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Abstract. The paper presents a class of billiards with varying geometry, the so called force or evolutionary
billiards, which enable us to realize, in the sense of Liouville equivalence, the well known cases of Zhukovsky
and Kovalevskaya for certain energy zones On the corresponding 4 dimensional open phase submanifolds, the
indicated systems are implemented for an increase in energy on all successively occurring isoenergy 3 surfaces
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1 INTRODUCTION

In recent years, it has been discovered that, using integrable billiards, it is possible to “visually” simulate diverse
integrable Hamiltonian systems with two degrees of freedom In the program work [I] by V'V Vedyushkina and
A T Fomenko, a survey of the current state of research data was made, the achieved results were indicated, and a list
of topical open questions was given

11 History of the problem

As it turned out, a wide class of topological invariants of the Liouville foliations of integrable systems are realized
as topological invariants of Liouville foliations for billiard systems in a suitable class

The key invariant of this kind is the Fomenko Zieschang invariant (marked molecule), i e , a graph with numerical
marks classifying the Liouville foliation of the system in restriction to the isoenergy surface @3 up to Liouville equiv
alence (fiberwise homeomorphism) Note also that the removal of numeric marks gives another (a coarser) invariant,
the so called Fomenko invariant (coarse molecule) This invariant classifies the Liouville foliations of integrable systems
into nonsingular surfaces @3 up to a homeomorphism of their bases The foundations of the theory of topological
classification were laid down in the works of A T Fomenko [2| [3] 4] and together with H Zieschang [5] (for details, see
the book by A 'V Bolsinov and A T Fomenko [6])

Note also that Liouville equivalent systems have “identical” closures of the integral trajectories in general position
(see [5L16]) That is, by an appropriate diffeomorphism, “almost all” closures of solutions of the systems under comparison
are combined for almost all initial data

In the works |7, [8 9] the Fomenko and Fomenko Zieschang invariants of many integrable systems of dynamics or
mathematical physics were realized (implemented) by billiards, and, in [10], billiards were used to realize such invariants
of arbitrary geodesic flows on the sphere and torus with an additional integral which is linear or quadratic in momenta

The problem of classification of billiard tables and integrable billiards on them is closely related to the realization
of specific integrable systems by billiards For example, in the papers [11], 12 [13] topological billiards were classified up
to structure of domail (table) and up to Liouville equivalence of billiard dynamical systems in these domains

For a more general class of billiard books introduced by V.V Vedyushkina in [I4] and [15], a similar problem remains
open Recall that by a book (a billiard book) one means a two dimensional CW complex domain with permutations
on its 1 edges Several flat domains of integrable billiards are glued along the edge of the complex, and the cyclic
permutation on this edge defines the transition of the ball from sheet to sheet after hitting the boundary

At the same time, the already studied subclasses of billiard books made it possible to implement arbitrary “con
stituent parts” of the Fomenko Zieschang invariant: its arbitrary Bott 3 atoms (all possible nondegenerate singularities
of rank 1), see [14] and [I5], and arbitrary numeric marks r, e, n, see [16}, [17,[I8] Note that the implementation result of
3 atoms was successfully developed to the implementation of an arbitrary Liouville foliation base (given by the Fomenko
invariant) using a suitable billiard book [19] Moreover, diverse classes of three dimensional surfaces (including those
that are not Seifert manifolds) were implemented as isoenergy surfaces of integrable billiards on CW complexes [20]
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318 FOMENKO, VEDYUSHKINA

We also note that this problem is being actively studied for diverse generalizations of flat and piecewise flat integrable
billiards: for billiards in the Minkowski metric [21], billiards in potentials field [22], billiards on the surface of confocal
quadrics [23], three dimensional integrable billiards [24], and billiards with slipping [25]

Interesting results also arise when such constructions are combined For example, the introduction of a potential
filed on a piecewise flat table complex (a book) enables us to go on to the question of implementation of semilocal non
degenerate singularities of rank 0 (equilibria) of integrable systems [26], as well as of various splitting singularities [27]
Another example is the consideration of a billiard on a table with Minkowski metric in a potential field [28]

We also note the study of the noncompactness problem for Liouville fibers and their singularities, which occur both
in integrable systems [29] [30, BI] and in billiard systems Fomenko invariants of systems on unbounded tables were
studied by authors, for example, in [11]

1 2 Force Evolutionary Billiards

We note the following general fact in the above considered systems of billiards without potential field in flat domains
and CW complexes glued from such flat domains

When a given system is implemented by billiards for different energy levels of the system, we selected their own
“implementing billiard ” For the classical topological billiards and billiard books (see [14] and [I5]), for the energy we
can take the length of the velocity vector of a material point (the billiard ball) By choosing the energy value, we obtain
a three dimensional surface which is said to be isoenergy It is clear that here the energy is just a scale parameter, in
the sense that a change in energy does not change the topology of the isoenergy 3 surface (up to homeomorphism)

The following question repeatedly arose: is it possible to discover a new class of billiards that implements the
Hamiltonian system “not by parts,” but as a whole on the entire phase 4 manifold M?, i e , on all successive isoenergy
3 surfaces at once A T Fomenko discovered a new class of billiards, the so called force or evolutionary billiards In
them, with a change in the velocity of the ball (the force of the collision with the wall boundary), both the topology of
the billiard table and the reflection law can change The billiards states of force billiards depend on a parameter (the
energy) and change inside a fixed “billiard support ” In [32], we obtained the following results

A. Tt turns out that integrable force billiards implement (in the sense of the Liouville equivalence) some important
and well known Hamiltonian systems “entirely,” i e , on the entire phase manifold M* at once (possibly except
for singular fibers) In other words, the implementation of the system occurs at once on all its regular isoenergy
3 surfaces As the energy h of the material point increases, the billiard table changes its topology sufficiently
“visually,” and the reflection refraction laws on billiard edges can change Here, step by step, the three dimensional
levels of constant energy of the deforming billiard change As a result, such a billiard system implements the
considered Hamiltonian system (with origins in geometry, topology, or mathematical physics) step by step at all
its energy levels As prime examples, we “entirely” implemented the Euler and Lagrange systems Also note that,
on a suitable interval of energy values, an evolutionary billiard implements the Goryachev Chaplygin Sretensky
system, which is well known in rigid bodies dynamics (the discovered implementation of this system is not yet
complete, and this result is a part of another our work)

B. In the billiard implementation of the Euler case we found “confocal quadrics” as hidden parameters; in the one
of the Lagrange case we found “hidden concentric circles ” It turns out that a natural deformation of confocal
quadrics into circles (arising from the merging of foci) “transforms” the complete set of Liouville foliations of
the Euler case into the complete set of Liouville foliations of the Lagrange case Recall that we integrate the
Euler case using quadratic integral, and the Lagrange case using linear integral Such a “transformation” of a
“quadratic” integrable system into a “linearly” integrable one is a very interesting fact We call such systems
billiard equivalent

In this work, we present the force (evolutionary) billiards discovered by us that implement the Zhukovsky and
Kovalevskaya systems on the phase 4 dimensional symplectic submanifolds corresponding to some specific energy
zones We underline that each system is implemented (for increasing values of energy) on all successively occurring
nonsingular isoenergy 3 surfaces from these 4 dimensional open submanifolds So far this implementation is partial,
ie, the discovered “zones of implementability” have not yet exhausted all admissible energy values

2 DEFINITION OF FORCE EVOLUTIONARY BILLIARDS
Let us recall the definitions introduced by A T Fomenko (see [32])

1 The support of a force billiard is a finite connected two dimensional CW complex X containing vertices, edges,
and two dimensional domains sheets L; homeomorphic to closed simply connected domains in R? This complex
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BILLIARDS WITH CHANGING GEOMETRY 319

is locally flat, i e , the metric on 2 sheets is Euclidean, and the gluing of two dimensional sheets along common
boundary arcs (edges of the complex, or the spines of the corresponding books) is isometric Moreover, all
angles between intersecting edges are equal to /2 A class important for applications is that of billiard books

(see [33, [14, 20])

2 For each value of the energy parameter H = h (from 0 to infinity), consider a closed subcomplex X (h) (not
necessarily connected) in the support X Let us call it a state of the force billiard corresponding to h. We assume
that X is the union of all states X (h) and that, for h; < hg, we have the condition that X (h;) is contained
in X (hg), ie, the state X (h) increases as h grows, it “expands” Some wall edges of the billiard which were
previously impenetrable for the ball (the ball was reflected) can become permeable (the ball goes right through
to another sheet) Let us call a finite number of energy values h = 1,2,..., N special (singular) values, and
the remaining values are said to be regular While h grows and remains regular, the state X (h) is subject to a
homeomorphism Note that X = X(c0) = X (N +¢), i e, the support coincides with the last state of the billiard

3 The edges spines of a state X (h) are arcs of confocal quadrics or segments of focal straight lines The boundaries
of X (h) can be circles degenerating into points at singular k. The support of X and the states X (h) can sometimes
be depicted by means of a homeomorphism (not necessarily an isometry) in R3 as a two dimensional “model ” In
Fig [l a force billiard and its states detected by us for the Euler case are shown by domains on an ellipsoid in
R3 Fig Blsimilarly shows the force billiard we found for the Lagrange case

B
OO0

Fig. 1 Example: the locally flat support X of a force billiard simulating Euler’s case is homeomorphic to a two

dimensional ellipsoid, and the states X (h) are homeomorphic to smoothly deforming domains on the ellipsoid

== 91 *

Fig. 2 Example: the locally flat support X of a force billiard simulating the Lagrange case is homeomorphic
to a two dimensional ellipsoid, and the states X(h) are homeomorphic to smoothly deforming domains on a
two dimensional sphere

4 Denote by Z(h,r) the reflection refraction law on the edge spine r in the state X (h) Such edge is equipped by
a cyclic permutation from S(n) on the set of n sheets glued by this edge r Let Z(h) = {Z(h,r)} be the family
of these laws We assume that Z(h) is a piecewise constant function and can change only at the singular values
h=1,...,N. If some edge r becomes “permeable” (“transparent”) for one of these h then the billiard ball passes
through it for energy levels more than this h

5 We assume that the edges of the state X (h) can be smoothly varied in the class of confocal quadrics According to
the theory of integrable billiards [34] it specifies equivalent billiards [12] For critical h, the edges can glue together
with other edges, degenerate, turn into segments of focal straight lines The sheets are glued along an arc of the
same quadric that is a boundary arc of these sheets On the “new spine,” (i e this edge) a new cyclic permutation
appears At the moment of such state change (a “‘jump”) we allow the billiards to change their equivalence class
For example, a segment of the border with a critical ~ can lie on the focal line or “fold in half” (see Fig [ and
Fig )

By a jump, an angle of 7/2 can become equal to w It is allowed to glue, at the boundary points, spines of the
same state X (h) if they lie on one boundary arc, i e , when the angle between them becomes equal to 7 Boundary
circles can contract into points
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2
1 3 1 3 T 2 3

Fig. 3 Combining segments 1, 2, and 3 when “jumping” As a result of the evolution of the billiard, the segments
1 and 3 passed into segments of the focal line with ends at the foci, and the segment 2 became a segment between
foci

6 Thus, we assume that the enveloping two dimensional support X is unchanged, “fixed ” The states X (h) “grow”
in it, and X coincides with the last state X (NN +¢) An integrable system with two degrees of freedom given by
the dynamics of a billiard ball on the changing states X (h) is called a force (evolutionary) billiard Let h be a
regular energy value in some interval D; = (4,7 + 1). Denote the corresponding billiard state by X (D;)

7 A point of the phase complex T X (D;) is a pair (z,v), where x is a point of the billiard table X (D;) and v is
the velocity vector of a material particle at the point z If the point z is on the boundary of a sheet L; adjacent
to a sheet Ly, then the corresponding pairs (z,v) and (z,w) are glued according to the reflection refraction law
Z(h,r) acting on the given edge r

8 By a regular isoenergy 3 surface @, we mean a subset in the four dimensional phase complex T X (D;) given
by the equation H = h; ie, a constant energy level For integrable billiard books the regular surfaces Q;, are
topological continuous 3 manifolds [33]

Remark 1. e Initially the concept of force billiards included the following requirement The billiard states
should “grow” when the energy increases, i e , a next state contains (absorb) the one Here the enveloping support
remains unchanged This implied the requirement that the edges of the states can glue together, but cannot
“unglue” (disintegrate) However, as the analysis of specific integrable systems of physics and mechanics showed,
it is sometimes useful to weaken the requirements on the force billiard and allow the ungluing of some edges of
billiards states Thus, we permit the “inverse operation ” Note that here we can keep the condition that all these
events develop inside the unchanged, “stationary” support

e Further, it is possible to additionally weaken the requirement on the force billiard and to refuse the presence of
an unchanged enveloping support, replacing it by the condition that the two dimensional sheets of a previous
billiard state are subsets of two dimensional sheets of the subsequent one

e Finally, it makes sense (in some cases) to allow changing the family of confocal quadrics in which the evolution
of billiards states occurs For example, we will allow to pass from the family of concentric circles to the family of
confocal ellipses In this case, the common center of the circles “splits” into a pair of foci of the family of confocal
ellipses (one point splits into two points) This evolution has already been considered by us in the definition
of billiard equivalence of integrable systems, see, for example, the Euler and Lagrange cases in the paper [32]
Certainly, one can consider the converse operation (merging of foci into one point)

This more flexible approach expands the possibilities for the implementation of specific systems by force billiards,
since it expands the class of force billiards We will show this on specific examples

3 INTEGRABLE BILLIARDS BOUNDED BY ARCS OF CONFOCAL QUADRICS

In the paper, we need two classes of integrable billiards, namely, the billiards bounded by arcs of confocal ellipses
and hyperbolas and also billiards bounded by arcs of concentric circles and radial straight lines
We choose a family of confocal quadrics by the relation

(b—Nz* + (a—Ny* = (b—N)(a— ).

Here a > b > 0 are chosen parameters of the family (square roots of the semiaxes of an ellipse with the parameter
A = 0), which, in particular, determine the distance between the foci This relation describes a family of confocal
ellipses and hyperbolas, which include the focal line y = 0 and the limit hyperbola = = 0.

By an elementary billiard we mean a compact connected part of the plane whose boundary consists of arcs of confocal
quadrics and does not contain any angles of 37/2. Note that confocal quadrics always intersect at right angles The
prohibition of angles 37/2 enables us to correctly determine the billiard motion after hitting the material points into
a corner Namely, after the reflection, the point continues to move in the opposite direction along the same segment
along which it hit the corner Such billiards are integrable [34] Every their nonsingular trajectory consists of straight
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line segments that are tangent to some quadric of the chosen family Thus, along the trajectory, the parameter A of this
quadric is preserved In the simplest case (domain bounded by an ellipse) the integrability of the billiard was shown
by G Birkhoff [35]

The singular trajectories here are the trajectories that pass along the convex boundary arcs (the parameter A on
them coincides with the parameter of this boundary), the trajectories that lie on straight lines passing through two
foci (A = b), and the trajectories passing along the limit hyperbola = 0 (for them, A = a) The Fomenko Zieschang
invariants of flat billiards were studied by V. Dragovich and M Radnovich [36] and by V V' Vedyushkina [37]

In our paper, we use the class of topological billiards, i e, two dimensional orientable manifolds glued from ele
mentary billiards along the arcs of the boundaries in such a way that the billiard reflection is always well defined In
particular, this means that, when gluing the corners of elementary billiards, only two or four elementary billiards can
be simultaneously glued together For details concerning the rules of gluing, see [12]

We also need billiard books, which are CW complexes glued from elementary billiards along the boundaries Now
more than two elementary billiards are glued along some boundary arcs (the corresponding edges of the complex are
called spines) To define a dynamics we enumerate all two dimensional cells of the resulting complex, i e the interiors
of the elementary billiards (sheets of a book) After this, to every edge spine, i e a one dimensional cell of the complex,
we assign a cyclic permutation o consisting of the indices of the elementary billiards (sheets) adjacent to the given
1 cell A billiard particle moving along a sheet with some index i, after hitting this spine, continues the motion along
the sheet with the new index (%) given by this permutation

Note that, if all sheets of a topological billiard (billiard book) belong to the same family of confocal quadrics, then
the topological billiard (billiard book) thus obtained is also integrable, and with the same pair of integrals, namely,
the squared length of the velocity vector and the parameter A of the confocal quadric

Billiards whose tables are bounded by arcs of concentric circles and segments of radial lines are also considered Note
that, if in the previously considered family of confocal ellipses and hyperbolas we pass to the limit as the parameter
b of the minor semiaxis tends to the parameter a of the major semiaxis, then the confocal ellipses are transformed to
concentric circles, and every hyperbola is transformed to a pair of straight lines (its asymptotes) Thus, the class of
integrable topological billiards and billiard books whose two dimensional sheets are bounded by concentric circles and
segments of radial straight lines is constructed similarly

4 ZHUKOVSKY AND KOVALEVSKAYA CASES

The classical integrable tops of rigid body dynamics can be described as dynamical systems on the six dimensional
dual space e(3)* to the Lie algebra e(3) of the group of motions of three dimensional Euclidean space In suitable
coordinates S1, 52,53, R1, Ra, R3, the Poisson bracket acquires the form

{Si, S5} = €ijxSk, {Ri,S;} =eijRe, {Ri,R;} =0,

where {i,j, k} = {1,2,3}, and €50 = 5 (i — §)(j — k)(k — i).
A Hamiltonian system on e(3)* is given by the Euler equations for some Hamiltonian H € C*° (RG):

Si={Si,H}, Ri={R;,H}.

Consider the common level surface of two Casimir functions of the given Poisson bracket: the geometric integral f;
and the area integral fs,

Mégz{f1=R%+R§+R§=c,f2=S'1R1+S'2R2+53R3=g}.

For ¢ > 0 and any g € R, the common level surface Mé{ 4 1s a symplectic leaf of the Poisson bracket, ie, a four
dimensional smooth manifold on which the Poisson bracket is nondegenerate Below, we assume that ¢ and g are such
regular values

We present below the Hamiltonians and the corresponding additional integrals for two classical integrable systems
of rigid body dynamics

The first system is the case discovered by N E Zhukovsky in 1885 [38] This case describes the motion of Euler’s
top in the gravity field after adding a gyrostat given by a vector A = (A1, A, A3):

(S14+A1)° | (Sa+A)”  (S34 A3)° 2, 2, a2
H — = .
oa, T oaa, T g, o K=SIESTS

Here, as in the Euler system, the integral K is quadratic in momenta FEuler’s case is obtained from Zhukovsky’s
case when all \;’s are equal to zero
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Another system for which we shall construct an evolutionary billiard is the famous Kovalevskaya top It was dis
covered by SV Kovalevskaya in 1886 [39] and is the third top (along with the Euler and Lagrange tops) which is
integrable for all possible values of four integrals and initial conditions

_ St 85 53
H—2A+2A+A+Q1R1—|—a2R2,
52— 52 /58 2
K:< 12A 2+a2R2—a1R1> +< 142—CL1R2—042R1> .

Here the integral K has degree 4 in momenta

Remark 2. This system in suitable energy zones (like the Goryachev Chaplygin Sretensky system) is Liouville
equivalent to integrable billiards on suitable tables [40] They have the same polynomial billiard integral Thus, the
phenomenon of lowering the degree of the integral was discovered: Liouville foliations of the systems with integrals of
degrees 3 and 4 are fiberwise homeomorphic to foliations of billiards with an integral of degree 2 in appropriate energy
zones

Assume that f; = 1. Then different 3 surfaces Q3 are defined by the parameters g and h. Consider the bifurcation
diagram of the pair of integrals fo and H. As a result, curves occur on the plane R?(g, h) that divide the plane that,
for all points (g, k) in some domain, the topological type (the class of homeomorphism) of the corresponding isoenergy
surfaces

Q*={f=1, fa=g, H=h}

is the same Consider the mapping
F=fyxH:5xR>— R%*g,h)

given by the formula F(P) = (f2(P), H(P)) € R*(g,h).

The image of the set of critical points of the mapping F is the bifurcation diagram in the plane R?(g, h). It splits the
plane into chambers In every chamber, the preimage of every point is a nonsingular isoenergy surface The topological
type of the 3 manifolds corresponding to different points of the same chamber are the same In the paper, we need
results obtained by M P Kharlamov [42] and A A Oshemkov [43] for the cases of Zhukovsky and Kovalevskaya
Note that the bifurcation diagrams under consideration are equipped with an additional information Namely, the
chambers of the bifurcation diagram are additionally separated by dashed lines They correspond to the presence
of homeomorphic isoenergy surfaces; in the restriction to these surfaces, the Liouville foliation of the system is not
fiberwise homeomorphic These foliations correspond to different types of Fomenko and Fomenko Zieschang invariants

5 “PARTIAL” FORCE BILLIARD FOR THE KOVALEVSKAYA CASE

Consider the classical Kovalevskaya top The bifurcation diagram for the Kovalevskaya case was calculated by
M P Kharlamov (see [41,[42] In the papers of A A Oshemkov [43] and A V Bolsinov [44], the nondegeneracy problem
for critical points of rank 1 and 0 was studied, Fomenko invariants of the isoenergy surfaces of the system were also
constructed [43], and loop molecules of singular points of the bifurcation diagrams of the momentum mapping (H, K)
of the system [44] were found

The bifurcation diagram on the plane (g, h) of values of the area integral fo and the energy H of the system has the
form shown in Fig M The solid lines of the diagram separate areas on the plane for which the preimages of their points
contain nonhomeomorphic isoenergy surfaces The diagram is also supplemented with dotted curves that separate
domains with different types of Liouville foliations on homeomorphic isoenergy surfaces We highlight, in darker color,
the chambers of the bifurcation diagram such that the Liouville foliation of the corresponding isoenergy surfaces are
currently modelled by integrable billiards

Consider the symplectic leaf A corresponding to the vertical line g = const This straight line (see Fig M) intersects
a five chambers bifurcation diagram; moreover, for the first three chambers, the Liouville foliation (on the isoenergy
surface lying in the inverse image of any point in this chamber) can be modelled by the Liouville foliation of integrable
billiards bounded by arcs of confocal quadrics These billiards, denoted by «, 3, ~, are shown in Fig @

e The elementary billiard « is bounded by an arc of an ellipse (we set its value of the parameter to be A = 0), an
arc of a nonconvex hyperbola (we set its parameter value to be A = b+ agb = “;rb < a), the degenerate hyperbola
x = 0 (recall that its value of the parameter is A = a), and the focal line (recall that its value of the parameter
is A =0)

e The topological billiard 3 is glued from two billiards «, where the gluing occurs along both arcs of the hyperbolas
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A0 A

\j j‘f;,/;—///‘/

Fig. 4 Bifurcation diagram of the Kovalevskaya case The dotted line separates the two domains for which
Liouville foliations on Q3 differ, but the isoenergy surfaces Q> themselves remain homeomorphic The domains for
which implementing billiards were constructed are highlighted in darker color The vertical line A corresponds to
the symplectic leaf which is partially modelled by the force billiard By «, 3, v we denote parts of this symplectic
leaf, as well as force billiard states that simulate (model) these parts These states are also depicted in Fig

e The billiard book v is glued together from six elementary billiards The billiards with numbers 1 and 2 are
bounded by arcs of an ellipse with the parameter A = 0 and the hyperbola with the parameter A\ = ‘“2”’. The
billiards with numbers 3 and 4 are also bounded by arcs of an ellipse with the parameter A = 0 and hyperbola
the with parameter \ = “;rb, and also by segments of the degenerate hyperbola with the parameter A = a. The
billiards with numbers 5 and 6 are bounded by an arc of an ellipse with the parameter A = 0 and an arc of the
hyperbola with the parameter A = a. We assign the following permutations to the hyperbola arcs that are spines
of the book; to the hyperbola arc with parameter A = a;rb we assign the permutation (1 3 2 4) and, to the arc

of degenerate hyperbola, the permutation (3 5 4 6).

Note that the billiard « constructed above is a subset of the billiard 8, and the billiard £, in turn, is a subset of
the billiard v This fact enables us to regard them as states of a single force billiard K For the enclosing billiard of
the complex, we take the billiard v and, for the initial state, we take the billiard «, whose image under the isometric
embedding in the billiard book 7 covers the top half of the sheet 3 We embed the intermediate position (the billiard
B) into the book v in such a way that the image of this billiard, under the isometric embedding, covers the upper half
of the sheets 3 and 4

Let us now describe the transformations of the constructed force billiard K At the first jump, at the transformation
of the billiard « into the billiard 3, a sheet of the billiard is added, and the walls of the hyperbolas become partially
permeable The billiard ball now moves on the sheets 3 and 4 of the billiard book +, but still cannot overcome the
focal line The second jump adds billiard sheets with numbers 1, 2, 5, and 6, the permutations on the hyperbolic arcs
change, and the focal line now becomes permeable

To prove that the constructed billiard K partially simulates the Kovalevskaya case on the chosen symplectic leaf A
indeed, we claim that the Fomenko Zieschang invariants encoding the Liouville foliation on regular isoenergy surfaces
coincide with the corresponding invariants for the billiards «, 5, and ~.

For the billiards « and 8, the Fomenko Zieschang invariants (also shown in Fig M) were calculated in the work of
V V' Vedyushkina [I3] Let us now calculate the Fomenko Zieschang invariant for the billiard book ~

Remark 3. The billiard v as a billiard book (the set of elementary billiards and permutations on the spines) belongs
to the family of billiard books (“butterflies with wings”) constructed by V A Kibkalo and V'V Vedyushkina to prove
Fomenko’s conjecture about the existence of a billiard book whose Fomenko Zieschang invariant contains an arbitrarily
large fixed value of an integer mark n (see [I7]) The hyperbolic spines (of the billiard books described in that paper)
lie on the arcs of the same hyperbola In the billiard v constructed above, one of the arcs lies on a vertical line As a
result, the form of the graph molecule changes, although the structure of the marks remains the same

Proposition 1. The Fomenko Zieschang invariant encoding the Liouville foliation of an isoenergy surface of the
billiard book ~y is shown in Fig [l at the top line to the right
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Fig. 5 On the top line: the state v of the force billiard simulating the Kovalevskaya case, as well as the Fomenko
Zieschang invariant encoding its Liouville foliation The bottom line shows sequentially the projections, of the
cycles on the Liouville tori corresponding to the edges of the molecule going from left to right By Ay and puy we
denote the cycles corresponding to one of the left atoms of B describing the bifurcation at the focal level

Remark 4. Recall that, in order to calculate the Fomenko Zieschang invariant encoding the Liouville foliation of a
Hamiltonian system, one must take the following three steps First, construct the Reeb graph of the additional integral
of the system on the surface Q3. The edges of this graph correspond to one parameter families of regular Liouville tori,
and the vertices to their bifurcations Further, it is necessary to place the so called atoms at the vertices of the graph
The atoms denoted by letters determine the bifurcations of these Liouville tori According to Fomenko’s theorem [6]
Ch 3, Vol 1], every such bifurcation possesses a natural Seifert fibration structure whose singular fibers (if exist) are
of the type (2,1) The atoms with singular fibers of the Seifert fibration are called atoms with stars The final step in
calculating the invariant consists in adding numerical marks that determine the gluing of the boundary tori of 3 atoms
Choose some edge of the graph Its ends refer to some atoms The point on the edge corresponds to the Liouville torus
On this torus, one can choose two cycles, A and p, which give a basis in the homology group The choice of the pair of
cycles must be done according to the rules dictated by the atom at the end of the edge (see [, [6]) The choice of such a
pair of cycles is ambiguous Here the choice of the cycle A is usually unique up to orientation, and the complementary
cycle p is subjected to a number of significant conditions Between the selected airs of cycles, we can write out an
integer matrix of the transition from one cycle to another (it is called the gluing matrix) Since this matrix glues pieces
of the manifold Q3 which is cut along the Liouville torus, it follows that its determinant is always equal to —1. From
the entries of this matrix (which is defined ambiguously, as well as a pair of cycles), the marks r and £ on the edges
are evaluated, and the marks n on the subgraphs of the invariant, the so called families All the vertices in the families
are saddle, and the preimage of the family (ie, a three dimensional subset of the manifold @3) admits the structure
of a Seifert fibration

Remark 5. When choosing cycles on Liouville tori in billiard systems, we shall proceed as follows We depict the
projection of this cycle on the billiard table To restore this curve to a cycle on a torus, we must equip the points of
this projection by velocity vectors in such a way that every point vector pair determine a straight line tangent to the
quadric fixing this Liouville torus To this end, we shall act in two ways We shall supply the projection with arrows
that either fix the direction on it (and hence can be naturally continued until equipping the projection with velocity
vectors) or explicitly indicate the form of velocity vectors (bold black arrows) As a rule, the first method is convenient
for fixing cycles A on boundary tori of atoms bifurcations lying at the focal level On this fiber, the caustics change
their type: if the trajectories before the bifurcation are tangent to ellipses, then, after the bifurcation, trajectories are
tangent the hyperbolas In some obvious cases, we shall not indicate the equipping with velocity vectors, since the
corresponding cycle is readily reconstructed from its projection to the billiard table

Proof. Let the parameter A\ of the trajectory be strictly less than “;rb. Then all trajectories are divided into two

classes The first class trajectories pass along the sheets with numbers 1 and 5, as well as the sheet 3 (strictly from
left to right) and the sheet 4 (strictly from right to left) The trajectories of the other class pass along the sheets
with numbers 2 and 4, the sheet 3 strictly from right to left, and the sheet 4 strictly from left to right Moreover, the
trajectories of all classes are in one to one correspondence with the billiard trajectories in the ellipse with parameter
A = 0 whose parameters are also strictly less than “;rb. This enables us to say that the structure of a coarse molecule for
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tori corresponding to these trajectories can also be taken from the structure of the graph for the billiard in an ellipse
We see that, at the level A < “;rb, there is a bifurcation of four Liouville tori into two tori through two atoms B At
the minimum level, we have four atoms A Recall that an atom A is a fibration into tori and an axial circle solid torus
describing the contraction of tori to the axis of the solid torus, the critical trajectory The atom B is the direct product
of the two dimensional atom B and the circle The singular fiber of the two dimensional atom B is homeomorphic to
the figure “eight ” Thus, the two dimensional atom B describes the bifurcation of two circles into one (or one into two),
and the three dimensional atom B describes the bifurcation of two tori into one

In the bottom line on the left in Fig [l cycles are chosen (more precisely, their projections to the billiard domain)
on Liouville tori corresponding to trajectories tangent to ellipses Here the cycles A4 and p 4 refer to the left atoms A,
and the cycles Ay and py refer to the left atoms B describing the bifurcation on the focal level

Let us explain the choice of these cycles The cycle A4 obviously contracts to a point as the caustic tends to the
boundary ellipse, while the cycle p4, on one side, complements A4 to a basis and, on the other hand, passes to a
critical motion along an ellipse The cycles Ay in the bottom line in Fig [ pass into the critical motion along the focal
straight line as the parameter of the quadric tends to the value b Thus, we see that these cycles are homeomorphic to
the fibers of the Seifert fibration of the atom B. The cycles py lie on the arcs of some confocal hyperbola transverse
to the focal straight line Being equipped with suitable velocity vectors, they, firstly, are complement the chosen cycles
Ar to a basis and, secondly, form the boundary circles (taken all together) of a two dimensional atom B which is a
two dimensional section of the 3 atom B transversal to its critical circle (the motion along the focal straight line)

Now let us show that, for A = “;rb, the tori corresponding to the two classes of trajectories described above merge
into one torus Consider some arc of some ellipse in the distinguished confocal family and its projection to the billiard
Let us equip the points of this arc with velocity vectors directed “upwards” In this way we obtain one connected
component of the inverse image of this arc for A € [“;‘b, a]. Let us show that this component is homeomorphic to the
two dimensional atom B. For A < a‘gb, this part of the preimage consists of two circles (each lies on the Liouville torus
of one of the two distinguished classes of trajectories) and, for “;‘b < A < a, the connected component of the preimage
consists of a single circle For A = a;rb two circles merge into one along a point lying on the spine with the parameter
“;rb; it is also equipped with a vector directed “upward ” The second part of the preimage is obtained if we consider
downward directed velocity vectors The critical circle of the described atom are the points of the hyperbola arc with
the parameter “;rb equipped with tangent velocity vectors Note that the motion along this arc is not a trajectory The
entire atom has the structure of the direct product of the circle (corresponding to the hyperbola arc equipped with
tangent velocity vectors with parameter a'QH’) and the two dimensional atom B.

The choice of the cycles Ap is motivated by the fact that, as the tori tend to a critical value, these cycles become
homeomorphic to the fiber of the Seifert bundle, i e , to the points of an arc of the hyperbola with the parameter ‘“2”’
equipped with tangent velocity vectors The cycles up are the cycles considered above that lie in the inverse image of
the arc some ellipse in the confocal family

Before writing out the gluing matrices, let us comment out the choice of orientations on the cycles The orientations of
the cycles A on saddle atoms B and of the cycles p on minimax atoms A should be chosen consistent with the orientation
of the fibers of the Seifert bundle (i e, pass to trajectories or to homeomorphic ones with the same orientation) In
terms of projections, this implies the following rule: at all interior points, one chooses the direction as the direction
of the projection of the velocity vector to the tangent line to the projection curve At all other points (for example,
at the boundary points), the direction on a cycle can be determined by continuity This choice of orientation will be
called consistent Further, the orientations of the cycles p on the tori corresponding to saddle atoms B and lying on
opposite sides of the critical fiber must be opposite In particular, we have chosen orientations in such a way that the
orientation of the cycle py for A < b will be consistent and, for A > b, it is inconsistent This determines the choice of
signs in the relationship iy = —Af, as well as the signs in the gluing matrices written below

We see that, on the edges between the atoms B and the atoms A, the gluing matrices have the form . They

0 1
10
define the following marks on the edges: r = 0, € = 1, and give zero contribution to the marks n. On the edges between

the atoms B, the gluing matrices have the form . We see that the marks on these edges are r =0, ¢ = —1.

-1 0
The contribution of every edge to the mark n of the family is [g] = —1 if the edge is outgoing for this family If an
edge is incoming in this family, then the contribution is zero The proposition is proved

Theorem 1. The constructed evolutionary billiard K implements (in the sense of Liouville equivalence) the inte
grable Kovalevskaya case on the part of the phase symplectic manifold M;l corresponding to the line A in Fig A

Remark 6. We stress that the evolution of billiard walls occurs in the class of confocal quadrics, which ensures
the integrability of the system at every moment of its evolution at all occurring in succession (as the energy grows)
isoenergy 3 surfaces
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Proof. We rely on the results of nontrivial calculations made earlier in the works cited below The proof of the
theorem follows from the comparison of the Fomenko Zieschang invariants for the Kovalevskaya case, calculated by
AV Bolsinov, P Richter, and A T Fomenko in [45], and the Fomenko Zieschang invariants of the billiard states «,
(see Fig H) and ~y (see Fig Bl of the force billiard X' We omit the complete list of invariants due to large size

Remark 7. For a complete implementation of the Kovalevskaya system on the entire symplectic 4 manifold corre
sponding to the line A, it remains to find implementing billiards for the two “upmost” zones in Fig [

Remark 8. Note that the results on the topology of the Kovalevskaya top in [45] were recently extended by
V A Kibkalo to the case of analogues of the indicated system for the Lie algebra so(4) [46] [47] and the Lie algebra
s0(3,1) [48] Here Fomenko Zieschang invariants not observed earlier were discovered and the cases of equivalence of
these systems with other integrable systems were found In the future, it would be interesting to apply the construction
of evolutionary billiards to simulate analogs of Kovalevskaya systems on diverse Lie algebras

6 “PARTIAL” FORCE BILLIARD FOR THE ZHUKOVSKY CASE

We now turn to the Zhukovsky case The general form of the bifurcation diagrams for the Zhukovsky case is shown
in Fig [6la) In Fig [B1b) and Fig [6lc) we show two special cases of this bifurcation diagram The dotted lines separate
diverse Liouville foliations of homeomorphic isoenergy surfaces

a) h
A
R|P
SixS? S'xS?
25 2s°
s s®
S'xS?
g

Fig. 6 Bifurcation diagrams of the Zhukovsky case whose arcs separate different types of isoenergy surfaces;
a) the general case; b) and c): two special cases The dotted lines correspond to the presence of nonequivalent
Liouville foliations on homeomorphic isoenergy surfaces

6 1 Zhukovsky system: the case of the bifurcation diagram b

Let us consider in detail the case b of the bifurcation diagram Let us mark on it the chambers whose Liouville foliation
of isoenergy surfaces which can be modelled by integrable billiards (see Fig [7) Let us describe these integrable billiards,
also marked with the letters «, 3, v, 0, €.

e The topological billiard « consists of two billiards glued along a common arc of an ellipse One of the billiards is
bounded by an ellipse arc (with the parameter A = 0), two arcs of hyperbolas, and a focal line The other billiard
is bounded by two arcs of the same hyperbola and two arcs of ellipses (with the parameters A = 0 and A = g)

e The topological billiard 3 is a disjoint union of two billiards «.
e The topological billiard + is obtained by gluing two copies of the billiard « along the focal line

e The topological billiard ¢ is obtained by gluing two copies of the billiard «, simultaneously along the arc of the
smaller ellipse with the parameter A = g, and the focal line
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e The topological billiard e consists of two copies of one billiard glued along the common arc of the ellipse and the
segment of the focal line Every copy is bounded by an arc of an ellipse (with the parameter A = 0), two arcs of

hyperbolas, and the focal line
4

® Wi

B C

Q

Fig. 7 One of the cases of the bifurcation diagram of the Zhukovsky case In dark color, the chambers of the
diagram whose Liouville foliation of isoenergy surfaces can be modelled by integrable billiards are distinguished
These chambers are marked by Greek letters The corresponding integrable billiards are marked by the same
letters Vertical lines A, B, C encoding the symplectic sheets marked by the same symbols are also indicated

6 11 Construction of the force billiards J4, Jp, Jo Let us describe the force billiards Ja, Jp, Jo partially
modelling the integrable system of Zhukovsky’s case on four dimensional symplectic leaves A, B, C.

e The symplectic leaf A corresponds to a straight line passing sequentially through the chambers «, 3, v, d of the
bifurcation diagram The initial state of the force billiard J4 is the billiard «, and the final state is the billiard
0. At the first energy jump, the billiard « joins to its copy, which is glued to the original billiard at the next two
jumps At the beginning, the gluing takes place along the focal line, and then along the arc of the smaller ellipse
with the parameter A = g

e The symplectic leaf B passes sequentially through the chambers a, 7y, § of the bifurcation diagram The initial
state of the force billiard J4 is the billiard «, the intermediate state is the billiard ~, and the final state is the
billiard §. Unlike the previous force billiard, at the first jump, there is a simultaneous occurrence of a copy of the
billiard a and the gluing of two copies along the focal line

e The symplectic leaf C' corresponds to a straight line passing sequentially through the chambers «, ¢, § of the
bifurcation diagram When moving in the chamber «, the billiard of the same name is changed in such a way
that the parameter A, which is initially equal to g, tends to the value b. In the limit, when reaching the chamber
wall of the diagram, the billiard state is two copies of the “bottom” sheet of the billiard «. At the moment of
the jump, these two copies are glued together along the focal line At the moment of the next jump, two billiard
sheets are added, glued along the arc of the ellipse with parameter 12’, which are glued to the previous billiard
state along the arc of the larger ellipse Here one convex gluing is replaced by two convex ones and one nonconvex
gluing On the other hand, this jump can be interpreted as an “extruding of a fold” from two new small billiards
inside the billiard (see the form of the billiards € and ¢ in Fig [), in which the billiard in the entire small vicinity
of the jump remains homeomorphic to an annulus, and only the number of its gluing increases

6 2 Zhukouvsky system: the case of the bifurcation diagram c

Let us now consider case ¢) of the bifurcation diagram of the Zhukovsky system Consider new chambers 6, 7, and
C.

To the chamber 6, there corresponds a Liouville foliation, which, in the class of integrable topological billiards, can
be modelled only by billiards of the following form Consider a triangular domain on a plane bounded by an ellipse
arc, a convex hyperbolic arc, and a focal line Glue two copies of such a domain along the arc of the hyperbola and
along the arc of the focal line The resulting billiard implements the required foliation The gluing (as in Fig B) of a
“collar” along the arcs of ellipses does not change the Liouville foliation (see [12],13]) A similar foliation is obtained
by replacing the glueings along arcs of hyperbolas by glueings along arcs of ellipses and vice versa Note that in other
billiards, including the class of billiard books, and in billiards bounded by arcs of circles, no similar foliation occurred

To the chamber 7, there corresponds the Liouville foliation encoded by the molecule A — A with the mark r = %
This foliation occurs in billiards in two cases First, this happens for the case in which a topological billiard contains
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convex glueings only, is homeomorphic to a disk, and contains only one conical point not lying on the focal line It is
an obstacle to include this billiard into a force billiard containing a billiard modelling the foliation in the chamber 6.
The point is that the billiard in the chamber 6 contains a gluing along the focal line along which a cut will needed
However, in the standard definition of force billiards, this operation was prohibited The other case of occurrence of
such a foliation happens in a topological billiard obtained by gluing two circular billiards Obviously, this billiard cannot
either be a part of a force billiard containing a billiard modelling the foliation in the chamber 6. Therefore, in Fig [B]
we highlighted this chamber in a darker color

To the chamber { there corresponds the Liouville foliation encoded by the molecule A— A with the marks r = oo, € =
1. This foliation occurs in the class of topological billiards or billiard books only for a billiard in an annulus bounded
by two concentric circles and does not occur in billiards bounded by arcs of ellipses and hyperbolas In Fig [ we
highlighted this chamber in a darker color, since the depicted billiards are bounded by arcs of ellipses and hyperbolas
Note that, if we want to include the billiard simulating the foliation in the chamber 6 in the force billiard we are
constructing, then we are to stay within ellipses and hyperbolas as billiard boundaries If we want to include into a
force billiard both the billiard modelling the foliation in the chamber ¢ and the billiard modelling the foliation in the
chamber 6, then we are to pass somehow from boundaries lying on circles to boundaries lying on nontrivial ellipses and
hyperbolas

g
4

S v

A B D IE

Fig. 8 One of the cases of the bifurcation diagram of the Zhukovsky case The chambers of the diagram whose
Liouville foliation of isoenergy surfaces can be modelled by integrable billiards are highlighted in darker colors
These chambers are markled with Greek letters and the same letters mark integrable billiards The vertical lines
A, B, D, E encoding symplectic sheets of the same name are also indicated

6 2 1 Construction of the force billiards Jp and J}, and the billiards J%, i € {1..4} Let us now describe the force
billiard Jp partially modelling the symplectic sheet D of Zhukovsky’s case The simulation is carried out in three
chambers «;, 7, and 0. The billiard states are described above The first jump occurs in the same way as in the billiard
Jp : there is a simultaneous occurrence of a copy of the billiard o and gluing two copies along the focal line On the
next jump, the following events occur First, the arc of a nonconvex hyperbola lies on the focal line and the gluing takes
place along this line Second, a pairwise gluing of equivalent billiards occurs along the arc of the convex hyperbola
The result is the billiard  modelling the foliation in the chamber of the same name

Let us describe the force billiard J},, which also partially simulates the symplectic sheet D of Zhukovsky’s case
on more regular surfaces than the billiard Jp does To obtain this billiard, we, first, partially admit the ungluing of
billiards at a jump (but keeping the condition that the sheets remain subsets of sheets of greater energy) Secondly,
let us permit the quadric segments to change their parameters More exactly, at the moment of one of the jumps, we
permit the replacement of the boundary circles and straight lines of the billiards by a family of confocal ellipses and
hyperbolas Obviously, the inverse transformation equalizes the parameters a and b of the family, which are the roots
of the semiaxes of the family of confocal quadrics The billiard states are shown in Fig

The first three states of this billiard are bounded by arcs of concentric circles and segments of straight lines passing
through the common center of these circles

e The initial state of the billiard is two billiards bounded by two concentric circles (in what follows, we assume
that the common center of these circles is the origin) and two coordinate lines Oz and Oy, see Fig These
billiards are glued along common arcs of straight lines into an annulus This ensures the mark r = co in the
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Fig. 9 Another way to partially simulate an integrable system of the Zhukovsky case by force billiards on a
4 dimensional symplectic submanifold corresponding to the sheet D. The force billiard J;, described above is
shown

corresponding Liouville foliation between the atoms A. There are no other atoms in the coarse molecule, since
there are no nonconvex glueings, and this leads to the fact that all regular fibers are homeomorphic to tori Two
singular fibers (motions along the larger circle) are directed oppositely This leads to the fact that the mark e
between the atoms A atoms is 1

e The second billiard state is obtained from the previous one by ungluing along the segment of the straight line
Oz, see Fig The billiard becomes homeomorphic to the disk This leads to the fact that the corresponding
Liouville foliation is described by the molecule AA with the mark r = 0.

e The third state is obtained from the second by the ungluing along the segment of the straight line Oy and the
nonconvex gluing along an arc of a smaller circle, see Fig The presence of a nonconvex gluing leads to the
formation of an atom B in the corresponding Liouville foliation The marks are calculated similarly to the case
of the billiard bounded by arcs of confocal quadrics In what follows, we assume that, when moving along the
straight line D in this chamber, the radius of the smaller circle is reduced to zero, while remaining nonzero inside
the chamber

e The last billiard state is obtained from the third one by the following transformation The radius of the smaller
circle becomes equal to zero; after this, a gluing along the coordinate lines Ox and Oy takes place Then there is
a stretching along the axis Oz corresponding to the replacement of the boundary circle by an ellipse The straight
line Ox becomes the focal line, see Fig

Similarly to the construction concerning the sheet D, we construct a force billiard partially modelling the symplectic
leaf EF. We are interested in the evolution of the Liouville foliations that corresponds to the sequence of chambers
¢, a, n, 0. The four ways are shown in Fig Let us explain each of them

1 The first way is simulation in the chambers {, «, 7. This sequence of foliations arises in the Lagrange case and
was shown in the paper [32] The initial state of the billiard is a topological billiard obtained by gluing two copies
of flat billiard annuli bounded by concentric circles When moving in the first chamber, the radius of the smaller
circle of one of the two flat billiards decreases and contracts to a point at the first jump When moving in the
next chamber, the remaining boundary of the billiard contracts to a point As a result, in the third chamber,
we obtain a topological billiard glued from two disks In Fig [0 these billiard states are schematically shown as
domains on a two dimensional sphere The resulting force billiard is denoted by JL.

2 The second way is modelling in the chambers «, 7, 6 in such a way that the circles are replaced by ellipses in
the moment of the last jump However, under this evolution, no ungluing occurs at any stage The initial billiard
state is the two quarters of the disk (which is bounded by a circle) glued along an arbitrary line segment of the
boundary (without loss of generality, this is a segment of the Oy axis) At the first jump, these two quarters
are glued along another line segment of the boundary These billiards are homeomorphic to disks, contain no
nonconvex gluings, and the second billiard contains one conical point This enables us to claim that their Liouville
foliations are described by the indicated Fomenko Zieschang invariants At the moment of the second jump, there
is a transformation of the family of concentric circles and lines through the origin into a family of confocal quadrics
As a result, the billiard thus obtained has the desired foliation The resulting force billiard is denoted by J&.

3 The third way also enables one to partially simulate the symplectic leaf E in chambers «, 7, 6, without going
beyond the confocal family of ellipses and hyperbolas However, in this case, it is necessary to use the partial
ungluing of the billiard spines Consider a flat billiard By disjoint from the focal line and bounded by two arcs of
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Fig. 10 Diverse ways to partially simulate the integrable system of the Zhukovsky case by force billiards on a
4 dimensional symplectic submanifold corresponding to the sheet E.

hyperbolas (convex and nonconvex) and two arcs of ellipses The initial state of the force billiard is the topological
billiard obtained by gluing two copies of the flat billiard By along the arc of the convex hyperbola When moving
in the chamber «, the parameter of the boundary hyperbola decreases and the parameter of the smaller boundary
ellipse increases in such a way that, in the moment of the jump, the corresponding arcs lie on the focal line At
the moment of this jump, the gluing along the boundary arcs lying on the arc of the ellipse also occurs The
billiard thus obtained contains a conical point On the next jump, the gluing along the focal line and the ungluing
along the arc of the ellipse take place The force billiard thus obtained is denoted by J3,.

The fourth method enables us to cover all four chambers ¢, «, 7, 0 simultaneously (see the bottom line of
Fig [[0) The initial billiard state is two billiards bounded by two concentric circles and two coordinate lines Ox
and Oy. These billiards are glued along the common arcs of straight lines into an annulus When moving in the
first chamber (, the radius of the smaller boundary circle reduces to zero At the moment of the first jump, the
two quarters (thus obtained) of the disk must be unglued along the segment of the straight line Oz and, at the
moment of the second jump, these quarters must be glued back along the same boundary At the moment of the
third jump, the already described “pulling” procedure takes place, in which the arc of a circle is replaced by an
arc of an ellipse The force billiard thus obtained is denoted by J3.

Theorem 2. The constructed integrable evolutionary billiards Ja, Jg, Jo, Jp, as well as the billiards J},, Ji,

ie{l...

4} implement (in the sense of the Liouville equivalence) the integrable Zhukovsky case on the part of the phase
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symplectic manifold M;l corresponding to the lines of the same name in Figs [,

Remark 9. We stress that the evolution of billiard walls occurs in the class of confocal quadrics, which ensures
the integrability of the system at every moment of its evolution, at all successively occurring isoenergy 3 surfaces with
increasing energy

Proof. We rely on the results of nontrivial calculations made in the works cited below The proof of the theorem
follows from the comparison of the known Fomenko Zieschang invariants for the Zhukovsky case, which were calculated
by A A Oshemkov, and the Fomenko Zieschang invariants of the billiard states of the force billiards described above
We omit the specific list of invariants and their comparisons in view of large size
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