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Abstract.In the paper we give the Liouville classification of (we classify in the
Liouville sense) five interesting cases of topological billiards glued from two flat
billiards bounded by arcs of confocal quadrics in the Minkowski plane. For each
billiard we calculate the marked Fomenko-Zieschang molecule, in other words
the invariant of an integrable Hamiltonian system that completely determines
the type of its Liouville foliation.
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1 Introduction

1.1 History of the problem

A mathematical billiard is a system in which a material point (ball) moves on
a planar domain bounded by a piecewise smooth curve. There are many papers
devoted to integrability of such a system for different types of the boundary.
Integrability of the billiard in an ellipse in the Euclidean plane was proved in
the work of G. Birkhoff [1]. It is also integrable for a piecewise smooth boundary
consisting of confocal quadrics such that angles between boundary arcs are not
greater than 3π

2 (i.e. they equal π2 since confocal quadrics always intersect at the
right angle). V.V. Kozlov and D.V. Treshchev in [4] pointed out the existence
of an additional (another) independent first integral for such systems, which
means they are completely///well Liouville integrable.

V.Dragovic and M.Radnovich ( [23, 24]) and V.V.Fokicheva gave a full Li-
ouville classification of flat billiards bounded by arcs of confocal quadrics. Then
V.V.Fokicheva [5] considered a topological billiard glued from boundaries that
are planar ??? along arcs.

The theory of billiards was further developed by A.T.Fomenko and V.V.Vedyushkina
in [18, 19, 20] .

The billiard in an ellipse in the Minkowski plane was studied by V.Dragovic
and M.Radnovich in [3], who described the trajectories of the system and
constructed the marked molecule, i.e. the Fomenko-Zieschang invariant for the
Liouville foliation of the billiard.

Earlier we introduced the definition of elementary billiards in the Minkowski
plane, classified them, stated and proved the theorem of existence of only three
distinct Liouville foliations for isoenergy surfaces of such billiards.

In this paper we define the topological billiard bounded by arcs of confocal
quadrics in the Minkowski plane, give a number of interesting examples of such
billiards as well as calculate the Fomenko-Zieschang molecule, a graph with in-
teger marks that completely characterizes the topology of the Liouville foliation
of an isoenergy surface up to the Liouville equivalence.
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1.2 Some facts about the Minkowski plane

Definition 1 The Minkowski plane is the plane R2 with the scalar product
〈x, y〉 = x1y1 − x2y2.

The distance between two points is defined by the formula dist(x, y) =
√
〈x− y, x− y〉.

Since the scalar product can be negative, there are three disjoint sets of
vectors.

Vector v is called

– space-like if its length is real, i.e. 〈v, v〉 > 0;

– time-like if its length is purely imaginary, i.e 〈v, v〉 < 0;

– light-like or isotropic if it has zero length, i.e. 〈v, v〉 = 0.

Two vectors are called orthogonal if their scalar product is zero (in the
Minkowski sense). It is obvious that light-like vectors are orthogonal.

Let us show how vectors of each type are located in the Minkowski plane for
the origin of coordinates (fig. 1). Light-like vectors lie along two straight lines
called isotropic which divide the plane into four parts. The upper and lower
domains contain vectors with imaginary length, while vectors with real length
are located in the right and left domains.

Figure 1: Different types of vectors in the Minkowski plane
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1.3 Family of confocal quadrics in the Minkowski plane

In the Minkowski plane let us consider an ellipse E defined by

E :
x2

a
+
y2

b
= 1

Here a > b > 0, λ ∈ R are real numbers. The confocal family of quadrics
Cλ is defined by the equation:

Cλ :
x2

a− λ
+

y2

b+ λ
= 1 (1)

The family is shown in Fig. 2.

Figure 2: The family of confocal quadrics Cλ in the Minkowski plane

Depending on the value of λ a quadric can be a straight line, ellipse or
hyperbola. Namely,

• for λ ∈ (−∞,−b) the quadric is a hyperbola with the major axis x;

• for λ ∈ (a,∞) the quadric is a hyperbola with the major axis y;

• for λ ∈ (−b, a) the quadric is an ellipse.

The values λ = a,−b,∞ correspond to the degenerate quadrics Ca, C−b
which are y-axis, x-axis and a straight line at infinity, respectively.

Assertion 1 All nondegenerate quadrics of the family (1) have four common
tangents, namely x± y = ±

√
a+ b.

Assertion 2 The family (1) has four foci, namely F1 = (−
√
a+ b, 0), F2 =

(
√
a+ b, 0), G1 = (0,−

√
a+ b), G2 = (0,

√
a+ b). A part of an ellipse (hyper-

bola) whose tangent vectors are real is called a real part an ellipse (hyperbola),
while that whose tangent vectors are imaginary is called an imaginary part.

For an ellipse with parameterλ the sum of distances from the foci F1, F2 to
any point of the real part is =2

√
a− λ, and that from G1, G2 to any point of
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the imaginary part is 2i
√
b+ λ. For a hyperbola with parameter λ the difference

of distances from the foci F1, F2 to any point of the real part of the hyperbola is
2
√
a− λ, and that from G1, G2 to any point of the imaginary part is 2i

√
b+ λ.

Fig.3 shows how common tangents and foci are located relative to the family
of quadrics.

Figure 3: Relative location of common tangents and foci and a family of quadrics

It is easy to see that if two quadrics of a family intersect at some point,
then the tangent vectors to the quadrics are orthogonal at this point in the
Minkowski sense.

1.4 Billiard law??? in the Minkowski plane

Definition 2 Let v be a vector and ` be a line. We represent the vector in the
form v = vn + v`, where vn is the normal component of the velocity vector and
v` belongs to `. Then we call the vector v′ = −vn + v` the billiard reflection of
v off the line ` in the Minkowski plane.

For a light-like vector v` the reflection is not defined.
We see that the scalar product of a vector by itself is preserved when using

such a definition, which implies that the type of a vector does not change after
reflection.

Definition 3 A line `′ is called the billiard reflection of ` off a smooth curve S

in the Minkowski plane if

– the intersection point A of these lines lies on the curve S;

– the directing vectors of the lines are billiard reflections of each other with
respect to the tangent e to S at the point A.
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If the directing vector e is light-like, then the billiard reflection of the vector
and line is not defined.

Note that the definition is symmetrical: if a line `1 is the billiard reflection
of `2, then the line `2 is the billiard reflection of `1.

2 Elementary billiards in the Minkowski plane

2.1 Definition of an elementary billiard. The first integral
of motion.

Definition 4 An elementary billiard Ψ is a connected compact subset of the
Minkowski plane whose boundary is a piecewise smooth curve consisting of arcs
of quadrics of the family (1) that pairwise intersect at angles not greater than
π.

Note that not only the motion but also the domain in which it takes place
will be called a billiard.

At points where the tangent to the domain Ψ is light-like we can extend
the billiard reflection by continuity: at this point the vector is reflected to the
oppositely directed one. Such points are tangency points of one of the lines
x± y =

√
a± b that are common for the whole family.

Definition 5 A phase space M4 of the billiard Ω is a 4-manifold such that

M4 =
{

(x, y, v1, v2)|(x, y) ∈ Ω, (v1, v2) ∈ TxR2
}
/∼

Equivalence relation is as follows:
(x1, y1, v1, v2) ∼ (x2, y2, u1, u2) if

• x1 = x2, y1 = y2, the point (x1, y1) lies on the boundary of Ω;

• (v1, v2) ∈ l1, (u1, u2) ∈ l2, and l1 is the billiard reflection of l2;

• v21 + v22 = u21 + u22 i.e. the Euclidean length of the velocity vector does not
change in reflection.

So vE = v21 + v22 is an integral of the problem since it is the Euclidean length
that is preserved for our equivalence relation.

We can take the caustic parameter λ for the trajectory as an additional inte-
gral. Simple arithmetic yields the expression of λ in terms of point coordinates
in the phase space.

λ =
−v21b− av22 + (xv2 − yv1)2

v21 − v22
.

As is easy to see λ is preserved for reflection at a boundary point.
The integrals λ and ve are in involution with respect to the standard Poisson

brackets and are functionally independent. So for a regular part of the manifold
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M4 we can assume that the elementary billiard is Liouville integrable. This will
not be used further. We will prove geometrically (without using commuting
vector fields) that the regular fibers of a pair of integrals are two-dimensional
tori (Liouville tori). If we restrict the system to the level surface of the integral
v21 + v22 , we will get a 3-manifold called isoenergy surface Q3, which is foliated
into two surfaces when λ changes.

Definition 6 Let v be a Liouville integrable Hamiltonian system on an isoen-
ergy surface Q3. Consider the corresponding Liouville foliation on Q3. The
base of the Liouville foliation is the space of its fibers with the standard quotient
topology, i.e. the topological space whose points are considered to be fibers of the
Liouville foliation (every fiber is replaced by a point).

Definition 7 Two Liouville integrable Hamiltonian systems v1 and v2 on isoen-
ergy manifolds Q3

1 and Q3
2 are called coarsely Liouville equivalent if there exists

a homeomorphism between the bases of the corresponding Liouville foliations
that can be locally (i.e. in the neighbourhood of each point of the base) lifted up
to a fiber homeomorphism of the Liouville foliations.

Definition 8 Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be two Liouville inte-
grable Hamiltonian systems on the symplectic manifolds (M4

1 , ω1) and (M4
2 , ω2)

with the integrals f1, g1 and f2, g2. Consider their isoenergy manifolds Q3
1 ={

x ∈M4
1 : f1(x) = c1

}
and Q3

2 =
{
x ∈M4

2 : f2(x) = c2
}

. The integrable sys-
tems are called Liouville equivalent if there exists a fiber diffeomorphism Q3

1 →
Q3

2 preserving the orientation on the 3-manifolds Q3
1 and Q3

2 and orientation on
all critical circles.

Theorem 1 (Fomenko-Zieschang ) Two nondegenerate integrable Hamilto-
nian systems on the isoenergy surfaces Q3

1 =
{
x ∈M4

1 : f1(x) = c1
}

and Q3
2 ={

x ∈M4
2 : f2(x) = c2

}
are Liouville equivalent if and only if their marked molecules

coincide.

This theorem holds for smooth integrable systems. In our case the manifold
Q3 is piecewise smooth but it turns out that on it there is a Liouville foliation
on 2-dimensional tori and special integral fibers???. Consequently, the Fomenko
invariants are well-defined and we will calculate them.

2.2 Classification of elementary billiards in the Minkowski
plane.

The definition of an elementary billiard was given in Section 2.1
Common tangents of the family of confocal quadrics divide the plane into

several domains, five of which contain confocal ellipses or hyperbolae. We denote
these domains by I, II, III, IV, and V as shown in Fig.4.

Definition 9 An elementary billiard is called elliptical if its boundary consists
of arcs of confocal ellipses and possibly parts of coordinate axes; it is called
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Figure 4: Domains I, II, III, IV, and V in the plane.

hyperbolic if its boundary consists of arcs of confocal hyperbolae and possibly
parts of coordinate axes.

Note that in our case there is no elementary billiard whose boundary consists
of arcs of both ellipses and hyperbolae since they are located in different domains
of the plane (domain I contains only ellipses while hyperbolae are in II, III, IV,
and V).

On the boundary of each domain there are points at which when hitting
them a material point continues to move in the opposite direction. At such
points there is no smoothness (intersection of boundary quadrics) or they are
tangency points of the boundary and one of the common tangents.

Definition 10 Such points split the boundary into parts called segments.

Definition 11 Two elementary billiards Ω and Ω′ are called equivalent if one
can be obtained from the other

• by reflection in the x-axis, y-axis or rotation by π/2 (reflection and rota-
tion are Euclidean)

• by changing the parameter λ of a boundary segment (except λ correspond-
ing to a and −b) so that (after changes) λ does not take values a, −b and
∞.

Further we will speak of reflection and rotation as Euclidean ones.

Definition 12 The boundary of an elementary billiard contains only four seg-
ments which are called �upper, lower, left, and right according their location
inside///within //relative to the interior of the billiard.

Theorem 2 Any elementary elliptical billiard is equivalent to one of the bil-
liards in Fig.5.
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Figure 5: Classification of elementary elliptical billiards in the Minkowski met-
ric.

3 Topological billiard in the Minkowski plane.

3.1 Definition of a topological billiard bounded by arcs of
confocal quadrics in the Minkowski plane.

Definition 13 Let l1 and l2 be the same ??? convex or straight boundary seg-
ments of elementary billiards Ψ1 and Ψ2, i.e. l1 and l2 belong to the same
quadric of the same family of confocal quadrics. We define gluing of elementary
billiards along the segments l1 and l2 as gluing along l1 and l2 by the identity
isometry. Images of l1 and l2 after gluing are called the spine???///edge of
gluing, the boundaries of the spine///edge of gluing are called the vertices of
gluing???.

Edges that are not edges/// spines of gluing are called free edges???.
Segments that have a common vertex are called adjacent.

Definition 14 A topological billiard ∆ is a two-dimensional orientable mani-
fold obtained by gluing several elementary billiards. We require that the following
conditions should hold: the vertex of gluing is common for either the edge???
of gluing and two free??? edges or two edges of gluing??? (such vertices are
called conical points) or four edges??? of gluing (such vertices are called in-
ner///internal).

In this paper we only deal with topological billiards obtained by gluing two
equivalent elementary billiards.

Now we will describe the law of reflection for the topological billiard.
After gluing the law of reflection for free??? edges is the same as that

for an elementary billiard. For an edge??? of gluing the law is as follows: a
point continues to move on another sheet??? , the line of motion is the billiard
reflection of the line that the point moved along before hitting, the square of
the Euclidean length of the velocity does not change.

The case of conical points should be discussed in detail. Reflection at///to???
a conical point is defined by continuity, namely, when hitting it a material point
continues to move in the same domain in the opposite direction.

For this reflection??mapping??? the integral (the square of the Euclidean
velocity) vE = v21 + v22 is preserved as well as the caustic parameter λ as in the
case of elementary billiards. Indeed, when we defined gluing we noted that all
boundary segments belong to the same family of confocal quadrics.

Since these integrals are functionally independent and are in involution with
respect to the standard Poisson bracket, we consider the system of a topological
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billiard to be piecewise Liouville integrable. For detailed definitions we refer the
reader to the work by V.V. Fokicheva [5] .

Let us introduce an equivalence relation.

Definition 15 A topological billiard ∆(2Ψi) is called equivalent to a topological
billiard ∆′(2Ψ′i) if they are obtained from each other by replacing elementary
billiards with billiards equivalent to them.

We will denote such topological billiards by ∆(2Ψi)
s
p, where s stands for the

number of glued boundary segments, namely, 1,2,3 or 4, and p stands for the
number of glued straight segments. By primes in superscripts we denote the
number of intersections of convex boundary segments with the coordinate axes.
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4 Examples of topological integrals in the Minkowski
plane.

4.1

Let us consider the following topological billiards ∆(2Ψ3)22, ∆(2Ψ5)3′, ∆(2Ψ5)2,
∆(2Ψ5)31, and ∆(2Ψ3)21.

We state the theorem that we will prove later.

Theorem 3 The Fomenko-Zieschang invariants for the topological billiards ∆(2Ψ3)22,
∆(2Ψ5)3′, ∆(2Ψ5)2, ∆(2Ψ5)31, and ∆(2Ψ3)21 are shown in Fig.6.

Figure 6: The Fomenko-Zieschang invariants for the specified topological bil-
liards. The type of the billiard is in the left column, its picture is in the middle,
the corresponding marked molecule is in the right column.
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4.2 Singular and nonsingular levels??? of an integral.

Consider a topological integral ∆(2Ψi) obtained by gluing two elementary bil-
liards Ψi. If we restrict the phase space M4 to the level surface of the integral
vE , we will have a 3-manifold Q3, which is called an isoenergy surface. Chang-
ing values of the additional integral λ, we will get a foliation of the isoenergy
manifold Q3.

Now we will define singular and nonsingular levels??? of the integral λ.

Definition 16 Convex boundary values are the values of the integral λ corre-
sponding to boundary segments that are convex relative to the interior of some
domain Ψi. If the interior of the domain Ψi intersects a degenerate quadric
with parameter λ equal to a or –b (the quadric coincides with the y-axis or x-
axis, respectively), then the corresponding value of the integral is called saddle.
If gluing is defined???/// performed on a straight segment corresponding to the
quadric parameter λ = −b (or λ = a), then the level ???of the integral λ = −b
(or λ = a) is also called saddle.

Singular values of the integral λ are by definition convex boundary and saddle
values, the other values are called nonsingular.

Now we will describe trajectories lying on singular levels??? of the integral.
Limit trajectories on the convex boundary values of the integral are periodic

(motion ?) along this segment. On a convex boundary level??? of the integral
there may be nonsingular trajectories (when the billiard is nonsymmetrical and
the image of the boundary value of the integral contains the motion within the
domain formed by the boundary and the convex boundary value).

Note that when a material point hits a boundary point of a boundary seg-
ment, i.e. a point of nonsmoothness or tangency for one of common tangents,
the velocity vector is identified with the vector that has the same Euclidean
length///speed??? and opposite direction.

So limit trajectories can be different for the same boundary value of the
integral λ. This is possible if several boundary segments belong to the same
quadric of a confocal family. That is why we introduce the notation λ = ±bord,
where the sign + is used when limit trajectories are obtained as the value of
the integral λ tends to the boundary value λ = bord from the right (the limit
trajectories are time-like), and the sign – is used for the limit from the left (the
limit trajectories are space-like).

Preimages of such trajectories on!///in?????? the isoenergy surface Q3 are
a union of circles.

Trajectories on the saddle level??? of the integral λ belong to one of the
three disjoint families: the periodic trajectory whose tangent coincides with the
degenerate quadric with parameter λ equal to the saddle value of the integral,
and two sets of homoclinic trajectories located on opposite sides of the periodic
trajectory. Such trajectories have the focal property: at any instant a trajectory
lies on a straight line passing through one of the foci (for λ = −b the foci lie
on the x-axis, for λ = a they lie on the y-axis), moreover, the focus changes for
another one when the trajectory is reflected off the boundary.
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Preimages of saddle trajectories on!///in??? the isoenergy manifolds are
described in detail in Section 4.3.

4.3 The prototypes of singular levels of the integral: sad-
dle values.

Let us describe the prototypes of the saddle values of the integral for such
topological billiards.

Assertion 3 The three-dimensional prototype of a small neighbourhood of the
saddle value of ? integral in the isoenergy surface Q3 of topological billiards is
homeomorphic to the following manifolds:

• an atom B for:

– ∆(2Ψ5)3′ (saddle value λ = a),

– ∆(2Ψ5)31 (saddle value λ = −b, a),

– ∆(2Ψ5)21 (saddle value λ = a);

• atom A∗ for:

– ∆(2Ψ3)22 (saddle value λ = −b, a),

– ∆(2Ψ5)21 (saddle value λ = −b);

• atom C2 for ∆(2Ψ5)2 (saddle value λ = a).

Proof.

1. Let’s consider the billiard ∆(2Ψ3)22. It is derived from two items of Ψ3

glued together along vertical segments. Let’s first glue the vertical seg-
ments, and see how the surface of the level of the singular values of the
integral λ will change. Let’s describe the algorithm for the level of the
integral λ = a. Let’s consider the tori Tu and T d : the levels of the inte-
gral λ = a in the isoenergy Q3 surfaces for two billiards Ψ3. On each of
these tori there is a cycle formed by points of vertical straight segments,
equipped with vectors (these are vectors v1, which coincides with the vec-
tor v4, and v2, coinciding with v3). We cut the tori into these cycles
and glue them together according to the law of reflection in topological
billiards, namely: (x, v1)u sticks together with (x, v4)d, (x, v2)u sticks to-
gether with (x, v3)d and so on. Let’s further identify two selected cycles.
We will get a singular layer of atom B.

Now let’s make the gluing along straight horizontal segments. In this case,
a special layer of the atom B is first cut along the cycle, transversal to
a singular circle, which is formed by the prototypes of points of a lower
segment. Vectors were glued together along it on the lower segments on the
top and bottom sheets: v1 with v2 , v3 with v4. After the cut, the cycles
are glued together in accordance with the law of reflection: the points
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(x, v1)u are identified with(x, v4)d and vice versa, (x, v3)u with (x, v2)d
and vice versa. Thus, a singular layer of atom B is ”twisted.” As a result,
we obtain a special layer of the atom A∗. For the level of the integral
λ = −b, the proof is similar.

2. Let’s consider the billiard ∆(2Ψ5)21. It is obtained by gluing together two
simple billiards Ψ5 along the left and straight lower boundary segments.
First, we glue along the bottom segment.

Let’s consider two tori: Tu and T d, which lie on the level of the integral
λ = −b in Q3 isoenergy surface. Here, similar to pont 1, we obtain a
special layer of atom B. Let’s consider two atoms B - levels of saddle
value of the integral λ = a in the Q3 isoenergy manifold of upper and
lower billiards Ψ5.

Let’s cut the special layers of B atoms into cycles, which are the prototypes
of points lying on the lower segments of billiards Ψ5. Such cycles are
transversal to special circles of atoms B. Vectors on the lower segments
are identified along them: v1 with v2 and v3 with v4 on the upper and
lower sheets. After the cut we glue what was obtained in accordance with
the law of reflection: (x, v1)u glued to (x, v2)d and vice versa, (x, v3)u
glued to (x, v4)d and vice versa. We get a special layer of atom B.

Now let’s make a glue along the left segment. At the level of the integral
λ = −b we obtain a singular layer of atom A∗ (similar to point 1) from the
singular layer of atom B. At the level of the integral λ = a after the first
glue the atom B was obtained. Now let’s cut a singular layer of this atom
along a cycle parallel to a singular circle, which is a prototype of boundary
left segment points. Along this cycle, the vectors v4 were identified with
v1 and the vectors v3 with v2 on the upper and lower sheets.

Let’s further glue the result in accordance with the law of reflection in
topological billiards: we stick (x, v2)d together with (x, v1)u and vice versa,
we stick (x, v3)u together with (x, v2)d and vice versa. Again, we obtain
a special layer of atom B.

3. Let’s consider now the billiard ∆(2Ψ5)2. It is derived from two simple
billiards Ψ5 by identifying the left and right segments. We firstly glue
left segments. Let’s consider two atoms B, each of which is the level of
the integral λ = a in the isoenergy surface Q3 for the upper and lower
billiards Ψ5. Let’s cut the singular layers of atoms B in cycles parallel
to a singular circle that are the prototypes of left segments’ points. The
vectors v1 were identified with v4 and v2 with v3 on the upper and lower
sheets along these cycles. Now let’s glue the result in accordance with the
law of reflection in the topological billiards, namely: (x, v1)u glues with
(x, v4)d, (x, v2)u glues with (x, v3)d and so on. We obtain a special layer
of atom B2.

Now we glue right segments. At the same time, at the level of the integral
λ = a, a singular layer of atom v is cut along the cycles parallel to a
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singular circle. These cycles are the prototypes of points lying on the right
segments. These vectors were previously identified along these cycles: v1
with v4 and vectors v2 with v3 on the top and bottom sheets. Let’s glue the
result of the cut in accordance with the billiard reflection, namely: (x, v1)u
we glue together with (x, v4)d and vice versa, (x, v2)u with (x, v3)d and
vice versa. Now we have a special layer of an atom C2. Please note, that
the level of the integral λ = −b is not singular for a given billiard

4. Let’s consider the billiard ∆(2Ψ5)31. It is derived from the ∆(2Ψ5)2 billiard
by identifying two identical free straight segments. Similarly to point 1,
we get a special layer of atom B at the level of the integral λ = −b .

This billiard can also be derived from ∆(2Ψ5)31 by identification of two
right edge segments. Let’s refer to the second part of point 2. While
gluing the left segments a singular layer of atom B was obtained at the
level of the integral λ = afrom a singular layer of atom B through the cut
of the latter along a cycle parallel to the singular circle.

Now we need to make two cuts in the cycles, which are the prototypes of
the left and right segments, and re-glue the result in accordance with the
law of reflection in topological billiards. Obviously, we get a singular layer
of atom B.

5. Let’s consider the billiard ∆(2Ψ5)3′. It is derived from the ∆(2Ψ5)2 bil-
liard by identifying two upper segments.

Let’s consider the level λ = a. For that we will turn to point 4, in which
the billard ∆(2Ψ5)31 was obtained from ∆(2Ψ5)2 billiard by identifying
two identical free straight segments. At the level of the integral λ = a
there is a cut of a singular layer of C2 atom along the cycle, transversal
to a singular circumference, and the subsequent gluing in accordance with
the billiard law. We have shown that there is a special layer of atom B
at the level of the integral λ = a. Thus, the sequence of actions described
above allows us to get a singular layer of the atom B from a singular layer
of the atom C2.

In this case, the singular layer of the C2 atom must also be first cut along
a cycle that is transversal to a particular circle, points of which are the
prototypes of the upper segment of the upper and lower sheets, and then
we need to glue the result in accordance with the billiard law. Thus, we
obtain a special layer of the atom B. Please, note that in this topological
billiard the value of the integral λ = −b is not singular.

�
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4.4 Analogue of the Liouville theorem: connected regular
layers are tori.

Assertion 4 For the topological billiard ∆(2Ψi) the prototypes of non-singular
levels of the integral are the union of two-dimensional tori

To prove this proposition, we will prove the following lemma.

Lemma 4.1 For the topological billiard ∆(2Ψi) with λ ∈ (−∞,−b) ∪ (a,+∞)
the prototypes of the non-singular levels of the integral are the union of two-
dimensional tori, and if one or two adjacent or three edges are glued together,
then at a fixed level of the integral λ in the isoenergy manifold Q3 there is one
torus, and if two opposite or four edges are glued together, then there are two
tori.

Proof.
Let a topological billiard consist of two items of a simple billiard Ω (which

is one of the billiards Ψi, i ∈ 1, 2, 3, 4, 5, 6), glued along one boundary segment.
Without decreasing of generality, we believe that this segment is the upper one.

We fix the value of λ belonging to the indicated interval. Let’s consider the
part of the billiard where the points on the level of integral of λ are projected to.
Since the quadrics corresponding to the values of λ from the specified interval
are hyperbolas or a line at infinity, then they do not intersect ellipses on the
Minkowski plane. Therefore, the surface projection of the level of such integral
values will be the exact two items of billiard Ω.

4 velocity vectors vi correspond to each point of the billiards (x, y), so that
the point (x, y, vi) lies at the corresponding level of the integral. Velocity vectors
will be distinguished by the direction (in the 7 there are 4 types of different
vectors). We obtain 8 items of billiards Ω, responsible for the upper and bottom
sheets of the topological billiard, equipped with one of 4 velocity vectors. Let’s
denote them by (Ωj , vi)1 and (Ωj , vi)2,, where i takes the values 1,2,3,4, and
j takes the values 1 and 2. Let’s glue these 8 items of billiard areas along the
boundary according to the law of reflection in topological billiards, and thus we
describe the layer of the integral λ in the isoenergy manifold Q3.

Figure 7: The direction of the velocity vectors v1, v2, v3, v4 in the billiard Ω.

Let’s see how vectors on the border of the billiard are identified.
We identify v1 with v2, and v3 with v4 in an arbitrary simple billiard on the

lower and upper segments in accordance with the law of reflection. On the left
and right segments we identify v1 with v4, and v2 with v3.
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After the gluing operation on the upper segment, v1 ∈ Ω1 will be identified
with v2 ∈ Ω2 (and, respectively, v1 ∈ Ω1 will be identified with v2 ∈ Ω2), and
v3 ∈ Ω1 with v4 ∈ Ω2 (and, respectively, v3 ∈ Ω2 with v4 ∈ Ω1).

Therefore, we will glue the items of billiard regions (Ωj , vi) as follows: we
glue (Ωj , v1) with (Ωj , v2) on the lower segments, and (Ωj , v3) with (Ωj , v4)
(here j takes the values 1, 2), on the left and right segments we glue (Ωj , v1)
with (Ωj , v4), and (Ωj , v2) with (Ωj , v3) (here j takes values 1, 2).

On the top segment, we glue (Ω1, v1) with (Ω2, v2), (Ω2, v1) with (Ω1, v2),
and (Ω1, v3) with (Ω2, v4), (Ω2, v3) with (Ω1, v4). This algorithm is shown in
the Fig. 8 the identified vectors are connected by the dotted line.

Then the level of the integral is homeomorphic to 8 quadrangles glued with
each other by the above rule. It’s easy to see that it represents a torus.

For the remaining cases of sides gluing the proof is similar.

Figure 8: Identification of vectors v1, v2, v3, v4 on the billiard boundary Ω.

�

Remark 1 Let’s note that, when proving the important things are only the
number of glued areas and the number of boundary segments identified with each
other by gluing operation (and their location relative to each other, if there are
two of such segments). Thus, let’s suppose that while considering a topological
billiard ∆(2Ψi) in the form of a non-singular value of the integral λ, the billiard
motion occurs in a region with several boundary segments identified with each
other. Then, we can hold a similar proof and conclude that at the appropriate
level of the integral in the isoenergy surface of Q3 there are two-dimensional tori
for every such area.

The number of tori will be the same as in Lemma 4.1, namely: when gluing
one, two adjacent or three segments there will be one torus, and there are two
tori when gluing two opposite or four.

Remark 2 As it is followed from Comment 1 and Lemma 4.1, if in the pro-
totype of the non-singular level of the integral the billiard motion occurs in a
disconnected union of two regions, then at the appropriate level of the integral
in an isoenergy manifold there will be two tori.
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Proof. Let’s consider some topological billiard Ω, obtained by gluing together
two equivalent simple billiards Ψi. For λ ∈ (−∞,−b) ∪ (a,∞) the assertion is
proved in the lemma; therefore, we fix some value of the integral λ ∈ (−b, a)
which, by the definition, is non-singular (that is, it is not a boundary one).

Let’s consider the level projection of the integral λ on the billiard plane
and cut those parts out from the region Ω into which the level points of the
integral are not projected. We obtain some billiard Ω′, possibly, disconnected.
According to the algorithm described in Lemma 4.1, each connected component
is glued into a union of several tori. The number of these tori depends on the
number of connected components and glued segments.

�

17



4.5 Fomenko-Zieschang molecule - complete invariant of
Liouville equivalence

So then, the description for each leave of the Liouville foliation is provided above
for each of the ∆(2Ψ3)22, ∆(2Ψ5)3′, ∆(2Ψ5)2, ∆(2Ψ5)31 and ∆(2Ψ3)21 topological
billiards. Namely, it is proved that nonspecial leaves are tori, while special leaves
are 3-atoms. However, to fully describe the topology of the Liouville structure,
additional information regarding the way the regular neighborhoods of special
leaves are glued to each other is required. Let us select permissible bases on
each boundary torus and specify the transition matrix from one basis to another
one. The rule for selecting permissible bases is defined by the atom structure.

Remember, that we select solid torus median on the boundary torus of the A
atom as the λ cycle, that is a cycle contracting to a point inside the solid torus,
while the µ cycle is to complete the basis. In this case, it is convenient to consider
the µ cycle a fiber of Seifert fibration. Fibers of Seifert fibration have natural
orientation defined by the Hamiltonian vector field. More specifically, one of
these fibers is a trajectory of the vector field in question, namely, the critical
circle of the λ additional integral, the axis of solid torus. The orientation of this
fiber makes it possible to exactly determine the orientation on the µ cycle.

In case of the B saddle 2-atom, the corresponding U 3-atom has the structure
of the trivial S1-foliation into two-dimensional B atoms (the “thickened eight”).
On each of the Ti boundary tori, we take a fiber of this foliation as the λi cycle.
We select additional µi cycles as follows. Let us consider arbitrary cross-section,
P ∈ U . On each boundary torus Ti, it intercepts a certain µi cycle. It is this
cycle that we take as the second basis cycle on Ti. As in the previous case, the
orientation is selected uniquely.

On other saddle atoms without stars, cycles are selected in the similar way.
Namely, the λ cycle is a fiber of Seifert fibration, while µ cycles are intercepted
in boundary tori by cross-sectioning of a three-dimensional atom with a flat
atom.

Therefore, each point of an edge has two bases, which are determined consis-
tently with the atoms connected by the selected edge of the graph. The matrix
for transition from one basis to the other one is referred to as gluing matrix.
Since permissible bases are selected nonuniquely, the gluing matrix may be dif-
ferent when different bases are selected. However, when the gluing matrix is
available, it is possible to calculate r, ε, n numerical metrics - invariants with
regard to possible substitutions of bases on boundary tori (see lemmas 4.5 and
4.6 in book [2]). Detailed rules for calculating these numbers are provided in
[2].

Definition 17 A molecule provided with r, ε, n labels is referred to as labelled
molecule or Fomenko-Zieschang invariant.
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4.6 Counting labels in Fomenko-Zieschang molecules for
certain topological billiards on Minkowski plane

To prove the following lemmas, let us introduce the following notations. For
simple billiards Ψ3,Ψ5,Ψ6 (as well as for topological billiards obtained by gluing
these simple billiards), the parameter of the upper (and the lower, in case it is
convex) segment is λ2, while the parameter of the right (and the left, in case it
is convex) segment is λ1.

Definition 18 We call the cycle orientation consistent if its orientation coin-
cides with the orientation of the speed vectors, and inconsistent, if the cycle
orientation is opposite to the orientation of the speed vectors.

Lemma 4.2 Figure 6 shows Fomenko-Zieschang invariant for the ∆(2Ψ3)22 do-
main

Proof. Let us orient the edges of the molecule in accordance with the figure
6 - the orientation shows the from and the to basis of the transition. Let us

Figure 9: Selecting cycles for the ∆(2Ψ3)22 domain. In the first column, cycles
for the edge that corresponds to values of the λ ∈ (−b,−λ2) integral are selected,
in the second column – to λ ∈ (−∞,−b) ∪ (a,+∞) ∪ {∞}, in the third column
- λ ∈ (+λ1, a). The thin dashed line specifies the arc of the integral ellipse with
its orientation indicated by the white arrow on the cycle.

consider the edge that corresponds to values of the λ ∈ (−b,−λ2) integral.
The figure shows the selection of cycles on a boundary torus of the A atom.

Indeed, when the parameter of the integral ellipse tends to the value of λ = −λ2,
the λ cycle contracts to a point, while the µ cycle transitions into the A atom’s
critical circle (moreover, its orientation is consistent with the orientation of the
atom’s critical circle). Now, let us describe the selection of cycles on boundary
tori of the A∗ atom. To begin with, we take fibers of Seifert fibration as λ

19



cycles (figure 9) where their orientation is consistent with that of the critical
circle. Let us consider interception of the A∗ 3-atom with a B atom which is
transversal to the special circle. It intercepts three µ̂ cycles on the edge of the
3-atom with two of them intercepted on the elliptical torus and intersect the λ
cycle (a Seifert fibration fiber) once, and the third one, µ̂, intercepted on the
hyperbolic torus intersects a Seifert fibration fiber twice. Let us use such µ̂
cycles (shown in figure 9) to construct a true µ cycles on boundary tori of the
A∗ atom. For the elliptical torus of an edge, we select one of the connected µ̂
components as µ, while for the hyperbolic torus - the µ = λ+µ̂

2 cycle.
Cycles for the A∗ atom that corresponds to the λ = a parameter are selected

in the similar way (see figure 9)
And finally, cycles of the boundary torus of the A atom that corresponds

to the value of the λ = +λ1 parameter are shown in figure 9. These cycles are
selected the same way as for the A atom that corresponds to the value of the
λ = −λ2 parameter.

Now, let us write down the matrices for transitioning from one basis to an-
other one (starting from the left edge) following the previously fixed orientation
of the edges.

For the left edge, the

(
0 1
1 0

)
gluing matrix, where the λ orientation of the A

atom’s boundary torus is selected based on the condition for the gluing matrix
determinant, and the µ̂ orientation (and, apparently, the orientation of µ along
with it) of the saddle atom is considered consistent. Labels on this edge are
r = 0, ε = 1.

For the middle edge we have

(
1 −2
0 −1

)
, where the orientation of µ̂ (defining

the orientation of µ) of the A∗ atom that corresponds to the value of λ = a
is selected from the condition for the determinant. Labels on this edge are
r = 1

2 , ε = −1.
Now, the orientation of µ̂ for boundary tori of the saddle atom on the right

edge is selected uniquely (and this orientation determines the orientation of the

µ cycle). The gluing matrix is

(
0 1
1 0

)
, the orientation of the A atom is selected

from the condition for the determinant. Labels of this edge are r = 0, ε = 1.
We have two families in the molecule. The n = −1 label is for both of them

(this follows from the definition and the explicit form of the gluing matrices).
�
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Lemma 4.3 figure 6 shows Fomenko-Zieschang invariant ror the ∆(2Ψ5)3′ do-
main

Proof. We orient the edges of the crude molecule toward the saddle atom.
Let us consider the edge that corresponds to values of the λ ∈ (−∞,−λ2) ∪

Figure 10: Selecting cycles for the ∆(2Ψ5)3′ domain. In the first column, cycles
for the edge corresponding to values of the λ ∈ (−∞,−λ2) ∪ (a,+∞) ∪ {∞}
integral are selected, in the second column – to λ ∈ (+λ1, a). The thin dashed
line specifies the arc of the integral ellipse. We indicate its orientation by the
white arrow on the cycle.

(a,+∞) ∪ {∞} integral.
Figure 10 shows the selection of cycles on boundary tori of the A atom.

Indeed, when the value of the λ integral tends to the boundary value of −λ2,
the λ cycle contracts to a point. In this case, the µ cycle contracts to the critical
circle of the atom, and its orientation is selected as consistent with that of the
critical circle.

Figure 10 shows the selection of cycles on the B atom. Here, λ is a fiber of
Seifert fibration, and its orientation is consistent with that of the critical circle,
while the µ cycle is the one that is intercepted by a certain cross-section of the
three-dimensional B atom by the two-dimensional B atom. Orientation of the
cycle is selected as consistent. In this case, the gluing matrix on this edge is(
−1 0
0 1

)
, whereupon, the orientation of the λ cycle for the boundary torus of

the A atom is selected from the condition for the matrix determinant. In this
case, the labels on this edge are r =∞, ε = −1.

Now, let us consider one of the molecule edges that corresponds to the value
of the λ ∈ (+λ1, a) parameter.

Figure 10 shows the selection of cycles on boundary tori of atoms. As a
matter of fact, on the boundary torus of the B atom, the λ cycle is a fiber
of Seifert fibration, and its orientation is consistent with that of the critical
circle, while the µ cycle is a cross-section of the B atom’s boundary torus by
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the two-dimensional B atom, moreover, the orientation on it is already defined
- if the orientation of the µ cycle on the outer boundary torus is consistent, it
would be inconsistent on inner ones since orientations of µ cycles is bound by
the condition of the global cross-section existence.

On the boundary torus of the A atom, the µ cycle is contracted to the critical
circle, and its orientation is consistent with that of this circle, while the λ cycle
is contracted to a point when the value of the λ integral tends to the boundary
value of +λ2. It is easy verified that µB = −±λA+λB

2 = −µA (minus since the
orientation is inconsistent, and the λA sign is selected from the condition for

the determinant of the transfer matrix). Then, the gluing matrix is

(
1 2
0 −1

)
,

which means that the λA orientation is selected as inconsistent. In this case,
the labels on this edge are r = 1

2 , ε = 1.
For the second edge corresponding to these values of the parameter, cycles

are selected in the similar way, so, the labels are also r = 1
2 , ε = 1. �

Lemma 4.4 Figure 6 shows the Fomenko-Zieschang invariant for the ∆(2Ψ5)2

billiard

Proof.We orient both edges of the molecule towards the saddle atom.

Figure 11: Selecting cycles for the ∆(2Ψ5)2 domain. In the first column, cy-
cles are selected for the edge corresponding to values of the λ ∈ (−∞,−λ2) ∪
(a,+∞)∪{∞} integral, in the second column - to λ ∈ (+λ1, a). The thin dashed
line specifies the arc of the integral ellipse, and the white arrow on the cycle
indicates its orientation.

Le us consider the edges that correspond to values of the λ ∈ (−∞,−λ2) ∪
(a,∞) ∪ {∞} integral.

Figure 11 shows cycles for boundary tori of A atoms Indeed, you can easily
see that when the parameter of the integral ellipse tends to the value of λ = −λ2,
the λ cycle contracts to a point (the orientation is not yet defined on it), while
the µ cycle contracts to a special circle (moreover, its orientation is consistent
with the orientation of the special circle).

Figure 11 shows cycles for boundary tori of C2 atoms Indeed, cycles λ con-
tract to special circles and their orientation is selected as consistent with the
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orientation of these circles, while cycles µ are intercepted on boundary tori by
several cross-sections of the C2 3-atom by the flat C2 atom. Let us select the
orientation of these cycles as consistent.

Then, the gluing matrices on the upper and lower edges are

(
−1 0
0 1

)
,

(please note that now we can select the λ orientation on A atoms based on
the condition for the gluing matrix determinant), whereupon the labels would
be r =∞, ε = −1 on both edges.

Let us consider the edges that correspond to values of λ ∈ (+λ1, a).
Figure 11 shows cycles for boundary tori of atoms Indeed, on tori of the

C2 saddle atom, the λ cycles contract to special circles (and their orientation
is consistent with that of the special circles), while µ cycles are intercepted
on boundary tori of the C2 saddle 3-atom by the C2 two-dimensional atom.
Since all µ cycles are related to the condition for existence of the global cross-
section, the orientation of the cycles selected on these two boundary tori would
be inconsistent.

On A boundary atoms, λ cycles contract to a point when the parameter of
the integral ellipse tends to the value of +λ1, and the orientation on them is
defined later based on the condition for the gluing matrix determinant. µ cycles
contract to special circles, and their orientation is consistent with that of the
special circles.

Then, the gluing matrices are

(
0 1
1 0

)
for the upper and lower edges (now,

we can select the orientation of λ cycles on tori of A atoms), and the labels
would be r = 0, ε = 1 for the upper and lower edges. �

Lemma 4.5 Figure 6 shows Fomenko-Zieschang invariant for the ∆(2Ψ5)31 bil-
liard

Proof.We orient edges of the molecule according to figure 6.
Let us consider the edges that correspond to values of the λ ∈ (−b,−λ2)

integral. Figure 12 shows the selection of cycles on boundary tori of atoms On
boundary tori of A atoms, cycles are selected the same way as in lemma 4.4 for
edges with similar parameters. On boundary tori of the B, λ cycles contract
to a special circle, and their orientation is defined by the orientation of the
critical circle, while µ cycles represent the cross-section of the B 3-atom by the
B 2-atom and their orientation is considered consistent. In this case, the gluing

matrix for both edges is

(
0 1
1 0

)
, and the labels on these edges are r = 0, ε = 1

Let us consider the edge that corresponds to values of the λ ∈ (−∞,−b) ∪
(a,∞)∪{∞} integral. Figure 12 shows the selection of cycles. On the boundary
torus of the B atom that corresponds to the value of the λ = −b parameter,
the µ− cycle (its orientation has already been fixed and is inconsistent) and
the λ− cycle (it contracts to a special circle of the atom, and its orientation is
consistent with that of the circle) are selected.
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Figure 12: Selecting cycles for the ∆(2Ψ5)31 domain. In the first column, cycles
are selected for the edge that corresponds to values of the λ ∈ (−b,−λ2) integral,
in the second column - to λ ∈ (−∞,−b) ∪ (a,+∞) ∪ {∞}, in the third column
- to λ ∈ (+λ1, a). The thin dashed line specifies the arc of the integral ellipse,
the white arrow on the cycle indicates its orientation.

On the boundary torus of the B atom that corresponds to the value of the
λ = a parameter, the µ+ cycle (its orientation has not been fixed yet, and this
cycle is intercepted on a boundary torus by the cross-section of the B 3-atom
by the B 2-atom) and the λ+ cycle (its contracts to a special circle of the atom,
its orientation is fixed and consistent with that of the circle) are selected.

It is easily verified that µ+ = ±(λ+ + λ−) (moreover, the sign is selected
based on the condition for the winner of the gluing matrix and defines the con-
sistent or inconsistent orientation of the µ+ cycle). Since λ+ = −µ− (remember

that the orientation of µ− is inconsistent), the gluing matrix is

(
0 −1
±1 ∓1

)
.

Since the determinant of this matrix must be equal to -1, we finally conclude

that the matrix is

(
0 −1
1 −1

)
, the orientation of µ+ is inconsistent, and the labels

on the edge are r = 0, ε = −1.
Let us consider the edges that correspond to values of the λ ∈ (+λ1, a)

integral. Figure 12 shows the selection of cycles on boundary atoms.
On boundary tori of the B atom, µ+ cycles are intercepted by the B 2-atom

and their orientation is fixed and consistent, while λ+ cycles represent a fiber of
Seifert fibration, and their orientation is consistent with the orientation of the
atom’s critical circle

On boundary tori of the A atom, the λ− cycle contracts to a point when the
parameter of the integral ellipse tends to the value of +λ1, while the µ− cycle
contracts to a special circle of the atom with its orientation defined by that of
this circle. It is easily verified that µ− = ±λ−+λ+

2 = µ+. We orient λ− logically
based on the condition for the determinant of the gluing matrix. Then, the

gluing matrices for the upper and lower edges are

(
−1 2
0 1

)
, while the labels

on both edges are r = 1
2 , ε = 1.
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So then, there are two families in the molecule. For the left one, the label is
n = 0, for the right one, the label is n = [−−11 ] + [− 1

2 ] + [− 1
2 ] = −1 (it follows

from the definition and explicit form of the gluing matrices for each edge). �

Lemma 4.6 Figure 6 shows the Fomenko-Zieschang invariant for the ∆(2Ψ3)21
domain

Proof. We orient the edge according to figure 6.

Figure 13: Selecting cycles for the ∆(2Ψ3)21 domain. In the first column, cycles
are selected for the edge that corresponds to values of the λ ∈ (−b,−λ2) integral,
in the second column - to λ ∈ (−∞,−b)∪ (a,+∞)∪{∞}. The thin dashed line
specifies the arc of the integral ellipse, the white arrow on the cycle indicates
its orientation.

Let us consider the edge that corresponds to values of λ ∈ (−b,−λ2). Figure
13 shows the selection of cycles for boundary atoms On a boundary torus of the
A atom, the λ cycle contracts to a point when the parameter of the integral
ellipse tends to −λ2 (the orientation of this cycle is defined later when writing
the gluing matrix), the µ cycle contracts to the critical circle of the atom with
its orientation being consistent.

On a boundary torus of the A∗ atom, the λ cycle is a fiber of Seifert fibration
and its orientation is consistent with that of the special circle of the atom. Let
us describe the selection of the µ cycle.

Let us consider cycles intercepted on boundary tori of the A∗ 3-atom by the
B two-dimensional atom. There are 3 µ̂ cycles with two of them intercepted
on the elliptical torus, and the third one is intercepted on the hyperbolic torus
and crosses the highlighted fiber of Seifert fibration twice. To construct true
µ cycles, on the elliptic torus, we take one of the connected components of µ̂
cycles (and choose its orientation as consistent), and µ = µ̂+λ

2 on the hyperbolic
torus where λ is a fiber of Seifert fibration (which means that the λ cycle on
the elliptic torus is also a fiber of Seifert fibration) with the µ̂ orientation being
inconsistent.

Then, on the edge in question, the gluing matrix is

(
0 1
1 0

)
, and the labels

are r = 0, ε = 1.
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Let us consider the edge that corresponds to values of the λ ∈ (−∞,−b) ∪
(a,∞)∪ {∞} integral. Figure 13 shows the selection of cycles on boundary tori
of atoms

On a torus of the A∗ atom, the λ− cycle is a fiber of Seifert fibration, its
orientation is fixed, the selection of the µ− cycle is described above (namely,

µ− = µ̂+λ−
2 )

On a torus of the B atom, the λ+ cycle contracts to a special circle, and
its orientation is consistent with that of the special circle, while the µ+ cycle is
intercepted on the elliptical torus using the cross-section of the 3-atom by the
flat B atom. It is easily verified that µ+ = ±λ++λ−

2 .

Since µ̂ = −λ+, then the gluing matrix is

(
1 −2
±1 ∓1

)
. Its determinant must

be equal to -1, and we select the inconsistent orientation for µ+. Then, the

matrix is rewritten as

(
1 −2
−1 1

)
, while the labels on the edge are r = 1

2 , ε =

−1.

Figure 14: Selecting cycles for the ∆(2Ψ3)21 domain for the edge that corresponds
to values of the λ ∈ (+λ1, a) integral. The thin dashed line specifies the arc of
the integral ellipse, the white arrow on the cycle indicates its orientation.

Let us consider the edges that correspond to values of the λ ∈ (+λ1, a)
integral.

Projection of a torus on the billiard plane breaks into two connected com-
ponents.

For the case when a connected component contains a conical point, the
selection of cycles is shown in figure 14 and is performed the same way as in...
Consequently, µ+ = µ− = λ+±λ−

2 . We select the orientation of λ− so that the

gluing matrix determinant be equal to -1. The gluing matrix is

(
−1 2
0 1

)
, the

labels on the edge are r = 1
2 , ε = 1 For the case when a connected component

does not contain conical points, the selection of cycles is shown in figure 14 On
a boundary torus of the A atom, the µ cycle contracts to a special circle and
its orientation is consistent with that of the circle, while the λ contracts to a
point. On a boundary torus of the B atom, the orientation of the µ cycle is
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consistent, while the orientation of the λ cycle (a fiber of Seifert fibration) is
consistent with that of the critical circle of the atom. Then, the gluing matrix

is

(
0 1
1 0

)
, while the labels on the edge are r = 0, ε = 1.

There are two families in the molecule, For the left one, the label is n =
0 + [ 1

−2 ] = −1, for the right one, the label is n = 0 + [− 1
−2 ] + [− 1

2 ] = −1 (it
follows from the definition and explicit form of gluing matrices for each edge).

�
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