
14 Степень отображения (продолжение)

14.1 Приложение 1. Основная теорема алгебры (о числе корней
полинома)

В примере 1 из лекции 13 мы вычислили степень отображения f : S1 → S1, f(z) = zm.
Приведем примеры применения степени.

Предложение 1. Пусть f : S2 = C(z) → S2 = C(w), w = f(z), где f |C — многочлен
степени n > 0 комплексного переменного z = x+ iy ∈ C, f(∞) =∞. Тогда f является
гладким и deg f = n.

Доказательство. Докажем сначала следующую лемму.

Лемма 1. Пусть w = f(z) — комплексно-аналитическая функция. Тогда якобиан
отображения f в любой точке неотрицателен.

Доказательство. Пусть отображение f представляется в виде f = u(x, y) + iv(x, y). В
силу условий Коши—Римана, матрица Якоби этого отображения в точке z = x+ iy ∈ C
имеет вид

J(z) =

(
ux(z) uy(z)
vx(z) vy(z)

)
=

(
ux(z) −vx(z)
vx(z) ux(z)

)
, det J(z) = (ux(z))2+(vx(z))2 = |f ′(z)|2 ≥ 0,

что и требовалось.

Итак, по лемме 1, если точка z ∈ C регулярна для f (т.е. f ′(z) 6= 0), то определитель
матрицы Якоби в точке z положителен.

Задача 14.1. Покажите, что отображения f, g : S2 → S2 гладкие и гладко гомотопны,
где f(z) = a0z

n +P (z) и g(z) = a0z
n при z ∈ C, a0 ∈ C \ {0}, P (z) — многочлен степени

меньше n, f(∞) = g(∞) =∞, и гладкая гомотопия F (z, t) задается в явном виде как

F (z, t) = a0z
n + (1− t)P (z), z ∈ C, F (∞, t) =∞

(особое внимание обратите на точку z0 =∞, для этого запишите отображения f(z), g(z), F (z, t)
с помощью регулярных локальных координат w = 1/z в окрестности этой точки).

По задаче 14.1 отображение f : S2 → S2 является гладким и (по задаче 1 и теореме
1 (б) об инвариантности степени) его степень равна степени отображения g : S2 →
S2. Прообраз точки 1 при отображении g состоит ровно из n точек вида e2πk/n, k =
0, . . . , n−1, каждая из которых регулярна. Поэтому из леммы 1 имеем deg f = deg g

лем.1
=∑

n
1 = n, что и требовалось. Предложение 1 доказано.

В качестве первого приложения понятия степени гладкого отображения получаем
следующее утверждение.

Основная теорема алгебры. Любой многочлен степени ≥ 1 над полем комплексных
чисел имеет хотя бы один комплексный корень.
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Доказательство. Пусть f(z) — многочлен степени n > 0 комплексного переменного
z = x+ iy. Согласно предложению 1, многочлен f задает гладкое отображение f : S2 →
S2 римановой сферы S2 в себя, и deg f = n. Если бы многочлен f не имел корней, то 0
был бы его регулярным значением, так как f−1(0) было бы пусто. Поэтому отображение
f : S2 → S2 имело бы степень 0, что противоречит предложению 1. Доказательство
закончено.

14.2 Приложение 2. Гауссово отображение и степень. Формула
Гаусса-Бонне

Теорема 1 (о степени и интеграле). Пусть f : Mn
1 → Mn

2 — гладкое отображение
между гладкими замкнутыми ориентированными связными многообразиями одина-
ковой размерности. Пусть Ω — внешняя дифференциальная форма максимального
ранга n = dimM1 = dimM2 на M2. Тогда∫

M1

f∗Ω = deg f ·
∫
M2

Ω.

Доказательство. Шаг 1. Пусть H ⊆ M1 — множество нерегулярных точек f . Фик-
сируем малые числа ε◦ > ε > 0. Пусть V ◦ ⊃ H — малая окрестность, в которой
|det df(x)| < ε◦, x ∈ V ◦.

Пусть U◦ ⊃ f(V ◦) ⊃ f(H) — столь малая окрестность, что

vol(U◦) ≤ 2ε◦vol(M1)

(она существует, так как vol(f(V ◦)) ≤ ε◦vol(V ◦) ≤ ε◦vol(M1)). Пусть U ⊃ f(H) — еще
меньшая окрестность такая, что

vol(U) ≤ 2εvol(M1).

Для каждой точки x ∈M1 \H выберем (ввиду регулярности точки x) столь малую
окрестность V ◦x , в которой f |V ◦x : V ◦x → f(V ◦x ) — диффеоморфизм (она существует в
силу теоремы об обратном отображении, так как det df(x) 6= 0).

Для каждой точки y ∈M2 определим множество

f−1(y) =: {x1(y), . . . , xs(y)(y)}, если y 6∈ f(H), (4)

(M1 \ V ◦) ∩ f−1(y) =: {x1(y), . . . , xs(y)(y)}, если y ∈ f(H). (5)

Это множество замкнуто вM1 (а потому компактно) и не содержит предельных точек (а
потому конечно). Пусть далее s(y) > 0. Выберем для точки y координатную окрестность

U◦y ⊆
s(y)⋂
i=1

f(V ◦xi(y)) гомеоморфную Rn и такую, что

f−1(U◦y ) ⊆ V ◦ ∪
s(y)⋃
i=1

V ◦xi(y) (6)

(нетрудно показать, что такая окрестность существует). Без ограничения общности
считаем, что U◦y ⊆M2 \ f(H), если y 6∈ f(H). Положим

Uy := U◦y , если y 6∈ f(H),
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Uy := U◦y ∩ U, если y ∈ f(H). (7)

Пусть U ′y — еще меньшая окрестность точки y такая, что U ′y ⊂ Uy. Положим Vxi(y) :=
V ◦xi(y) ∩ f

−1(Uy) и V ′xi(y) := V ◦xi(y) ∩ f
−1(U ′y) для i = 1, . . . , s(y).

Получаем открытые покрытия

f−1(f(H)) ⊆ V ◦ ∪

 ⋃
y∈f(H)

s(y)⋃
i=1

V ◦xi(y)

 , M1 = V ◦ ∪

 ⋃
y∈M2

s(y)⋃
i=1

V ′xi(y)

 .

Выберем их конечные подпокрытия

f−1(f(H)) ⊆ V ◦ ∪

N◦⋃
k=1

s(yk)⋃
i=1

V ◦xi(yk)

 , M1 = V ◦ ∪

 N⋃
k=1

s(yk)⋃
i=1

V ′xi(yk)

 , (8)

которые существуют ввиду компактности множеств f−1(f(H)) и M1 (здесь N◦ ≤ N ′ ≤
N , yk ∈ f(H) — нерегулярное значение при 1 ≤ k ≤ N ′, yk 6∈ f(H) — регулярное
значение при N ′ + 1 ≤ k ≤ N). Без ограничения общности мы можем считать, что

∀k ∈ {N◦ + 1, . . . , N ′} ∃` ∈ {1, . . . , N◦} т. ч. U ′yk ⊂ U
◦
y`

(⇒ s(yk) ≤ s(y`)). (9)

Пусть {fk}N+1
k=0 — разбиение единицы на M2, подчиненное конечному открытому

покрытию

M2 = U ′ ∪

(
N⋃
k=1

Uyk

)
∪ U∅,

где U ′ := U◦ \
N⋃
k=1

U ′yk , U∅ := M2 \ f(M1). Имеем

Ω = Ω · 1 = Ω

N+1∑
k=0

fk =

N+1∑
k=0

(fkΩ) =:

N+1∑
k=0

Ωk,

где supp(Ωk) ⊂ Uyk при 1 ≤ k ≤ N , supp(Ω0) ⊂ U ′, supp(ΩN+1) ⊂ U∅. Достаточно

доказать требуемое равенство для
N∑
k=0

Ωk и для ΩN+1.

Шаг 2. Докажем требуемое равенство для ΩN+1. Имеем supp(ΩN+1) ⊂ U∅. В случае
U∅ = ∅ имеем ΩN+1 = 0 и требуемое равенство очевидно. Пусть U∅ 6= ∅. Фиксируем
точку y0 ∈ U∅. Так как f−1(y0) ⊆ f−1(U∅) = ∅, то y0 — регулярное значение f и
degy0

f = 0 по определению степени отображения.
Получаем, что левая и правая части требуемого равенства равны нулю:∫

M1

f∗ΩN+1 =

∫
f−1(supp(ΩN+1))=∅

f∗ΩN+1 = 0, deg f ·
∫
M2

ΩN+1 = degy0
f︸ ︷︷ ︸

0

·
∫
M2

ΩN+1 = 0.

Шаг 3. Докажем требуемое равенство для
N∑
k=0

Ωk. Фиксируем k ∈ {0, 1, . . . , N}.
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Случай 1: 1 ≤ k ≤ N . Имеем supp(Ωk) ⊂ Uyk . Вычислим левую и правую части
(Л.Ч.k, Пр.Ч.k) требуемого равенства:

Л.Ч.k =

∫
M1

f∗Ωk =

∫
f−1(Uyk )

f∗Ωk
(6)
=

∫
V ◦\∪Vxi(yk)

f∗Ωk +

s(yk)∑
i=1

∫
Vxi(yk)

f∗Ωk, (10)

Пр.Ч.k = deg f ·
∫
M2

Ωk = deg f ·
∫
Uyk

Ωk. (11)

Вычислим i-е слагаемое в сумме в (10). Пусть x = (x1, . . . , xn) — координаты в
Vxi(yk) ≈ Rn из положительно ориентированного атласа на M1, а y = (y1, . . . , yn) — ко-
ординаты в Uyk ≈ Rn из положительно ориентированного атласа наM2. Пусть y = y(x)
— координатное представление отображения f |Vxi(yk)

в этих координатах. Рассмотрим
координатные представления наших n-форм:

Ωk|Uyk =: ωk(y)dy1 ∧ · · · ∧ dyn, (f∗Ωk)|Vxi(yk)
= det

∥∥∥∥ ∂y`∂xm
(x)

∥∥∥∥ωk(y(x))dx1 ∧ · · · ∧ dxn.

Так как f |Vxi(yk)
: Vxi(yk) → Uyk — диффеоморфизм координатных окрестностей, то

по определению интеграла n-формы и по формуле замены переменных под знаком
интеграла ∫

Vxi(yk)

f∗Ωk =

∫
Vxi(yk)

det

∥∥∥∥ ∂y`∂xm
(x)

∥∥∥∥ωk(y(x))dx1 . . . dxn =

=

∫
Vxi(yk)

εi

∣∣∣∣det

∥∥∥∥ ∂y`∂xm
(x)

∥∥∥∥∣∣∣∣ωk(y(x))dx1 . . . dxn = εi

∫
Uyk

ωk(y)dy1 . . . dyn = εi

∫
Uyk

Ωk,

где εi := sgn det
∥∥∥ ∂y`∂xm (xi(yk))

∥∥∥ = sgn det df(xi(yk)). Получаем

Л.Ч.k −Пр.Ч.k =

∫
V ◦\∪Vxi(yk)

f∗Ωk +

s(yk)∑
i=1

εi − deg f


︸ ︷︷ ︸

=0,
если k>N ′

∫
Uyk︸︷︷︸
⊆U,

если k≤N ′

Ωk. (12)

Здесь мы отметили, что если k > N ′ (т.е. yk 6∈ f(H) — регулярное значение), то выра-
жение в скобках равно нулю ввиду (4) и определения степени отображения; если k ≤ N ′
(т.е. yk ∈ f(H) — нерегулярное значение), то Uyk ⊆ U по построению в (7).

Случай 2: k = 0. Имеем supp(Ω0) ⊂ U ′ ⊆ U◦ и f−1(U ′) ⊆ M1 \ ∪V ′xi(y`) ⊆ V ◦

ввиду равенства в (8). В частности, при k = 0 верны аналоги формул (10) и (11) (для
s(y0) := 0), а потому и следующий аналог формулы (12):

Л.Ч.0 −Пр.Ч.0 =

∫
V ◦

f∗Ω0 − deg f

∫
U◦

Ω0. (13)
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Складывая выражения (12) по всем k = 1, . . . , N и его аналог (13) при k = 0,
получаем разность левой и правой частей (Л.Ч., Пр.Ч.) требуемого равенства:

Л.Ч.−Пр.Ч. =

N∑
k=0

(Л.Ч.k −Пр.Ч.k) =

∫
V ◦

f∗Ω0 +

N∑
k=1

∫
V ◦\∪Vxi(yk)

f∗Ωk−

−deg f

∫
U◦

Ω0 +

N ′∑
k=1

s(yk)∑
i=1

εi − deg f

 ∫
Uyk⊆U

Ωk,

откуда

|Л.Ч.−Пр.Ч.| ≤
∫
V ◦

|f∗Ω|+ |deg f |
∫
U◦

|Ω|+
(

max{s(yk)}N
′

k=1 + |deg f |
)∫
U

|Ω| ≤

≤
(
ε◦ + 2ε◦|deg f |+ 2ε

(
max{s(y`)}N

◦

`=1 + |deg f |
))

vol(M1)‖Ω‖.

Поясним последнее неравенство. Во-первых, по построению окрестностей V ◦, U◦ и U∫
V ◦

|f∗Ω| ≤ sup
x∈V ◦

|det df(x)| · vol(V ◦)‖Ω‖ ≤ ε◦vol(M1)‖Ω‖,

∫
U◦

|Ω| ≤ vol(U◦)‖Ω‖ ≤ 2ε◦ vol(M1)‖Ω‖,
∫
U

|Ω| ≤ vol(U)‖Ω‖ ≤ 2ε vol(M1)‖Ω‖,

где ‖Ω‖ := max
y∈M2

ω(y), Ω = ωdσ, dσ — ориентированная форма объема на M2, отвеча-

ющая какой-либо фиксированной римановой метрике на M2, ω ∈ C∞(M2). Во-вторых,
так как N◦ ≤ N ′, то выполнено, вообще говоря, включение {s(yk)}N ′k=1 ⊇ {s(y`)}N

◦

`=1, но
в действительности s(yk) ≤ max{s(y`)}N

◦

`=1 ввиду (9).
Осталось заметить, что набор чисел {s(y`)}N

◦

`=1 не зависит от ε по построению в (5)
и (8). Поэтому, устремляя ε к нулю (при фиксированном ε◦), получаем

|Л.Ч.−Пр.Ч.| ≤ ε◦(1 + 2|deg f |)vol(M1)‖Ω‖.

Так как последнее неравенство верно при любом ε◦ > 0, получаем требуемое равенство
левой и правой частей.

Теорема полностью доказана.
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14.3 Упражнения к лекции 14
Упражнение 14.1. Покажите, что отображения f, g : S2 → S2 гладкие и гладко
гомотопны, где f(z) = a0z

n + P (z) и g(z) = a0z
n при z ∈ C, a0 ∈ C \ {0}, P (z) —

многочлен степени меньше n, f(∞) = g(∞) =∞, и гладкая гомотопия F (z, t) задается
в явном виде как

F (z, t) = a0z
n + (1− t)P (z), z ∈ C, F (∞, t) =∞

(особое внимание обратите на точку z0 =∞, для этого запишите отображения f(z), g(z), F (z, t)
с помощью регулярных локальных координат w = 1/z в окрестности этой точки).
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