomial V'(z) is six, all its roots are real. a

Let &, &, and &3 be roots of the polynomial fy — zf; + 2%h — g(a —z)(b—z)(c— z), where (h, fi1, f2)

is a nonempty common level of the first integrals (H, Fy, F>). As we have just proved, all these numbers
are real. Let us assume that £ < & < &3.

Note that &1, &, and &3 are roots of the polynomial depending on the values of the first integrals H,
I, and F; and constants a, b, ¢, and k. So, &1, &2, and &3 are the first integrals of our problem. Note that
the first integrals &1, &2, and &3 are connected to F, Fy, and H by Vyet’s formulae

2H
(a+b+0)—T=€1+§2+£3,

2F
(ab + bc + ca) — Tl = &1€9 + E283 + &163,

2F:
abc — TQ = §16263.

The condition &; < & < &3 guarantees a one-to-one correspondence between the allowed values of
the triples (H, F1, F») and (&1, &2, &3). It follows from this fact and Vyet’s formulae that &1, &, and &3 are
functionally independent commuting first integrals of our system.

Using the new first integrals, let us describe typical regions of possible motion (i.e., of general
position) of the billiard under consideration. According to the proof of the Proposition 3, the roots of
V(z) uniquely describe the structure of the regions of possible motion. If we fix &, &2, and &3, then on
those intervals where the polynomial V' (z) was positive at k£ < 0, it will become negative at k£ > 0 and
vice versa. Therefore, the cases of attractive (k > 0) and repulsive (k£ < 0) potentials are very different
from each other. Let us consider each of them separately.

Attractive potential. In the case of general position when k& > 0 the following 8 types of regions of
possible motion (hereinafter referred to as RPM) of a material point in R? are feasible.
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ITa__ ITb

[Ib IVb

Fig. 2. Regions of possible motion of the billiard inside an ellipsoid in a Hooke attractive potential field.

Fig. 3. Regions ol possible motion of the billiard inside an ellipsoid in a Hooke repulsive potential field.

All of these regions are shown in Fig. 2.

Note that regions [ a and I b, ITa and Il b, Il a and III b, IV a and IV b differ from each other only
by the following fact. The elliptical boundary of the RPM passes from the boundary of the billiard table
to the quadric lying strictly inside it. This means that in regions of type i a the particle reflects from the
outer elliptical wall of the RPM, and in i b touches it. However, reflection and touching from the point of
view of “behavior” of the system are equivalent. Hence the regions of form i a and i b can be combined
into one class. Thus, at k > 0 there are exactly 4 different types of regions of possible motion, which we
will number with Roman numerals from I to IV without attributing Latin letters.

Repulsive potential. In the case of general position when & > 0, the following 8 types of regions of
possible motion of a material point in R? are feasible.

All of these regions are shown in Fig. 3.

Now, using the classification of regions of possible motion, let us construct bifurcation diagrams of
our billiards for £ > 0 and & < 0. Despite the fact that the integrals H, Fy, and F; are quadratic and are
computed quite easily, it more convenient to work with the set of integrals &;, &>, and &.

Consider the momentum mapping F : M% — R3(&1, &, &3). Since the billiard system is piecewise-
smooth, and the integrals &; cease to be smooth at points where one of the conditions of the form §; = ¢;
when ¢ # j is true (nevertheless, they remain continuous), we independently introduce the notions of the
critical value of the momentum mapping and the bifurcation diagram.

The types of RPMs define the stratification of the image of the mapping F. Note that the type of RPM
changes if and only if the polynomial V'(2) has a multiple root. In this regard, we conclude the following
definition.

Definition 3. A point P = (&1,&2,&3) of the momentum mapping image will be called critical if
one of the following conditions is satisfied:

LOBACHEVSKIIJOURNAL OF MATHEMATICS Vol.46 No.3 2025
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Table 1. Classification of typical regions of possible motion of the billiard when & > 0.

Region number Inequalities defining the RPM
la <0< <e<és<h
Ib 0<&<b<e<é<h
lla <0< <ec<b<&<a
IIb D<éi<b<e<bcés<a
I1la LHH<0<e<E <& <h
b 0<&i<ec<E<i<h
IVa LL<l<e<<b<ség<a
IVb D<éi<e<<bcé&s<a

Table 2. Classification of typical regions of possible motion of the billiard when &k < 0.

Region number Inequalities defining the RPM
| LL<e<b<b<é<a
I1 Si<e<bc&H < <a
111 c<f1<E<b<és <a
v c<§ <b<H <& <a
\ SL<e<b <b<a<s
Vi c<f1<b<sbH <a<y
VIl c<§ < <b<a<éy
Vil c<fi<b<é<a<s

e The point P belongs to the boundary of the image of the momentum mapping F.

e The polynomial V' (z) has a multiple root.

All other points will be called regular.

Definition 4. The set of all critical points of the momentum mapping image will be called
bifurcation diagram.

Figure 4 shows the bifurcation diagrams of a billiard with attractive and repulsive potentials inside
the ellipsoid £. Note that the first diagram has 4 chambers, while the second has exactly 8 chambers.
Each of the chambers corresponds to a different type of region of possible motion (see Tables 1 and 2).

Next, we will study the local structure of the Liouville foliation. First of all, we will be interested in
layers corresponding to critical points. Therefore, we have to distinguish a class of critical points which
are well studyable.

Definition 5. A critical point P = (&,&2,&3) is called wrong if there are at least three equal
numbers among the numbers &1, &, &3, a, b, and c. Otherwise, the point P is called right.

Remark 3. In the following, we will not study wrong points.

Note that this definition of the right point is not chosen by chance. In wrong critical points, not
all walls of the diagram intersect transversally. However generally for IHS with n degrees of freedom,
the walls of the bifurcation diagram intersect transversally at the point of the image of the momentum
mapping corresponding to a nondegenerate singularity.

For more convenient work we will divide the right critical points into several classes.
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Table 3. Hazpanue taduiinl

e Tl e e o s e
(z,>,>) O Vg U3 g Us Vg vy vg
(z><) i U3 Vs v Ug v7 Vg vg
(< >42) U5 Vg vy vg ] ) v3 N
(<, >, <) Ug v Ug Us Uy U3 Ug "
(<) U5 Vg U7 Vg " Vg U3 vy
(>, <, <) g U7 Ug g Uy V3 Vg ]
(<, <y >) (e g U3 U4 U5 Vg U7 vg
(Ziss,%) N U3 Uy ] vg V7 Vg vg

Definition 6. A right critical point P = (&1,&2,&3) will be called boundary if it lies on the
boundary of the momentum mapping image. Otherwise, P will be called internal.

Definition 7. Lef us call the number of pairs of identical numbers in the set &1, &2, &3, a, b, ¢ by
the multiplicity of the critical point P = (&1,&2,&3).

According to the definition of a proper critical point, its multiplicity does not equal three. Moreover,
the following statement is true.

Proposition 4,

1. When k > 0all right critical points of multiplicity 3 are boundary. These points are (0,0, c),
(0,0,b), (0,0,a), and (c,b,a). When k < 0 there are exactly three right critical points of
multiplicity 3: interior point (c,b,a) and boundary points (0,¢,b) and (0,b,a).

2. Let P be aright critical point of multiplicity 2. Then,

o when k >0 it lies either on the line {£&; = ¢,& = b} and is internal, or lies on the
straight lines {§; = 0,§& =0} {§&1 =, =b}, {{1 =, & =b}, {§1 =, {3 =a}, {§ =
&3 =a}, {£a=b&=a}, {£=0,G=c}, {&=0,E=0b}, {£=0,=a}, {&1=
§2,63 = c}, {& = &2, &3 = b}, {&1 = &2.83 = a}, {& = ¢, & = &} and is boundary;

o when k < 0it lies either on the lines {&; = ¢,& = b}, {&1 =c¢, & =a}, {2 =b,& =a}
and is internal, or lies on the lines {{; = b,§& =a}, {&1 =c,é&a=a}, {£&1 =0,& =
ab, {& = 0,6 =b}, {§& = 0,& =c}, {&1 = b,§3 = a}, {§&1 = ¢,§ = b}, {& = 0,83 = b},
{&6 =0, =a}, {&=c¢,& =0}, {&2=c&=a}, {& =8,8 =b}{& =&, & =a),
{&1=1c,& =&}, {61 =b,& =&}, {& = 0,& = &3} and is boundary.

Proof. It follows from the structure of the bifurcation diagrams (see Fig. 4) and the definition of a
right critical point. i

4. REGULAR POINTS OF THE MOMENTUM MAPPING IMAGE
AND THE CORRESPONDING LIOUVILLE FOLIATION LAYERS

Theorem 1. Let P = (&1,&2.&3) be a regular point of the momentum mapping image of the
billiard in a Hooke potential field inside an ellipsoid and Tp be an integral level surface in M®
corresponding to the point P. Then, the surface Tp is homeomorphic to one or a disjoint union of
several three-dimensional tori. The Liouville foliation in a small neighborhood of Tp is trivial.

Proof. We will number the chambers of the bifurcation diagrams by the numbers of the equivalence
classes of the regions of possible motion corresponding to them. In the case k > 0 the chambers are
numbered with Roman numerals from [ to IV, and in the case & < 0 from [ to VIII (see tables I, 2 and
Figs. 2 and 3).
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Fig. 4. Bifurcation diagrams of the billiards bounded by the ellipsoid £ (i.e., the quadric of parameter 0) in a Hooke
potential field. The diagram for the atlractive potential (k > 0) is on the left, the diagram for the repulsive potential
(k < 0)is on the right.

Let us consider the case of an attracting potential and chamber I of the corresponding bifurcation
diagram. The other cases are analysed by analogy. Let P = (&;,&2,&3) € . Let us denote by Dp the
corresponding RPM. At each point p € Dp consider all vectors v such that (p,v) € Tp. According to
the equations of motion 2, exactly 8 such vectors arise at each interior point of Dp that does not lie
in any of the coordinate planes. Indeed, at these points, the elliptic coordinates satisfy the restrictions
A1 € (max{&1,0},£2), A2 € (¢, &3), A3 € (b,a), and, hence, A; # A; when i # j and V(\;) > 0. Let’s
find out how many vectors are located at the remaining points of the RPM.

Let us consider interior points of Dp lying in the coordinate planes. Consider all interior points

located in the plane z = 0 but not lying in the planes y = 0, z = 0. Since the plane = = 0 in the elliptic
coordinates is given by the equation A3 = a, the third elliptic coordinate degenerates at its points. At

the same time, the other elliptic coordinates are not degenerate and the values |;\1 ’ ‘)\g| are not zero.

The pair of coordinates (A1, A2) in the plane 2 = 0 when y, z # 0 is a smooth local coordinate system.
Hence, if we project the velocity vectors at the considered points onto tangent plane T(g , . Oyz, we
obtain 4 vectors in the projection. Let us show that |&| # 0. For this purpose, we note that in the region
of nondegeneracy of the elliptic coordinates the following formula is true

dr . dx . oz .
P=—A 4+ —Ao 4+ —As.
T N 1+8)\2 2+8/\3 3
il Ox g S :
If A3 tends to a, the derivatives of W and W will tend to zero. So, in the plane z = 0, the equality
1 2

2
72 = liin (%Ag) is true. Using the equations of motion and the elliptic coordinate transition
frig (4] 3

formulae, we obtain

38 k(a—&)(a—&)(a—&)
(@ — A1) (a—A2)
Since we consider the case a > &3, we conclude that || # 0. And, hence, at the points of Dp lying in the

plane z = 0, but not lying in other coordinate planes there are again 8 velocity vectors. The remaining
types of interior points of Dp are analyzed similarly.
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To each smooth face of the boundary of the region Dp there correspond exactly 4 pairs of nonequiv-
alent vectors, to the smooth edges of the boundary exactly 2 pairs.

Using the location of the velocity vectors at the points of the RPM, let us describe the topology of the
layer Tp. For this purpose, we introduce the notation of velocity vectors at internal points of Dp that do
not lie in the planes z = 0, y = 0, and z = 0. These planes separate Dp into 8 connectivity components.
Each of them is defined by three inequalities: z > 0 (orz < 0),y > 0 (ory < 0), and z > 0 (or z < 0).
Let us associate to the vector (>, >, <) the part of Dp that lies in the coordinate octant z > 0, y > 0,
z < 0, etc. Consider an interior point of Dp that does not lie in the planes z = 0, y = 0, and z = 0. The
velocity vectors corresponding to this point can be uniquely encoded by triples of component signs in

the elliptic coordinates (sign A1, sign Ag, sign /\‘3) Using the encodings of the RPM’s sub-areas and

velocity vectors, let us fill the table of notations.

Note that the same set of signs corresponds to different notations of vectors. Nevertheless, due to
this numbering, the vector fields v; can be extended to the whole set Dp by continuity. Moreover, the
vector fields v; will be smooth inside Dp.

The vector fields vy, . . . , vg divide the surface Tp into 8 components, each of which is homeomorphic
to Dp. We denote these components by Dy, ..., Ds, respectively. Due to the billiard reflection as well as
the structure of Dp, we conclude that Dy and Dy, D3 and Dy, D5 and Dg, D7 and Dg identify on elliptic
boundaries, and Dy and Dy, Dy and D3, Ds and D7, Dg and Dg identify on hyperbolic boundaries.
By gluing Dsj._1 with Doy (K =1,...,4) on elliptic boundaries, we obtain a region homeomorphic to
the direct product of two-dimensional torus and a segment. By gluing the obtained regions along the
corresponding hyperbolic boundaries, we obtain two three-dimensional tori T, which will be formed by
the components Dy, ..., Dy and Ds, ..., Dg. Thus, we have proved the first part of the theorem.

It remains to note that at small change of the point P the region of possible motion Dp will not
change its type, and the vector fields v; will change continuously. So, near Tp the Liouville foliation is
trivial. O

Below we give a table showing the number of Liouville tori corresponding to points of the bifurcation
diagram chambers.

5. LIOUVILLE FOLIATION NEAR CRITICAL LAYERS

In this paragraph, we will describe the Liouville foliation of our billiard in the neighborhood of the
layers corresponding to the right critical points (see Definition 5). Before that, however, we recall the
notion of a 2-atom introduced by A.T. Fomenko (see, e.g., [23]).

Definition 8. Lef ¢ be a critical value of a Morse function f on a compact orientable manifold
M?2. Let £ > 0 be chosen such that on the segment [c — ¢, c + €] the point c is the unique critical
value of f. The connected component of the set f='([c — e, c + ¢]) stratified on the level lines of
the function f is called 2-atom.

Remark 4. All 2-atoms are considered with respect to a layer-by-layer diffeomorphism.

Let us give some examples of 2-atoms. According to Morse’s lemma, in a neighborhood of a
nondegenerate critical point P, the function f is reduced to the form f = f(P) 4+ 2 + y?. Therefore,
if P is a point of minimum or maximum, the 2-atom corresponding to it is a circle stratified by the family
of concentric circles (see Fig. 5.1). Such an atom is called the 2-afom A. There are infinitely many
atoms corresponding to saddle singularities. In the present paper we will need only two of them: B and
C5. They are shown in Figs. 5.2 and 5.3, respectively. Note that the atoms B and Cs are centrally
symmetric. Actually, the atom Cy has more symmetries. Indeed, let us apply the inversion mapping to
the picture 5.3. The atom C maps into itself. We will also call this involution the central symmetry. To
distinguish these two involutions on Cy, we will call them first and second central symmetry. These two
symmetries are equivalent.

According to the results of N.T. Zung, the Liouville foliation in a neighborhood of many saddle
nondegenerate singularities can be represented as an almost direct product of 2-atoms (see, e.g., [24]).
For arbitrary nondegenerate singularities of complexity 1 of systems with 2 degrees of freedom, the
realization of their topological invariants in the class of billiard books in a Hooke potential field was
done in the paper by V.A. Kibkalo and A.T. Fomenko [28]. The realization of arbitrary semi-local focal
singularities of a system with 2 degrees of freedom was also obtained in [29]. It turns out that a similar
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Fig. 5. Examples of 2-atoms (from left to right): A, B, C.

representation is valid for the singularities corresponding to right critical points of a billiard in a Hooke
potential field inside an ellipsoid.

The higher the multiplicity of a critical point, the more complicated the Liouville foliation in a
neighborhood of the layer corresponding to it. According to the Proposition 4, the bifurcation diagram of
a billiard in an attractive potential field contains exactly one line of interior critical points of multiplicity
2 (the line {& = ¢, & = b}) and does not include interior points of multiplicity 3. In the repulsive case
there is exactly one interior critical point of multiplicity 3 (the point (¢, b, a)). If we describe the structure
of the Liouville foliation in neighborhood of the layers corresponding to these points, we uniquely identify
which bifurcations correspond to all the remaining interior critical points.

Theorem 2.

1. I[ k> 0, then a small neighborhood of the Liouville foliation layer corresponding to an

interior critical point of multiplicity 2 is layer-by-layer homeomorphic to the almost direct
B x Cz
Za(c)
2-atoms by the central symmeltry.

product x ST x D', where D' is a segment, and the involution o acts on each of the

2. @ If k<0, then a small neighborhood of the Liouville [oliation layer corresponding

to the point (c,b,a) (i.e., the interior critical point of multiplicity 3) is layer-by-layer
B x CQ > Gg
Zs(a) x Za(B)
the central symmeltry on B and by the first central symmelry on the first Co (on the second
Cs acts trivially), and the involution 8 acts by the second central symmetry on the first Co
and by the central symmetry on the second Cy (on B acts trivially).

homeomorphic to the almost direct product , where the involution a acts by

Proof. 1. Let P = (£9,¢,b). Let us denote by Tp the inverse image of the point P in M® under
the momentum mapping F. The critical circle v(P) arising at motion of the particle along the axis Ox
corresponds to the point P. It turns out that on Liouville tori Tps close to Tp one can choose a cycle
v(P") homologous to v(P), which, when P’ tends to P, will pass to v(P). This is clearly shown in Fig. 6
for all four kinds of Liouville tori close to the surface Tp.

Next, we analyze in detail the case £ < 0. For &) > 0 the idea of the proof remains the same, since
the reflection from the boundary ellipsoid £ is replaced by the tangent of the ellipsoid of the parameter &Y.
From the point of view of the Liouville foliation topology, the qualitative situation will not change under
this transformation. Let us denote by Up a small neighborhood of the layer Tp.

Note that the forms v = p1dA1 + padAs + padAs and w = dpy A dAy + dpa A dAs + dpg A dA3 are
correctly defined on the billiard phase space (when £ > 0 or £} < 0). This follows from the results of
V.F. Lazutkin [30] and E.A. Kudryavtseva [31]. Let us define the function s in the neighborhood Up on
the regular parts of the Liouville foliation by the following formula

s(P’)z% / Q.

¥(P)
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2

Fig. 6. The cycle y on Liouville tori close to the isointegral surface Tp = F~'(£7, ¢, b). The selected points are the
tangency points of the cycle v and the ellipsoid (cases 1, 2), the one-sheeted hyperboloid (case 3) of smaller parameters.

This function will help us construct a trivial S*-fibration of the neighborhood Up.

Let us find the explicit form of the function s. According to the formulae of separation of variables
(see the Proposition 2), the following equations are true

o2 = EQi—&)Qi —&)(Ai—&) .
o4 (a= )b - N)(e—N)
The cycle v(P’) rounds each elliptic coordinate exactly 4 times, hence,

min{&a,c}
8(51,52,53)% / LE—E)(t-&)(t-&)
0

=1,2,3.

(@a—t)(b—t)(c—1)

min{&3,b} @
1 (t—&) - &)t - &) 1 (t=&)( - &)t - &)
tz f \/k esa=ae—n t+: J \/’“ @601

max{c,&a} max{b&s}

Lemma 1. The Junction s(&1,&2,8&3) is analytic in a small neighborhood of the point P.

Proof. Let & # ¢, &3 # b. Consider in the complex plane the contour C' shown in the Fig. 7. It
consists of the upper semicircle L connecting the points 0 and a, four upper semicircles L. of radius ¢
with centers at the points ¢, b, &2, €3 and five segments. Let’s choose a positive direction on the contour.
Let

=L \/k(z—&)(z—&)(z—&s)_

™ (a=2)(b—-2)(c—2)
According to the Cauchy integral theorem,
0= jé f(2)dz = / f(2)dz + T (€) + n(e) + Is(e),
c+ [J+

where
win{és,c}—e min{€s,b}—e i
Iie) = / f(z)dz + / f(z)dz+ / f(z)dz,
0 s aga e max{b,¢3}—¢
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Fig. 7. Contour of integration.

max{&z,c}—¢ max{&3,b}—¢
pe=- [ f@a+ [ e
min{f.z chte min{b: Ea}+e
j f(z)dz + j f(z)dz + / f(2)dz + / f(2)dz
Lz (&) L (&3) Lz () L (b)

Note that s = hm I1(e), the integral I>(e) is imaginary, and hm 13( ) = 0. Indeed, the latter fact follows

from the classncal inequality

f f(2)dz| < max | £ ()] b

Thus,

—R / 2‘—51 )(z — &)(z —&)
(a—2)(b—2)(c—2z)
Since there are no critical points ¢, b, &2, &3 on the contour L, the function s is correctly defined and
analytic in a small neighborhood of the point P. The lemma is proved. O

Note that the function s is an action variable.

Using methods of integration of functions of a complex variable, it can be shown that the vector field
v = sgrads does not equal zero in a small neighborhood of the layer Tp. Moreover, this field is transversal
to the submanifold given by the equation z = 0 in Up.

According to the classical theory of IHS, the trajectories of the field v are closed and the integral
curves are 2m-periodic. Moreover, the trajectories of v on the layer T are homologous to cycles v(P'),
which are homologous to «(P) by their definition. Now, using the vector field v, we describe the Liouville
foliation in the neighborhood Up.

We denote by W. the small cubic neighborhood of the point P, i.e., W, = [¢) —¢,£) +¢] x [c— ¢, e+
g] x [b—&,b + €]. Without loss of generality, we can assume that Up = F~1(W.). Let us represent W
in the following form

Wei= U W.(q), where W.(q)={+q} x[c—¢,c+e]x[b—¢eb+el
gE€[—=.]

Let us consider the part of Up that is given by the conditions: z =0, & > 0. Let us denote it by M.
For arbitrary g € [—¢, €] we restrict F~1(W.(¢)) to M. This restriction M will be a four-dimensional
submanifold in M with boundary. Consider the Cauchy problem of the vector field v with initial points
on the manifold M. We obtain the flow g; under the action of which the manifold M deforms inside
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M. However, note that gor = go = id. In other wgrds, in time ¢ = 27 the manifold M returns to its
initial position. Thus, we obtain the mapping G : M x S' — M, which acts according to the formula
G(z,t) = g¢(x). Let us list the properties of this mapping.

e The mapping G is continuous. This fact follows from the theorem on the continuous dependence
of a solution of the Cauchy problem on an initial data.

o The mapping G is bijective. Indeed, the manifold M intersects every Liouville torus Tp by a
two-dimensional torus Tps. In this case, the vector field v = sgrads will be transvefsal to Tpr.
It means that the integral trajectories of the field v drawn from different points of Tpr will not

intersect. Hence, we conclude the injectivity of the mapping G on each of the tori Tpr x St. Ii
we complete an arbitrary basis on this two-dimensional torus and add to it the cycle v(P'), the
resulting triple will be a basis in the group of first homologies of the torus Tp/. Thereiore, the
whole Liouville torus T is covered by the mapping G. Hence one can show the bijectivity of G
on the whole product M x S!

Since M and S are compact and the mapping G is a continuous bijection, G is a homeomorphism.

We restrict the Liouville foliation in M® to M and extend it to M x S, trivially multiplying each layer
by the circle. By construction, the mapping G is a layer-by-layer homeomorphism. Therefore, in order
to describe the Liouville foliation in the neighborhood Up of layer Tp, it is necessary to find out how the
Liouville foliation in M is structured.

Consider the equations of motion 2 induced on M. The third elliptic coordinate is fixed on this
submanifold: A3 = a. Let us write the equations of motion for the elliptic coordinates (A1, A2)

bt 2R - @0 - &)@ - o e N,

a2
- 2v2 k
Ag = i(/\l (@) \/5()\2 — q)(A1 — £2) (A2 — &3)(a — A2) (b — A2)(c — A2).

Note that £} < 0and Ay, A2 < a. Hence, the Liouville foliation of our system on M in the neighbourhood
of the layer Tp is the same as that of the system defined inside an ellipse with semi-axes b, ¢ and elliptic
coordinates (A;, A2) and given by equations

A :i)\f—\/_,\l —5()\1 §2)(A1 — &3)(b — A1)(c — A1),

: 2/2

Ay = i)\ o (/\1 —&2)(M2 — &)(b— A2)(c — A2)
1— A2

in the neighborhood of the layer & = ¢, &3 = b.

The latter system defines the billiard in a Hooke repulsive potential field inside the ellipse with semi-
axes band ¢. Hence we conclude that M is layer-by-layer homeomorphic to a small neighborhood of the
critical layer of the saddle point of rank 0 of this planar billiard. According to the results of V.A. Kibkalo
and A.T. Fomenko (see [28]) this neighborhood is layer-by-layer homeomorphic to the almost direct
product of 2-atoms B and C with factorisation by the involution of the central symmetry of these atoms.
Thus M = (B x C2)/Zy x S.

Since all arguments are true for all ¢ € [—¢,¢] and any fibration over a segment is trivial, the
small neighborhood of layer Tp is layer-by-layer homeomorphic to the almost direct product (B x
C5)/Za(a) x S* x D', where « is the involution of central symmetry. Thus, we have proved the first
statement of the theorem.

Before starting the proving of the second statement of the theorem, we note that the flow g; at time
t = in some sense flips M. Namely, a point p with a velocity vector v passes to the point —p with
velocity vector —v aiter time 7. In other words, if we considered the billiard not inside the ellipsoid, but in
its half cut off by the plane = = 0, the small neighborhood of the layer corresponding to the interior point
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B x CQ X Sl
Zz(a’) X Zz(ﬂ)
Here the involution a acts by central symmetry on the atoms B and the fist Cy (trivially acting on the
circle), and j3 acts by the additional central symmetry on the first Cy and S* (trivially acting on B). This

is indeed true, since inside the half ellipsoid the flow g, in time 7 transforms the submanifold M into itself
with a twist: the pair (p, v) transiorms into the pair (—p, —v), which corresponds to the central symmetry
x (9

Zs(a)
theorem.
2. Let P = (c,b,a), Tp be the corresponding Liouville foliation layer and W. be a small cubic

neighborhood of the point P. We show that the neighborhood F~1(W.) of layer Tp in MY is layer-
B x (Cy x Cy

Zo(a) X Za(B)
on B and the first Cy, and 3 is the additional central symmetry on the first and the second Cl.

Let us represent the neighborhood W in the following form

W, = U We(q), where We(q) = [c—e,c+¢€] x [b—e,b+¢€] x {a — g}

g€[—e.£]

of multiplicity 2 when k£ > 0 would be homeomorphic to the almost direct product x D1,

of the almost direct product . Using this consideration, we prove the second statement of the

by-layer homeomorphic to the almost direct product , Where « is the central symmetry

For all ¢ € [—&, ] we describe the structure of the Liouville foliation in F~1(W.(q)).

Let ¢ > 0. In this case, we get into chambers V—VIII of the corresponding bifurcation diagram.
The regions of possible motion corresponding to these chambers coincide with the regions of possible
motion [=IV of the billiard with an attractive potential. Moreover, {3 = a + ¢ > A; for all i. This means
that we can remove multipliers of the form &£ — A; in the equations with separated variables (see the
proposition 2) without changing the topology of the Liouville foliation. As a result, we obtain the system
of equations which will be similar to the equations of motion of a material point in the Hooke’s attractive
potential field. Applying the method described above, we conclude that for ¢ > 0 the subset F~1(W.(q))
&

Ly(c)

is layer-by-layer homeomorphic to the almost direct product x S, where « is the involution of

central symmetry.

When ¢ < 0 we can take a similar approach. However, we cannot simply remove the multipliers
&3 — A; because they effect types of region of possible motion. We need to change the billiard table. We
need to go from a region inside the ellipsoid to two sub-regions given by the inequality A3 < &3. In each of
these regions, the modified equations of motion (i.e., without multipliers £ — A;) will be almost the same
as for a billiard with an attractive potential. Therefore, in view of the remark after the proof of the first
statement of the theorem, the subset F~1(W.(q)) in M® is homeomorphic to two almost direct products

B x CQ X Sl

Za(a) X Za(B)
on the circle), and 3 acts by the additional central symmetry on the second Cy and S* (trivially acting on
B), when g < 0.

, where the involution a acts by central symmetry on the atoms B and C5 (trivially acting

M are glued on a layer iballS:
Zo(o) x Za(B) TTC B Y (o)

B x C x K1
ZQ(O{) * ZQ(,S),
« is the central symmetry on B and Cy, 3 is the additional central symmetry on Cy and K.

Studying the evolution of F~1(W.(q)), we conclude that the neighborhood Up of layer Tp is indeed

. , B x Cy x Cy .
layer-by-layer homeomorphic to the almost direct product ————=——=_ where « is the central
yer-by-lay p p Z2(a) x Za(B)

symmetry on B and the first Cy, and /3 is the additional central symmetry on the first and the second
Cs. O

As already mentioned, using the result of the Theorem 2, we can define bifurcations corresponding
to all interior critical points. Below we give two theorems that describe the Liouville foliation in the

Note that when g = 0, the two complexes . This gluing

can be represented as the almost direct product of where K1 is the critical layer of Cy,
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Table 4. Number of Liouville tori corresponding to the chambers of the bifurcation diagrams.

k=0 k<0
1 2 | 2 \Y 2
1| 2 | 4 \ 2
I 2 111 2 Vil 2
v 1 v 2 VI 1

Table 5. Liouville foliation in neighborhoods of layers corresponding to interior points of multiplicity 1. Each
complex must be directly multiplied by S* x D?.

k>0 k<0

€ — B x §1 f1=c B xS&! E2=10 & =a
Ei'(g 2W £2<b . W E} <G QBXS‘I £1 <6 C?QXS‘I
' 2 &<a = &<a E2<b

. L=c & =D g1 E&s3=a
52;2 B x §1 & >b 2B x 8! & >c Pl & >c C"QX.‘SI
> & <a &<a Zs() £2<b

= 1 Bx 5l E2="b {3=a
5'5_{3, Cy x St a2 < b el & <e Cy x St & <ec 2B x S!
& <« Folov

2 ; €3>(1 JQ(G) ‘5-3 > a 62 ~ b

o s &L1=c Ea=0b £3=a
€ =10 B xS £p B x S & >ec B x S Ei>c | BxS
& <c

A 3 > a & >a &>

Table 6. Liouville foliation in neighborhoods of layers corresponding to interior points of multiplicity 2 in the case
k < 0. Each complex must be directly multiplied by the segment.

- o . CQXC2 1 - - ; BXCQ +1

L=b8=at1<c Zo(a) X S Er=b&=a,6 >c Zo(a) x5
1

Gi=cé=at<b R e Gi=cé=ab >b BxBx 8!
Zo(ex)

B x Cy x St " Dxls.

1=¢&=0b, Bt = ¢, & =b, 51

SLi=c¢&=b§<a Za(@) x Z2(B) S=cL=08>a Zo(a) >

neighborhood of layers corresponding to all internal critical points different from those studied in the
theorem 2.

Theorem 3. Let P = (&1,&2,&3) be an interior critical point of multiplicity 1 of the billiard in a
Hooke potential field inside an ellipsoid, then the small neighborhood F~1(P) in M¢ is layer-by-layer
homeomorphic to the direct product V3 x St x D?, where V3 is a 3-complex given in the table 4 for the
corresponding set (§1, &2, &3).

Remark 5. In the Table 4, the involution e acts by the central symmetry on multipliers.

Theorem 4. Let P = (&1,&2,&3) be an interior critical point of multiplicity 2 of the billiard in a
Hooke's repulsive potential field inside an ellipsoid, then the small neighborhood F~1(P) in MY is layer-
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by-layer homeomorphic to the direct product V° x D!, where V? is a 5-complex given by the table 5 for
the corresponding set (&1, &2, &3).

Remark 6. In Table 5, the involution « in all cases except & = ¢, &2 = b, and &3 < a acts by the
central symmetry. In the case & = ¢, & = b, and &3 < a the involution « acts by the central symmetry
on the atom B and the circle, and /3 acts by the central symmetry on the atom C5 and the circle.

It remains to describe the structure of the Liouville foliation near layers corresponding to boundary
right points of the bifurcation diagrams.

Theorem 5. Let P = (&1,&2,&3) be a boundary right point of the bifurcation diagram of the
billiard in a Hooke potential field inside an ellipsoid, then the inverse image of the small neigh-
borhood of the point P under the momentum mapping F in MS is layer-by-layer homeomorphic
to

e one ordisjoint union of several direct products of the form A x T? x D?, A x A x S§' x D!,
A x Ax A, if the point P does not lie on the boundary of an inner face of the bifurcation
diagram. The number of atoms A in all products is equal to the multiplicity of point P, and
the number of such products is equal to the number of Liouville tori in the nearest chamber.

e adirect product A x V3 x DYif the point P borders exactly one inner edge of the bifurcation
diagram. Here V3 is a complex from the table 4 corresponding to the point P.

e the almost direct product A x % ifk <0and P = (0,b,a). Here a is the involution of
9l C

the central symmetry on the multipliers.
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