
15 Гауссово отображение и степень. Формула Гаусса-
Бонне

Введем понятие гауссова отображения гиперповерхности.

Теорема 2 (о гауссовой кривизне и гауссовом отображении). Пусть Mn−1 ⊂ Rn —
регулярная ориентированная гиперповерхность. Рассмотрим гауссово отображение
Γ : Mn−1 → Sn−1, где Γ(P ) = ~n(P ) — единичная нормаль к M в точке P ∈ M .
Пусть dσ◦ — ориентированная форма объема на сфере Sn−1 единичного радиуса, и dσ
— ориентированная форма объема на M , K — гауссова кривизна на M . Тогда

Kdσ = Γ∗dσ◦.

Форма Kdσ называется формой кривизны гиперповерхности M .

Доказательство. Проведем для n = 3. Фиксируем точку P ∈ M , рассмотрим специ-
альные координаты x, y, z в R3 такие, что TPM = Oxy. Имеем M ∩U = {(x, y, f(x, y))}
— график гладкой функции z = f(x, y), где U — малая окрестность точки P в R3.

На M ∩ U рассмотрим локальные координаты x, y и локальную параметризацию
~r(x, y) = (x, y, f(x, y)), тогда ~rx = (1, 0, fx), ~ry = (0, 1, fy), поэтому

~n(x, y) =
[~rx × ~ry]

|[~rx × ~ry]|
=

(−fx,−fy, 1)√
1 + f2

x + f2
y

.

Поэтому в аналогичных локальных координатах u, v в окрестности точки Γ(P ) = ~n(P )
на S2 ⊂ R3(u, v, w) имеем TΓ(P )S

2 = Ouv и

Γ(x, y) = (u(x, y), v(x, y)) =
(−fx,−fy)√
1 + f2

x + f2
y

.

В точке P имеем fx(P ) = fy(P ) = 0. Поэтому

dΓ(P ) =

(
−fxx −fxy
−fxy −fyy

)
|P .

Так как в выбранных координатах наM и на S2 метрики в точках P и Γ(P ) евклидовы,
то формы объема dσ(P ) = dx ∧ dy и dσ◦(f(P )) = du ∧ dv. Поэтому

Γ∗dσ◦(P ) = Γ∗(du ∧ dv) = (det dΓ(P )) · dx ∧ dy = K(P )dσ.

Теорема 3 (формула Гаусса-Бонне). Пусть M2 ⊂ R3 — регулярная замкнутая ори-
ентируемая связная поверхность (ориентированная с помощью внешней нормали).
Тогда

1

2π

∫
M2

Kdσ = 2λ,

где λ = deg Γ — целое число (и, в частности, интеграл не меняется при гладкой
деформации поверхности).
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Доказательство. Пусть Γ : M → S2 — гауссово отображение. По теореме 2 имеем
Kdσ = Γ∗dσ◦. Имеем∫

M

Kdσ
теор.2

=

∫
M

Γ∗dσ◦
теор.1

= deg Γ ·
∫
S2

dσ◦ = deg Γ · vol2S
2 = 4π deg Γ.

Задача 15.1. Показать, что число λ равно 1−g, где g — число ручек поверхностиM (не
зависит от выбора метрики на M). Число 2λ — эйлерова характеристика поверхности
M .

Указание. По формуле Гаусса-Бонне
1

2π

∫
M2

Kdσ = 2 deg Γ

не меняется при гладкой деформации поверхности (так как гладкая деформация по-
верхности вызывает гладкую гомотопию гауссова отображения Γ). Поэтому достаточно
вычислить интеграл 1

2π

∫
M2
g

Kdσ для конкретной реализации M2
g ⊂ R3.

Сделаем это. Вначале разберем подробно случай g = 0, а потом общий случай.
Случай 1. Если род M равен g = 0, то можно рассмотреть две поверхности: стан-

дартную сферу M0 = S2 (для которой Γ0 = idS2 , откуда deg Γ0 = 1, и 1
2π

∫
S2

K0dσ = 2)

и “продеформированную сферу” M ⊂ R3, состоящую из двух стандартных сфер, со-
единенных тонким цилиндром. Первая поверхность (стандартная сфера M0) дает нам
требуемое равенство λ = deg Γ0 = 1 = 1− g (ввиду g = 0).

Рассмотрим теперь обе поверхности M0 и M . Обозначим через i0 = id : S2 → S2 ⊂
R3 и i1 : S2 → R3 вложения сферы в R3, задающие эти две поверхности. Ясно, что
существует гладкая гомотопия it : S2 → R3, t ∈ [0, 1], такая, что каждое отображение
it является вложением (т.е. инъективно и dit(P ) : TPS

2 → R3 инъективно для любой
точки P ∈ S2). Обозначим через Kt, dσt и Γt гауссову кривизну, форму объема и
гауссово отображение поверхности Mt = it(S

2). Имеем M = M1, K = K1, Γ = Γ1, и

1

2π

∫
M2

0

K0dσ0 = 2 deg Γ0
(по теореме об инвар-ти степени)

= 2 deg Γ =
1

2π

∫
M2

Kdσ.

Но M состоит из двух экземпляров стандартной сферы M0 (с высверленной дыркой)
и из одного цилиндра, и вклад каждой стандартной сферы M2

0 в интеграл 1
2π

∫
M2

Kdσ

равен 2 deg Γ0 = 2. Отсюда находим вклад x одного цилиндра:

2 = 2 + x+ 2 ⇒ x = −2.

Случай 2. Если g ручек, то можно реализовать поверхность M2 = M2
g ⊂ R3 в виде

двух стандартных сфер, соединенных g + 1 цилиндром (нарисуйте чертеж). Отсюда

1

2π

∫
M2
g

Kdσ = 2 + (g + 1)x+ 2 = 2− 2(g + 1) + 2 = 2− 2g,

что и требовалось.
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