# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

# МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

# КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ И МЕХАТРОНИКИ КАФЕДРА ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ И ПРИЛОЖЕНИЙ

# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА) специалиста

# КЛАССИФИКАЦИЯ ТОПОЛОГИЧЕСКИХ БИЛЛИАРДОВ НА ПЛОСКОСТИ МИНКОВСКОГО

Выполнил студент 622 группы Каргинова Екатерина Евгеньевна

подпись студента

Научный руководитель: д.ф.-м.н., профессор Карапетян Александр Владиленович

подпись научного руководителя академик, профессор Фоменко Анатолий Тимофеевич

подпись научного руководителя к.ф.-м.н., ассистент Ведюшкина Виктория Викторовна

подпись научного руководителя

Москва 2020 г.

# Содержание

| 1 | Введение.                                                          |                                                                                                                               | 3            |
|---|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
|   | 1.1                                                                | История вопроса                                                                                                               | 3            |
|   | 1.2                                                                | Необходимые сведения о плоскости Минковского                                                                                  | 3            |
|   | 1.3                                                                | Семейство софокусных квадрик на плоскости Минковского                                                                         | 3            |
|   | 1.4                                                                | Биллиардный закон на плоскости Минковского                                                                                    | 5            |
| 2 | Простые биллиарды на плоскости Минковского.                        |                                                                                                                               | <b>5</b>     |
|   | 2.1                                                                | Определение простого биллиарда. Первые интегралы движения                                                                     | 5            |
|   | 2.2                                                                | Классификация простых биллиардов на плоскости Минковского                                                                     | 7            |
| 3 | Топ                                                                | юлогический биллиард на плоскости Минковского.                                                                                | 8            |
|   | 3.1                                                                | Определение топологического эллиптического биллиарда                                                                          | 8            |
|   | 3.2                                                                | Обозначения и визуализация биллиардных столов                                                                                 | 9            |
|   | 3.3                                                                | Классификация топологических эллиптических биллиардов с выпуклыми склейками                                                   | 12           |
|   | 3.4                                                                | Классификация топологических биллиардов, допускающих прямые склейки                                                           | 18           |
| 4 | Подсчет инвариантов Фоменко-Цишанга для топологических биллиардов. |                                                                                                                               | 22           |
|   | 4.1                                                                | Особые и неосособые уровни интеграла                                                                                          | 22           |
|   | 4.2                                                                | Аналог теоремы Лиувилля: связные компоненты регулярного слоя являются торами                                                  | 24           |
|   | $4.3 \\ 4.4$                                                       | Атомы-бифуркации                                                                                                              | 28           |
|   |                                                                    | лыми склейками: седловые значения                                                                                             | 29           |
|   | 4.5                                                                | Поверхности уровней особых значений интеграла в топологических биллиардах, допус-<br>кающих прямые склейки: седловые значения | 33           |
| 5 | Вышисление инвариантов Фоменко-Шишанга                             |                                                                                                                               | 19           |
|   | <b>5</b> 1                                                         | Молекула Фоменко-Цишанга - полный инрариант лиуриллерой экриралентности                                                       | - <b>1</b> 2 |
|   | 5.2                                                                | Полечет меток                                                                                                                 | 43           |
|   | 0.2                                                                |                                                                                                                               | <b>1</b> 0   |
| 6 | Итоги исследования.                                                |                                                                                                                               | 57           |
|   | 6.1                                                                | Классификация слоений Лиувилля для топологических биллиардов на плоскости Мин-                                                | 57           |
|   | 6.2                                                                | Биллиарлы на плоскости Минковского как молели некоторых случаев интегрируемости                                               | 0.           |
|   | 0.1                                                                | твердого тела                                                                                                                 | 58           |
|   | 6.3                                                                | Таблица с инвариантами Фоменко-Цишанга для всех эллиптических биллиардов с вы-                                                | 62           |
|   | 6.4                                                                | Таблица с инвариантами Фоменко-Шишанга для топологических биллиардов допускаю-                                                | 04           |
|   | 0.1                                                                | цих прямые склейки и содержащих область $e$                                                                                   | 64           |

# 1 Введение.

# 1.1 История вопроса

Математический биллиард — движение материальной точки (шара) в плоской области, ограниченной кусочно-гладкой кривой. Вопросам об интегрируемости такой системы в зависимости от вида границы посвящено множество работ. Интегрируемость биллиарда в эллипсе на евклидовой плоскости была доказана в работе Дж. Д. Биркгофа [1]. В случае, когда граница биллиарда является кусочно-гладкой и состоит из частей софокусных квадрик, таких, что углы излома не превышают  $\frac{3\pi}{2}$  (то есть, равны  $\frac{\pi}{2}$ , поскольку софокусные квадрики всегда пересекаются под прямым углом), биллиардное движение также интегрируемо. В книге [4] В.В. Козлов, Д. В. Трещев отметили, что в этих системах существует дополнительный независимый первый интеграл, что значит, что они вполне интегрируемы по Лиувиллю.

В работах В. Драгович, М. Раднович [8, 9] и В. В. Фокичевой была проведена полная лиувиллева классификация плоских биллиардов, ограниченных дугами софокусных квадрик. Далее В. В. Фокичевой [5] была рассмотрена конструкция топологического биллиарда на евклидовой плоскости – склеенного из плоских вдоль дуг границ.

Биллиард в эллипсе на плоскости Минковского был рассмотрен В. Драгович и М. Раднович в работе [3]. Были описаны траектории системы и построена меченая молекула - инвариант Фоменко-Цишанга слоения Лиувилля данного биллиарда.

В данной работе исследуются топологические биллиарды в областях, ограниченных дугами софокусных квадрик на плоскости Минковского.

Целью работы является классификация топологических биллиардов на плоскости Минковского и подсчет для каждого класса эквивалентности инварианта Фоменко-Цишанга - графа с целочисленными метками, полностью характеризующего топологию слоения Лиувилля изоэнергетической поверхности с точностью до Лиувиллевой эквивалентности.

Автор благодарит А. Т. Фоменко за постановку задачи и внимание к работе, В. В. Ведюшкину за многочисленные консультации и ценные замечания.

# 1.2 Необходимые сведения о плоскости Минковского

Определение 1.1. Плоскостью Минковского называется плоскость  $\mathbb{R}^2$  со скалярным произведением  $\langle x, y \rangle = x_1 y_1 - x_2 y_2$ .

Расстояние между двумя точками определяется по формуле  $dist(x,y) = \sqrt{\langle x - y, x - y \rangle}$ .

Поскольку скалярное произведение может принимать отрицательные значения, все векторы разделяются на 3 непересекающихся множества. Вектор v называется

- пространственно-подобным, если его длина вещественная,

то есть  $\langle v, v \rangle > 0;$ 

- времени-подобным, если его длина чисто мнимая, то есть  $\langle v, v \rangle < 0$ ;
- световым или изотропным, если его длина нулевая, то есть  $\langle v, v \rangle = 0$ .

Два вектора называются ортогональными, если их скалярное произведение равно нулю (в смысле Минковского). Отметим, что световые вектора ортогональны сами себе.

Покажем на примере точки 0, как располагаются векторы каждого из трех типов на плоскости Минковского (рис. 1). Световые векторы располагаются на двух прямых, и эти прямые, называемые изотропными, разбивают плоскость на четыре части. В верхней и нижней областях (см. рис. 1) расположены векторы мнимой длины, а в правой и левой областях - векторы вещественной длины.

# 1.3 Семейство софокусных квадрик на плоскости Минковского

Рассмотрим на плоскости Минковского эллипс Е, задаваемый следующим соотношением

$$\mathcal{E} \colon \frac{x^2}{a} + \frac{y^2}{b} = 1$$



Рис. 1: Расположение векторов на плоскости Минковского в зависимости от их типа.

Здесь  $a > b > 0, \lambda \in \mathbb{R}$  - вещественные числа. Софокусное семейство квадрик  $\mathcal{C}_{\lambda}$  задается уравнением:

$$\mathcal{C}_{\lambda} \colon \frac{x^2}{a-\lambda} + \frac{y^2}{b+\lambda} = 1 \tag{1}$$

Данное семейство изображено на рис. 2.



Рис. 2: Семейство софокусных квадрик  $\mathcal{C}_{\lambda}$  на плоскости Минковского.

В зависимости от значения  $\lambda$  квадрика может быть прямой, эллипсом или гиперболой, а именно:

- при  $\lambda \in (-\infty, -b)$  квадрика является гиперболой с действительной осью x;
- при  $\lambda \in (a, \infty)$  квадрика является гиперболой с действительной осью y;
- при  $\lambda \in (-b, a)$  квадрика является эллипсом.

Значениям  $\lambda = a, -b, \infty$  соответствуют вырожденные квадрики  $\mathcal{C}_a, \mathcal{C}_{-b}$  и  $\mathcal{C}_{\infty}$ , являющиеся осью *у*,осью *x* и прямой на бесконечности, соответственно.

**Предложение 1.1.** Все невырожденные квадрики семейства (1) имеют четыре общих касательных, а именно - прямые  $x \pm y = \pm \sqrt{a+b}$ .

Предложение 1.2. Семейство (1) имеет четыре фокуса, а именно:  $F_1 = (-\sqrt{a+b}, 0), F_2 = (\sqrt{a+b}, 0), G_1 = (0, -\sqrt{a+b}), G_2 = (0, \sqrt{a+b}).$  Назовем вещественной частью эллипса (гиперболы) ту часть, касательные векторы к которой вещественны, мнимой - ту часть, касательные векторы к которой мнимые.

Для эллипса с параметром  $\lambda$  сумма расстояний от фокусов  $F_1, F_2$  до любой точки вещественной части эллипса равно  $2\sqrt{a-\lambda}$ , а от  $G_1, G_2$  до любой точки мнимой части эллипса сумма расстояний равна  $2i\sqrt{b+\lambda}$ . Кроме того, для гиперболы с параметром  $\lambda$  разность расстояний от фокусов  $F_1, F_2$  до любой вещественной точки гиперболы равна  $2\sqrt{a-\lambda}$ , а от  $G_1, G_2$  до любой точки мнимой части гиперболы равна  $2\sqrt{a-\lambda}$ , а от  $G_1, G_2$  до любой точки мнимой части гиперболы равна  $2\sqrt{a-\lambda}$ .



Рис. 3: Расположение общих касательных и фокусов относительно семейства квадрик.

На рис.3 отмечено, как расположены общие касательные и фокусы относительно семейства квадрик. Нетрудно проверить, что если две квадрики семейства пересекаются в некоторой точке, то касательные векторы к этим квадрикам в точке пересечения ортогональны друг другу в смысле Минковского.

#### 1.4 Биллиардный закон на плоскости Минковского

Определение 1.2. Пусть v - вектор,  $\ell$  - некоторая прямая. Представим вектор в виде  $v = v_n + v_\ell$ , где  $v_n$  нормальная составляющая вектора скорости, а  $v_\ell$  принадлежит  $\ell$ . Тогда биллиардным отражением вектора v от прямой  $\ell$  на плоскости Минковского назовем вектор  $v' = -v_n + v_\ell$ .

В случае, когда v<sub>l</sub> световой, отражение, очевидно, не определено.

При таком определении отражения сохраняется скалярное произведение вектора на себя, откуда следует что тип вектора при отражении не меняется.

Определение 1.3. Прямую  $\ell'$  назовем биллиардным отражением прямой  $\ell$  от гладкой кривой S на плоскости Минковского, если:

- точка пересечения этих прямых A лежит на кривой S;
- направляющие векторы этих прямых являются биллиардными отражениями друг друга относительно касательной е к кривой S в точке A.

Если направляющий вектор *e* световой, то биллиардное отражение вектора и прямой не определено. Отметим, что такое определение обладает симметричностью: если прямая  $\ell_1$  является биллиардным отражением прямой  $\ell_2$ , то прямая  $\ell_2$  также является биллиардным отражением  $\ell_1$ .

# 2 Простые биллиарды на плоскости Минковского.

#### 2.1 Определение простого биллиарда. Первые интегралы движения.

Определение 2.1. Простым биллиардом  $\Psi$  назовем связное и компактное подмножество плоскости Минковского, граница которого является кусочно-гладкой кривой и состоит из таких дуг квадрик семейства (1), которые попарно пересекаются под углами, равными  $\pi/2$ .

Отметим, что здесь и далее биллиардом называем и область, в котором происходит движение, и само движение.

Закон отражения в простых биллиардах на плоскости Минковского устроен следующим образом.

Обозначим за l прямую, вдоль которой в течение небольшого отрезка времени двигалась материальная точка до удара о границу, а за  $v = (v_1, v_2)$  - вектор скорости этой материальной точки. После удара о границу точка продолжает движение вдоль прямой m, которая является биллиардным отражением прямой l. Вдоль прямой m точка движется со скорость  $u = (u_1, u_2)$ , причем для векторов v и u выполняется равенство  $v_1^2 + v_2^2 = u_1^2 + u_2^2$ , то есть при отражении сохраняется евклидова длина вектора скорости.

Акцентируем внимание на необычном законе отражения:

- при ударе точки о границу выполняется равенство углов падения и отражения, где «угол» рассматривается смысле Минковского;
- материальная точка имеет одинаковую евклидову длину вектора скорости до и после столкновения с границей.

В точках, где касательная к области  $\Psi$  световая, биллиардное отражение вектора можно доопределить по непрерывности, а именно - при попадании в такую точку вектор отражается в противоположный по направлению. Такие точки являются точками касания одной из прямых  $x \pm y = \sqrt{a \pm b}$ , которые являются общими для всего семейства. Кроме того, в точках излома границы, биллиардное отражение также доопределяем по непрерывности

Определим фазовое пространство  $M^4$  биллиарда  $\Omega$ .

Это четырехмерное многообразие, такое что

$$M^{4} = \left\{ (x, y, v_{1}, v_{2}) | (x, y) \in \Omega, (v_{1}, v_{2}) \in T_{x} R^{2} \right\} / \sim$$

Отношение эквивалентности задается следующим образом:

 $(x_1, y_1, v_1, v_2) \sim (x_2, y_2, u_1, u_2)$  если:

- $x_1 = x_2, y_1 = y_2$ , точка  $(x_1, y_1)$  лежит на границе области  $\Omega$ ;
- $(v_1, v_2) \in l_1, (u_1, u_2) \in l_2$ , при этом  $l_1$  является биллиардным отражением прямой  $l_2$ ;
- $v_1^2 + v_2^2 = u_1^2 + u_2^2$  (то есть при отражении сохраняется евклидова длина вектора скорости).

Итак, интегралом в данной задаче является функция  $v_E = v_1^2 + v_2^2$ , поскольку при таком отношении эквивалентности сохраняется именно евклидова длина вектора скорости.

В качестве дополнительного интеграла возьмем  $\lambda$  - параметр каустики к траектории. Несложными арифметическими выкладками можно получить выражение  $\lambda$  через координаты точки фазового пространства.

$$\lambda = \frac{-v_1^2 b - av_2^2 + (xv_2 - yv_1)^2}{v_1^2 - v_2^2}.$$

Как легко проверить, при отражении от точки границы параметр  $\lambda$  сохраняется.

Интегралы  $\lambda$  и  $v_e$  находятся в инволюции относительно стандартной скобки Пуассона и функционально независимы. Тогда на регулярной части многообразия  $M^4$  можно условно считать, что простой биллиард интегрируем по Лиувиллю. Впрочем, мы не будем пользоваться этим обстоятельством. Доказательство того факта, что регулярные слои пары интегралов являются двумерными торами (торами Лиувилля) мы проведем геометрически, без использования коммутирующих векторных полей.

Ограничивая систему на поверхность уровня интеграла  $v_1^2 + v_2^2$ , получим трёхмерное многообразие, называемое изоэнергетической поверхностью  $Q^3$ . При изменении  $\lambda$  оно расслаивается на двумерные поверхности.

Определение 2.2. Пусть v - интегрируемая по Лиувиллю гамильтонова система на изоэнергетической поверхности  $Q^3$ . Рассмотрим соответствующее ей слоение Лиувилля на  $Q^3$ . Базой слоения Лиувилля называется пространство его слоев с обычной фактор-топологией, т.е. топологическое пространство, точками которого объявляются компоненты связности слоев слоения Лиувилля (каждая компонента связности слоя заменяется точкой).

Определение 2.3. Две интегрируемые по Лиувиллю гамильтоновы системы  $v_1$  и  $v_2$  на изоэнергетических многообразиях  $Q_1^3$  и  $Q_2^3$  называются грубо лиувиллево эквивалентными, если существует гомеоморфизм между базами соответствующих слоений Лиувилля, который локально (т. е. в окрестности каждой точки базы) поднимается до послойного гомеоморфизма слоений Лиувилля. Определение 2.4. Пусть  $(M_1^4, \omega_1, f_1, g_1) u (M_2^4, \omega_2, f_2, g_2)$  - две интегрируемые по Лиувиллю гамильтоновы системы на симплектических многообразиях  $(M_1^4, \omega_1) u (M_2^4, \omega_2) u$  обладающие интегралами  $f_1, g_1 u f_2, g_2$ . Рассмотрим их изоэнергетические многообразия  $Q_1^3 = \{x \in M_1^4 : f_1(x) = c_1\} u Q_2^3 = \{x \in M_2^4 : f_2(x) = c_2\}$ . Интегрируемые системы называют лиувиллево эквивалентными, если существует послойный диффеоморфизм  $Q_1^3 \to Q_2^3$ , сохраняющий ориентацию 3-многообразий  $Q_1^3 u Q_2^3 u opuentauuo всех критических окружностей.$ 

**Теорема 2.1.** (А. Т. Фоменко, Х. Цишанг [2]) Две невырожденные интегрируемые гамильтоновы системы на компактных неособых изоэнергетических поверхностях  $Q_1^3 = \{x \in M_1^4 : f_1(x) = c_1\}$  $u Q_2^3 = \{x \in M_2^4 : f_2(x) = c_2\}$  лиувиллево эквивалентны тогда и только тогда, когда их меченые молекулы совпадают.

Эта теорема справедлива для гладких интегрируемых систем. В нашем случае многообразие  $Q^3$  является кусочно-гладким, однако на нем, оказывается, существует слоение Лиувилля на двумерные торы и особые слои интеграла. Следовательно, инварианты Фоменко корректно определены и мы их вычислим.

#### 2.2 Классификация простых биллиардов на плоскости Минковского.

Определение простого биллиарда дано в пункте 2.1

Общие касательные семейства софокусных квадрик делят плоскость на несколько частей, и в пяти из них могут располагаться софокусные эллипсы или гиперболы. Назовем их I, II, III, IV и V, как показано на рис. 4



Рис. 4: Области I, II, III, IV и V на плоскости.

Определение 2.5. Назовем простой биллиард эллиптическим, если его граница состоит из дуг софокусных эллипсов и, возможно, частей координатных осей, а гиперболическим, если его граница состоит из дуг софокусных гипербол и, возможно, частей координатных осей.

Отметим, что в данной ситуации не существует простого биллиарда, граница которого состоит из дуг как эллипсов, так и гипербол, так как они расположены в различных частях плоскости (эллипсы располагаются только в I, а гиперболы - в II, III, IV, V)

На границе каждого простого биллиарда есть 4 точки, называемые далее **особыми**, при попадании в которые материальная точка продолжает движение в противоположном направлении. Таких точек два вида: точки касания границы с общими касательными софокусного семейства квадрик и точки нарушения гладкости границы.

Определение 2.6. Сегментом называем часть границы, заключенную между двумя соседними особыми точками.

Определение 2.7. Два простых биллиарда  $\Omega$  и  $\Omega'$  называем эквивалентными друг другу, если:

- они получаются друг из друга отражением евклидовым относительно оси x, оси y;
- изменением параметра λ сегмента границы, (исключая λ, соответствующие значениям а или -b) так, чтобы в процессе их изменения λ не принимал значений a, -b и ∞.

Далее под «отражением» и «поворотом» подразумеваются отражения и повороты как евклидовы движения плоскости.

Определение 2.8. Граница простого биллиарда содержит ровно четыре сегмента, которые будем называть верхним, нижним, левым и правым в зависимости от их расположения относительно внутренности биллиарда.

**Теорема 2.2.** Любой простой эллиптический биллиард эквивалентен одному из биллиардов, представленных на рис. 5



Рис. 5: Классификация простых эллиптических биллиардов в метрике Минковского.

# 3 Топологический биллиард на плоскости Минковского.

# 3.1 Определение топологического эллиптического биллиарда.

Рассмотрим биллиарды, не содержащие прямых сегментов, то есть любой из четырех сегментов либо выпуклый, либо невыпуклый. Напомним, что граница биллиарда e содержит четыре выпуклых сегмента, граница биллиарда h содержит три выпуклых сегмента и один невыпуклый сегмент, граница биллиарда q содержит два невыпуклых сегмента и два выпуклых сегмента. Введем несколько определений

Определение 3.1. Пусть  $\ell_1, \ell_2 - d$ ва выпуклых или прямых сегмента двух простых биллиардов  $\Omega_1$ и  $\Omega_2$ , причем эти сегменты совпадают и принадлежат квадрике с параметром  $\lambda_{\ell_1} = \lambda_{\ell_2}$  одного и того же софокусного семейства.

Склейка  $\Omega_1$  и  $\Omega_2$  вдоль сегментов  $\ell_1, \ell_2$  (их образы после склейки назовем ребром склейки или сегментом склейки) есть тождественная изометрия между этими сегментами. Границы ребер склейки – вершины склейки.

В случае, когда сегменты  $\ell_1, \ell_2$  являются выпуклыми, их склейку также назовем выпуклой. Если оба сегмента являются прямыми, то склейку вдоль этих сегментов назовем прямой склейкой.

**Топологический эллиптический биллиард** - двумерное связное кусочно-гладкое ориентируемое многообразие с краем, полученное в результате определенных выше склеек простых эллиптических биллиардов вдоль некоторых выпуклых сегментов, удовлетворяющих следующим требованиям: углы на границе могут быть равны лишь  $\frac{\pi}{2}$  и  $\pi$ , а внутренние углы могут быть равны лишь  $2\pi$  и  $\pi$ .

**Граничная вершина склейки** - вершина, в которой сходятся одно ребро склейки и два свободных ребра

Коническая точка – вершина, в которой сходятся два ребра склейки.

Внутренняя вершина склейки - вершина, в которой сходятся четыре ребра склейки.

Замечание 3.1. Далее для краткости будем опускать слово «эллиптические» в словосочетании «топологический эллиптический биллиард», поскольку в данной работе топологические гиперболические биллиарды не рассматриваются. Мотивировано данное решение тем, что все гиперболические биллиарды будут лиувиллево эквивалентны некоторым эллиптическим.

Замечание 3.2. Отметим, что далее будем рассматривать лишь такие топологические биллиарды, в которых ребро склейки является общим ровно для двух простых биллиардов, входящих в топологический биллиард, то есть мы не рассматриваем биллиардные книжки (подробнее о биллардных книжках см. [10]) Отметим, что внутренний угол, равный  $\pi$ , соответствует конической точке. Опишем закон отражения в топологическом биллиарде.

После операции склейки закон отражения для свободных ребер остается таким же, как и для простого биллиарда, а на ребре склейки меняется следующим образом: точка продолжает движение по другому листу, прямая вдоль которой она движется является биллиардным отражением прямой, вдоль которой она двигалась до удара, квадрат евклидовой длины скорости остается неизменным.

Отдельно стоит отметить случай конических точек. Отражение в конических точках определим по непрерывности, а именно: при ударе о такую точку материальная точка продолжает движение в той же области в противоположном направлении.

Замечание 3.3. В топологическом биллиарде при ударе материальной точки о границу выполняется равенство углов падения и отражения (здесь понятие «угол» рассматривается в смысле Минковского), а также сохраняется длина вектора скорости материальной точки, где длина вектора евклидова, а именно корень из суммы квадратов компонент вектора. Это утверждение следует из введенного ранее закона отражения в простых биллиардах.

При таком законе отражения сохраняется интеграл  $v_E = v_1^2 + v_2^2$  - квадрат евклидовой скорости, и, как и в случае простых биллиардов, параметр каустики  $\lambda$ . В самом деле, при определении склейки было отмечено, что все сегменты границ принадлежат одному и тому же семейству софокусных квадрик.

Поскольку данные интегралы функционально независимы и находятся в инволюции относительно стандартной скобки Пуассона, можем считать систему топологического биллиарда кусочно-интегрируемой по Лиувиллю. Более подробные определения см. в работе [5] В. В. Фокичевой.

Введем следующее отношение эквивалентности:

Определение 3.2. Рассмотрим два топологических биллиарда  $\Delta$  и  $\Delta'$ , которые получены склейкой простых биллиардов  $\Psi_i$  и  $\Psi'_i$ . Будем считать их эквивалентными, если:

- биллиарды  $\Psi'_i$  получены заменой простых биллиардов  $\Psi_i$  на им эквивалентные,
- биллиарды  $\Delta$  и  $\Delta'$  получены друг из друга поворотом на  $\pi/2$  либо отражением относительно оси x или оси y (напомним, что под «отражением» и «поворотом» подразумеваем отражение и поворот как евклидовы движения плоскости).

Замечание 3.4. Обратим внимание на то, что отношение эквивалентности для топологических биллардов несколько иное, чем для простых. Действительно, если считать эквивалентными простые биллиарды h1 u h2, то при замене в биллиарде  $\Delta_{\alpha}(e+2h2)$  (это топологический биллиард, склеенный из простого биллиарда e u из двух простых биллиардов h2, которые приклеены к е вдоль противоположных выпуклых сегментов) одного из экземпляров h2 на ему эквивалентный h1, топологический биллиард в смысле определения 3.1 мы не получим, поскольку граница полученной области содержит угол  $3\pi/2$  (см. рис. 6: граничный угол, равный  $3\pi/2$ , отмечен фиолетовой точкой) Данное наблюдение делает формулировку и доказательство теорем 3.1, 3.2, 4.2,4.5 очень громоздкими, поэтому было принято решение считать простые биллиарды, полученные друг из друга евклидовым поворотом на  $\pi/2$ , оказываются лиувиллево эквивалентными.

#### 3.2 Обозначения и визуализация биллиардных столов.

Рассмотрим простой биллиард, верхний и нижний сегменты которого являются выпуклыми или прямыми. Склеим *k* штук таких биллиардов последовательно по верхним и нижним сегментам (как на рис. 7). Такую конструкцию назовем **столбцом** из *k* биллиардов.

Аналогично определим **строку** из *n* биллиардов - это последовательно склеенные по правым и левым сегментам *n* простых биллиардов (рис. 7).

Далее, поскольку приближенное к реальности изображение топологического биллиарда, использованное, в частности, выше, крайне сложно «наглядно нарисовать» в трехмерном пространстве при



Рис. 6: Иллюстрация к замечанию 3.4.



Рис. 7: Столбец биллиардов (слева) и строка/ряд биллиардов (справа).

даже небольшом количестве листов, то в дальнейшем будем использовать так называемое схематичное изображение биллиарда (или его **схему**). Составляется она следующим образом.

Схема топологического биллиарда - это его развертка, в которой простые биллиарды, входящие в состав топологического, обозначены квадратом либо прямоугольником в зависимости от типа биллиарда, а именно: биллиард e (см. рис. 5) на схеме обозначается большим квадратом, биллиарды h1, h1' и h2, h2' (см. рис. 5) - прямоугольниками (причем для биллиардов h1 и h1' ширина прямоугольника больше его высоты, а для h2 и h2' - наоборот), и, наконец, биллиарды q, q1, q2, q' (см. рис. 5) обозначаются маленьким квадратом.

Прямые склейки на схеме биллиарда будем выделять красными отрезками.

Во многих случаях в топологическом биллиарде содержатся сегменты различных простых биллиардов, которые являются ребрами склейки, но при этом не совпадают на схеме (т. е. развертке). Тогда дополним схему следующим образом: на таких сегментах будем рисовать стрелочки. Направление стрелочки будем указывать таким, чтобы при склейке двух сегментов стрелочки на них имели одинаковое направление. Далее для наглядности для каждой пары склеенных сегментов (либо групп сегментов) будем использовать различные типы стрелочек. К примеру, рассмотрим на рис. 8 правый биллиард. Его верхние сегменты склеены между собой и нижние сегменты склеены между собой, образуя две конические точки. Для того, чтобы его схема отличалась от схемы среднего биллиарда (в нем конических точек нет), отметим на верхних сегментах стрелочки и на нижних сегментах стрелочки.

Примеры схемы биллиарда показаны на рис. 8.

Поясним дальнейшие обозначения. Топологический биллиард без конических точек будем обозначать  $\Delta_{\alpha}$  и в скобках указывать из каких биллиардов он образован. Аналогично, топологический биллиард с конической точкой обозначим  $\Delta_{\beta}$ . Биллиарды, гомеоморфные лентам, будем обозначать  $\Delta_{\gamma}$ , причем если ребрами склейки являются верхние и нижние сегменты, то биллиард обозначаем  $\Delta_{\gamma}(...)_1$ , а если если ребрами склейки являются боковые сегменты, то биллиард обозначаем  $\Delta_{\gamma}(...)_2$ . Подробнее о том, как выглядят различные биллиарды-ленты, см. рис. 9

Различные типы конических точек также будем обозначать по-разному. Первый тип конических точек - точки, образованные двумя выпуклыми сегментами склейки, будем их обоначать индексом *x*. Второй тип конических точек - точки, в которых сходятся выпуклый и прямой сегменты склейки, будем обозначать их индексом *y*. Третий тип конический точек - точки, образованные склейкой прямых сегментов. Их будем обозначать индексом *z*.



Рис. 8: Рисунок биллиарда (верхний ряд) и соответствующие им схемы (нижний ряд).



Рис. 9: Биллиарды  $\Delta_{\gamma}(1 \times 2e)_1$  и  $\Delta_{\gamma}(2 \times 1e)_2$ . Их схемы изображены в верхнем ряду.

Очевидно, в биллиардах с выпуклыми склейками могут присутствовать лишь точки первого типа. Если в биллиарде присутствует несколько точек одного типа, лежащих на одном прямом сегменте, будем писать их число перед соответствующим индексом.

Отметим, где именно будем писать индексы. Будем брать в скобки те одинаковые области, что образовали коническую точку, и рядом со скобкой писать индекс  $(\Delta_{\beta}((...)_{x} + ...))$ .

Если биллиард содержит четыре конические точки, то обозначения будут зависеть от конкретного вида биллиарда. Если биллиард может быть получен склейкой всех одинаковых сегментов двух обобщенных эллипсов  $\Omega$ , то обозначать такой биллиард будем как  $\Delta_{\beta}(\Omega)^2$ , если же биллиард получен склейкой четырех обобщенных эллипсов  $\Omega$ , то обозначать такой биллиард будем как  $\Delta_{\beta}(\Omega)^4$  (частный случай, когда  $\Omega$  это в точности биллиард e, см. рис. 11).

Если в состав биллиарда входят несколько неэквивалентых друг другу видов простых биллиардов, то будем писать как сумму, где каждое слагаемое есть обозначение простого биллиарда с некоторым коэффициентом - количество всех таких простых биллиардов, входящих в состав топологического.

Если в топологический биллиард входит k столбцов и n строк эквивалентных друг другу биллиардов, то коэффициент при соответствующем обозначении будет иметь вид  $k \times n$ .

Если в коэффициент входят  $\alpha$  и  $\beta$  (иногда с некоторыми индексами) - они могут принимать значение либо 0, либо 1.

К примеру, возвращаясь к рис. 8, на нем показаны биллиарды  $\Delta_{\alpha}(e + h1 + h2 + q), \Delta_{\alpha}(2 \times 3h2), \Delta_{\beta}((2 \times 2h2)_{x,x}).$ 



Рис. 10: Различные типы конических точек. На рисунке приведена схема, изображение и название соответсвующего биллиарда. Конические точки отмечены красной точкой.



Рис. 11: Различные типы биллиардов с четырьмя коническими точками. Под изображением биллиарда указано его название

# 3.3 Классификация топологических эллиптических биллиардов с выпуклыми склейками.

Сначала рассмотрим топологические биллиарды, в которых допускаются лишь выпуклые склейки (то есть, как следует из определения, склейки вдоль выпуклых сегментов). Классифицируем такие биллиарды.

**Теорема 3.1.** Любой топологический биллиард, в котором присутствуют лишь выпуклые склейки, эквивалентен одному из представленных на рисунках 12, 13, 14, 15, 18.

Доказательство. В доказательстве будем учитывать лишь простые биллиарды, не имеющие на границе прямых сегментов, то есть биллиарды e, h1, h2 и q.

Шаг 1. Рассмотрим случай, когда конических точек в области нет.

Пусть топологический биллиард содержит область e. Тогда к каждому его сегменту можно приклеить лишь биллиард e или биллиард h. Пусть к правому сегменту приклеен биллиард h2. Тогда к правому сегменту h2, который является невыпуклым, уже нельзя приклеивать области. Таким образом после приклеивания биллиарда h2 к правому/левому (или h1 к верхнему/ нижнему) сегменту, мы запрещаем дальнейшее приклеивание чего либо к левому/правому (или нижнему/верхнему) сегменту полученного биллиарда соответственно.

Если к верхнему сегменту биллиарда e приклеить простой биллиард h1, то в полученном топологическом биллиарде образуется угол  $3\pi/2$ , таким образом, если осуществлять такую склейку, необходимо приклеить еще один простой биллиард (обозначим его временно за  $\psi$  и опишем далее, какой именно биллиард это может быть) так, чтобы угол  $3\pi/2$  не образовывался. Сделать это можно лишь следующим образом: отождествить верхний сегмент биллиарда h2 с верхним сегментом  $\psi$  и правый сегмент биллиарда h1 с правым сегментом биллиарда  $\psi$ . Поскольку склейка может осуществляться лишь между

одинаковыми сегментами (по определению склейки), то два сегмента биллиарда  $\psi$  полностью определены ранее склеенными простыми биллиардами. Таким образом, простой биллиард  $\psi$  это в точности q.

Отметим, что в полученном топологическом биллиарде невозможно осуществить склейку с нижними сегментами h1 и q и левыми сегментами h2 и q (поскольку эти сегменты невыпуклые). Дальнейшую склейку можно осуществлять с нижним сегментом биллиардов e и h2 и левым сегментом биллиардов eи h1. Учтем, что при каждой такой склейке образовывается угол  $3\pi/2$ , то есть необходимо приклеить еще один простой биллиард (который, как выше было отмечено, полностью определен приклеенными ранее простыми биллиардами).

Приклеивание биллиардов вида *h*1 и *h*2 описано выше. Полученный биллиард изображен на рис. 8 в первом столбце.

Пусть к правому сегменту биллиарда *e* приклеен биллиард *e*. Тогда, в отличие от предыдущего случая, нет запрещенных склеек (поскольку все сегменты полученного простого биллиарда выпуклые). Таким образом, можно приклеить любое количество областей *e* поочередно к правому или левому сегментам полученного топологического биллиарда.

Пусть топологический биллиард  $\Delta$  содержит k простых биллиардов e, которые склеены друг с другом по правым и левым сегментам.

К верхнему сегменту одного из простых биллиардов e, составляющих  $\Delta$ , приклеим еще один биллиард и обозначим его через  $\psi$ . Из правил склейки следует что  $\psi$  может быть либо e, либо h1. После осуществления склейки на границе получим один или два угла  $3\pi/2$ , то есть приклеивание одного экземпляра  $\psi$  осуществить нельзя. Чтобы избежать появления угла  $3\pi/2$ , необходимо приклеить еще k-1 топологических биллиардов  $\psi$  к верхним сегментам топологического биллиарда (нетрудно заметить что избежать появление такого угла на границе возможно лишь приклеиванием именно такого числа простых биллиардов  $\psi$ ).

Получим биллиард, в котором две строки и k столбцов.

Отметим, что если  $\psi$  это h1, то к ряду биллиардов h1 можно приклеить лишь биллиарды q по левому/правому сегментам (в таком случае во избежание появления на границе угла  $3\pi/2$  необходимо приклеить столбец биллиардов h2 по левому/правому сегментам соответственно, причем в столбце число биллиардов должно совпадать с числом строк в топологическом биллиарде  $\Delta$ ), а если  $\psi$  это e, то запрещенных склеек нет.

Таким образом, к топологическому биллиарду, содержащему k столбцов и n строк биллиардов e, можно приклеивать либо столбец из n строк, либо строку из k биллиардов.

Итак, любой топологический биллиард, содержащий простой биллиард e, описывается следующим образом: - все содержащиеся в нем простые биллиарды e приклеены друг к другу, причем их количество равно в точности  $k \times n$  (см. рис. 12, а.) - если биллиард содержит области h1, то они приклеены так, что на схеме могут быть расположены лишь сверху и/или снизу - если биллиард содержит области h2, то они приклеены так, что на схеме могут быть расположены лишь слева и/или справа - если биллиард содержит области u h1, и h2, то тогда он обязательно содержит области q, причем они приклеены так, как показано на рис. 12, b.



Рис. 12: Схема склейки  $k \times n$  простых биллиардов e друг к другу (a.) и схема возможного расположения простых биллиардов h1, h2 и q в топологическом (b.)

Если в топологическом биллиарде нет иных ребер склейки кроме описанных выше (то есть его

схема это в точности рис. 12, b. ) то такой биллиард обозначается

$$\Delta_{\alpha}(k \times ne + (\alpha_1 + \alpha_2)kh1 + (\beta_1 + \beta_2)nh2 + (\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_2\beta_2)q)$$

. Назовем такой биллиард обобщенным эллипсом.

Отдельно опишем следующие случаи. Пусть число k кратно двум, и биллиард не содержит областей h2 и q. Тогда можно отождествить свободные боковые сегменты топологического биллиарда (нетрудно заметить что они оказываются одинаковыми). Для упрощения дальнейших рассуждений обозначать полное число биллиардов e не  $k \times n$ , а  $2k \times n$ , где 2k - число биллиардов, приклеенных поочерёдно друг к другу по правым и левым сегментам. Полученный биллиард обозначим следующим образом  $\Delta_{\gamma}(2k \times ne + (\beta_1 + \beta_2)2kh1)_2$ . Его схема представлена на рис. 13, b.

Аналогично описывается биллиард, в котором в одном столбце ровно 2n биллиардов e, и биллиард не содержит h1 и q. Тогда, отождествляя свободные граничные верхние (или нижние) сегменты, получим биллиард, схема которого представлена на рис. 13, а. Обозначим такой биллиард  $\Delta_{\gamma}(k \times 2ne + (\beta_1 + \beta_2)2nh2)_1$ .

Два вышеописанных биллиарда будем называть также биллиарды-ленты или обобщенные ленты.

Отметим, что в силу отношения эквивалентности для топологических биллиардов мы считаем такие биллиарды эквивалентными друг другу.

Если в каждом столбце и строчке четное число биллиардов e, а  $\alpha_i = \beta_i = 0$ , то можно отождествить все свободные сегменты следующим образом. В каждом столбце (и в каждой строчке) отождествляем между собой крайние сегменты (на рис. 13, с. показано, как именно осуществляется отождествление). Полученный биллиард не имеет свободных сегментов и обозначается  $\Delta_{\alpha}^T(2k \times 2ne)$ . Далее будем называть такой биллиард обобщенным тором.

Итак, выше описаны все топологические биллиарды без конических точек, которые содержат простой биллиард *e*.



Рис. 13: Схемы топологических биллиардов, полученных применением операции склейки в обобщенном эллипсе

Шаг 2. Пусть область содержит биллиард h2. Тогда единственный сегмент, по которому нельзя осуществлять склейку - вогнутый (без ограничения общности читаем что он левый). Отметим, что все биллиарды, включающие в себя e, описаны выше, таким образом можно рассматривать только приклеивание биллиардов h2 и q. Приклеивание биллиарда h1 не может быть осуществлено, так как такая операция определена только между одинаковыми сегментами.

Очевидно, что можно приклеивать сколько угодно много биллиардов h2 по верхнему и нижнему сегментам поочередно. При этом отдельно выделим случай, когда в полученном топологическом биллиарде четное число листов - тогда два свободных нижних сегмента можно отождествить между собой.

К двум свободным сегментам топологического биллиарда, составленного из последовательно склеенных биллиардов h2, можно приклеить по простому биллиард q. Тогда дальнейшая склейка может осуществляться только по правым сегментам, а именно приклеив число простых биллиардов h2 и q, равное числу таких же простых биллиардов, входивших в изначальный топологический биллиард. Итак, всевозможные топологические биллиарды, содержащие только биллиарды h2 и q, составляют четыре серии:

- $\Delta_{\alpha}(kh2 + \alpha q + \beta q)$  его схема изображена на рис. 14, а;
- $\Delta_{\alpha}(2 \times kh2 + 2\alpha q + 2\beta q)$  его схема изображена на рис. 14, b;
- $\Delta_{\gamma}(2kh2)_1$  его схема изображена на рис. 14, с;
- $\Delta_{\gamma}(2 \times 2kh2)_1$  его схема изображена на рис. 14, d.

Отметим, что топологические биллиарды без конических точек, содержащие только простые биллиарды h1 и q, описываются аналогичным образом и будут эквивалентны рассмотренным в этом шаге биллиардам.

#### Шаг 3.

Теперь рассмотрим топологические биллиарды, содержащие только *q*. Поскольку выпуклых сегментов, по которым можно осуществлять склейку, всего два, то таких топологических биллиардов оказывается всего два, и все они представлены на рис. 14, е.



Рис. 14: Схемы топологических биллиардов без конических точек, содержащих области h2 и q и не содержащих область e.

#### Шаг 4.

Теперь рассмотрим случай, когда топологический биллиард содержит конические точки.

Рассмотрим коническую точку, образованную двумя биллиардами е.

Рассуждениями, аналогичными проведенным выше (а именно, последовательно рассматривая все возможности приклеивания еще одного простого билллиарда), получим, что все биллиарды, содержащие такую коническую точку, перечислены ниже.

- $\Delta_{\beta}((2k \times ne)_x + \alpha_1 2nh1 + \beta_1 2kh2 + \alpha_1\beta_1 q)$  биллиард с одной конической точкой;
- $\Delta_{\beta}((2k \times ne)_{x,x} + \alpha_1 nh1)$  биллиард с двумя коническими точками;
- $\Delta_{\beta}((k \times 2ne)_{x,x} + \beta_1 kh2)$  биллиард с двумя коническими точками, эквивалентный биллиарду  $\Delta_{\beta}((2k \times ne)_{x,x} + \alpha_1 nh1);$
- $\Delta_{\beta}(k \times ne)^2$  биллиард с четырьмя коническими точками, образованный склейкой двух обобщенных эллипсов.

Отметим, что все биллиарды, полученные в шаге 1 и 4, могут быть получены из обобщенного эллипса  $\Delta_{\alpha}(2k \times 2ne)$  некоторым количеством двух следующих операций: либо отождествление его противоположных свободных сегментов (так, к примеру склейкой боковых граничных сегментов мы получим обобщенную ленту  $\Delta_{\gamma}(2k \times 2ne)_1$ ), либо склейкой следующего типа (будем в данном шаге доказательства называть ее склейка второго типа): рассмотрим граничные сегменты одного типа (к примеру, верхние), и отождествим сегмент под номером 1 с сегментом под номером 2n, сегмент под номером 2 с сегментом под номером 2n - 1 и тд. На схеме биллиарда это выглядит как склейка



с. d. Рис. 15: Схемы топологических биллиардов с коническими точками, полученных применением операции склейки в обобщенном эллипсе

двух половин верхней части границы. К примеру, если осуществить такую склейку только с верхними свободными сегментами, то получим биллиард с одной конической точкой. Попробуем произвести подобные операции во всех возможных комбинациях с различными сторонами обобщенного эллипса  $\Delta_{\alpha}(2k \times 2ne)$ .

Пусть склеек второго типа в обобщенном эллипсе нет. Тогда отождествлением двух противоположных сторон получаем биллиард ленту  $(\Delta_{\gamma}(2k \times 2ne)_1 \text{ если отождествлять боковые сегменты либо} \Delta_{\gamma}(2k \times 2ne)_1$  если отождествлять верхние сегменты), отождествлением четырех противоположных сторон получаем обобщенный тор  $\Delta_{\alpha}^T(2k \times 2ne)$ .

Пусть склейка второго типа одна, без ограничения общности считаем, что проводим ее над верхними сегментами. Если остальные сегменты свободные, то, как было отмечено выше, имеем биллиард с одной конической точкой. Если же выбрать в биллиарде свободные граничные противоположные сегменты (очевидно, это боковые сегменты) и отождествить их, то получим биллиард с двумя коническими точками.

Пусть склеек второго типа две, без ограничения общности считаем, что проводим ее над верхними сегментами и нижними сегментам. Оставляя боковые сегменты свободными, получим биллиард с двумя коническими точками. Если отождествить боковые сегменты друг с другом, то получим биллиард с четырьмя коническими точками.

Пусть склеек второго типа две, но они применены не к противоположным сторонам, а к смежным. Без ограничения общности считаем, что такую операцию осуществляем с верхними и с правыми сегментами. Если остальные сегменты оставить свободными, то на границе получим угол в  $3\pi/2$ , что противоречит определению топологического биллиарда 3.1. Итак, такую операцию проводить нельзя.

Пусть склеек второго типа три. Без ограничения общности считаем, что такую операцию осуществляем с верхними и с боковыми сегментами. В полученной области граница содержит угол, равный  $2\pi$ , что противоречит определению топологического биллиарда 3.1. Значит, такую операцию проводить также нельзя.

Пусть склеек второго типа четыре. Получим новый биллиард, показанный на рис. 16 и будем называть его  $\Delta_{\beta}(k \times ne)^4$ 

Зададимся вопросом, а можно ли границу биллиарда разбить на четное количество частей и отождествлять каждую пару их друг с другом склейкой второго типа (как показано на рис. 17, а). Очевидно, что разбиение границы уже на шесть таких частей нарушит правило склейки, а именно: в одной точке будут сходится более чем четыре ребра склейки.



Рис. 16: Биллиард  $\Delta_{\beta}(k \times ne)^4$ 



Рис. 17: Иллюстрация к теореме о классификации биллиардов с выпуклыми склейками

Рассмотрим случай разбиения границы на четыре части, без ограничения общности считаем что это граница верхняя. Тогда боковые сегменты можно лишь отождествить друг с другом. Тогда разрежем и вновь склеим области так, как показано на рис. 17, b. Такие области уже включены в классификацию. Таким образом, нет смысла рассматривать разбиение границы на четыре части и отождествление ее частей друг с другом склейкой второго типа.

В топологическом биллиарде, содержащем *e*, не может возникнуть конической точки, образованной сегментами биллиардов *h*1, *h*2, *q* - это следует из определения конической точки и утверждения о том, что склейка производится лишь между одинаковыми сегментами.

#### Шаг 5.

Теперь рассмотрим коническую точку, образованную биллиардом h2.

Аналогично, последовательно рассматривая все возможные варианты склейки, получим следующие биллиарды

- $\Delta_{\beta}((2 \times nh2)_x + 2\alpha_1 q)$  биллиард с одной конической точкой;
- $\Delta_{\beta}((2 \times nh2)_{x,x})$  биллиард с двумя коническими точками.



Рис. 18: Схемы топологических биллиардов с коническими точками, образованными биллиардами h2иq

Очевидно, что биллиарды, в которых коническая точка образована биллиардами h1, описываются аналогично. Серия таких биллиардов будет эквивалентна серии биллиардов, описанной в выше в этом шаге.

Шаг 6. Рассмотрим коническую точку, образованную биллиардом q. Все свободные сегменты вогнутые, значит, больше ничего приклеить нельзя. Обозначим такой топологической биллиард как  $\Delta_{\beta}(2q)$ .

Замечание 3.5. Отметим, что заменой биллиардов h1 на h1', h2 на h2', q на q', q1, q2 будем получать биллиарды, в которых также нет прямых склеек.

# 3.4 Классификация топологических биллиардов, допускающих прямые склейки

Теперь рассмотрим множество топологических биллиардов на плоскости Минковского, в которых присутствуют как склейки вдоль выпуклых сегментов, так и склейки вдоль прямых сегментов. Классифицируем такие биллиарды.

**Теорема 3.2.** Любой топологический биллиард, содержащий прямые склейки, эквивалентен одному из биллиардов, представленных на рис. 19, 20, 21, 22, 23, 24, 25.

#### Доказательство. Шаг 1.

Классифицируем биллиарды с прямыми склейками, содержащие биллиард е.

В шаге 1 доказательства теоремы 3.1 мы выяснили, что допустимыми склейками без образования конических точек из биллиарда e можно получить обобщенный эллипс - биллиард, склеенный из  $k \times n$  биллиардов e, и, возможно, одного или двух рядов по k штук биллиардов h1, одного или двух столбцов по n биллиардов h2, и, при выполнении необходимых условий, от одного до четырех биллиардов q (подробнее см. доказательство теоремы 3.1).

Ранее было отмечено, что если в топологическом биллиарде  $\Delta$  непрерывным преобразованием некоторые невыпуклые сегменты преобразовать в прямые с сохранением корректности (отсутствие углов в  $3\pi/2$  на границе биллиарда и склеек между неодинаковыми сегментами), получим топологический биллиард, вообще говоря, эквивалентный биллиарду  $\Delta$ . Таким образом, у обобщенного эллипса можем некоторую часть границы сделать прямой, а именно выбрав обобщенный эллипс, у которого некоторая часть границы невыпуклая - к примеру, все левые его сегменты границы невыпуклые, то есть слева к набору биллиардов *е* приклеен столбец биллиардов h2, и заменим этот столбец на столбец биллиардов h2'. Все сегменты границы, кроме левых, остались неизменными.

Итак, рассмотрим для начала обобщенный эллипс  $\Delta_{\alpha}(k \times ne+nh2')$ , состоящий из  $k \times n$  биллиардов e и столбца из n биллардов h2'. Без ограничения общности считаем что все его правые сегменты границы - прямые. Прямые склейки в таком биллиарде можно организовать, лишь склеивая его с другим таким же по прямым сегментам. Полученный биллиард, вообще говоря, можно непрерывным образом преобразовать в обобщенный эллипс, состоящий из  $(2k+1) \times n$  экземпляров e, поэтому мы считаем их эквивалентными. Однако, у полученного биллиарда есть 6 свободных частей границы (а именно, все верхние сегменты границы биллиардов - две части, каждая из которых содержит k верхних сегментов биллиардов e и 1 верхний сегмент биллиарда h2', все нижние сегменты границы биллиардов - две части, каждая из которых содержит k нижних сегментов биллиардов e и 1 нижний сегмент биллиардов - две части по n левых сегментов биллиардов e). Очевидно, что всего вариантов склейки таких сегментов - пять (так как склейка вдоль всех верхних сегментов эквивалентна склейке вдоль всех нижних сегментов). Все полученные биллиарды перечислены ниже:

- биллиард с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_y);$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_{2u});$
- биллиард-лента  $\Delta_{\gamma}(2k \times ne + 2nh2')_2;$
- биллиард с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y);$
- биллиард с четырьмя коническими точками $\Delta_{\beta}(k \times ne + nh2')^2$ .

На примере данного биллиарда сделаем важный комментарий.



Рис. 19: Биллиарды, допускающие прямые склейки, полученные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + nh2')$ 

Замечание 3.6. Рассмотрим биллиард, в котором рассматриваемые на данный момент обобщенные эллипсы  $\Delta_{\alpha}(k \times ne + nh2')$  склеены по боковым сегментам - такой биллиард обозначаем  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ . Все его свободные сегменты объединены в две группы - верхние и нижние, каждая из этих групп состоит из 2k выпуклых сегментов биллиардов е и двух выпуклых сегментов биллиардов h2'. Приклеим к верхней свободной части границы кольцо биллиардов, состоящий из склеенных друг с другом по боковым сегментам 2k экземпляров h1 и двух биллиардов q1. Полученный биллиард имеет такую же нижнюю часть границы, а вся его верхняя граница состоит из невыпуклых сегментов. Будем считать такой биллиард эквивалентным биллиарду-ленте  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ . Приклеим такое же кольцо к нижней части границы, тем самым сделав всю границу биллиарда невыпуклой. Полученный биллиард также будем считать эквивалентным биллиарду-ленте  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ .

Теперь приклеим к верхней свободной части границы биллиарда-ленты  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$  кольцо биллиардов, состоящее из склеенных друг с другом по боковым сегментам 2k экземпляров h1' и двух биллиардов q'. Полученный биллиард вновь имеет такую же нижнюю часть границы, а вся его верхняя граница состоит из прямых сегментов. Будем считать такой биллиард эквивалентным биллиарду-ленте  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ . Аналогично, приклеив такое же кольцо к нижней части границы, тем самым сделав всю границу билларда прямой. Полученный биллиард также будем считать эквивалентным биллиарду-ленте  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ .

Данное замечание мотивировано тем, что приклеивание биллиардов серии h по выпуклым сегментам не меняет грубую молекулу. Это утверждение будет доказано в предложении 4.2.

Это замечание в доказательстве теоремы играет следующую роль: при рассмотрении обобщенного эллипса, который имеет несколько прямых сегментов на границе, стоит рассматривать топологические биллиарды, в которых такие сегменты склеены. Иначе в силу комментария мы получим биллиард, рассмотренный ранее.

Теперь рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + 2nh2')$ , который состоит из  $k \times n$  биллиардов *e* и двух столбцов по *n* штук биллиардов *h*2', приклеенных так, чтобы прямыми были все правые и все левые сегменты обобщенного эллипса. Проделав с ними аналогичные действия, получим набор биллиардов, перечисленный ниже:

- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y});$
- биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ .



Рис. 20: Биллиарды, допускающие прямые склейки, полученные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + 2nh2')$ 

Далее аналогичные действия проделаем с двумя экземплярами биллиардов  $\Delta_{\alpha}(k \times ne + 2nh2' + kh1' + 2q')$ , состоящих из  $k \times n$  биллиардов e, двух столбцов биллиардов h2', приклеенных вдоль правых и левых сегментов, строки биллиардов h1', приклеенной вдоль нижних сегментов, и двух биллиардов q', которые добавлены во избежание образования на границе углов в  $3\pi/2$ . Получим набор биллиардов, перечисленный ниже:

- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 4nh2' + 2nh1' + (4q')_{2z});$
- биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + nh1' + 2q')^2$ .



Рис. 21: Биллиарды, допускающие прямые склейки, полученные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + 2nh2' + kh1' + 2q')$ 

Рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$ , который состоит из  $k \times n$  биллиардов e столбца из n штук биллиардов h2', приклеенных вдоль правых сегментов, строки из k биллиардов h1', приклеенной вдоль нижних сегментов, и биллиарда q', который добавлены во избежание образования на границе углов в  $3\pi/2$ . Получим набор биллиардов, перечисленный ниже:

- биллиард с одной конической точкой  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z);$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 2nh2' + (2kh1')_{y} + (2q')_{z});$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z);$
- биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$ .

Наконец, рассмотрим два экземпляра биллиардов  $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q')$ , состоящих из  $k \times n$  биллиардов e, двух столбцов биллиардов h2', приклеенных вдоль правых и левых сегментов, двух строк биллиардов h2', приклеенных вдоль нижних сегментов, и четырех биллиардов q', которые добавлены во избежание образования на границе углов в  $3\pi/2$ . Аналогично, отождествляя одинаковые свободные сегменты и принимая во внимание комментарий, получим биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ .

#### Шаг 2.

В классификации биллиардов, допускающих лишь выпуклые склейки, имеется обобщенный тор - биллиард, склеенный из  $2k \times 2n$  экземпляров биллиарда e так, что биллиардный стол гомеоморфен двумерному тору.

Попробуем получить биллиардный стол, включающий в себя прямые склейки, гомеоморфный тору.



Рис. 22: Биллиарды, допускающие прямые склейки, полученные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$ 



Рис. 23: Биллиарды, допускающие прямые склейки, полученные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q')$ 

Тогда, очевидно, верхние и нижние сегменты должны быть одинаковыми, а также правые и левые сегменты также должны быть одинаковыми.

Таким образом, имеем два случая - либо боковые граничные сегменты прямые (полученный биллиард будем называть  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2'))$ , эквивалентный ему случай, когда верхние и нижние граничные сегменты прямые (полученный биллиард будем называть  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1'))$ , и биллиард, склеенный из обобщенного эллипса, у которого все граничные сегменты прямые полученный биллиард будем называть  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1' + 4nh2' + 4q'))$ .

#### Шаг 3.

Рассмотрим обобщенный эллипс, состоящий из  $2k \times 2n$  биллиардов (подчеркну, что здесь я не уточняю, какие именно биллиарды образуют обобщенный эллипс - это на данный момент не важно), необходимое число которых одинаковое.

Все предыдущие биллиарды были получены рассмотрением обобщенного эллипса и последующим отождествлением некоторых его противоположных границ, либо отождествлением двух частей одной и той же границы относительно ее середины (к примеру, нижняя граница биллиарда  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$ .

Зададимся вопросом, а можно ли все четыре границы обобщенного эллипса отождествить таким образом - склейка одной половины с другой относительно середины. Оказывается, это возможно, и соответствует склейке четырех экземпляров биллиарда, состоящего из  $k \times n$  частей следующим образом: сначала склеиваем по два экземпляра в одинаковые биллиарды с одной конической точкой, а потом отождествим одинаковые свободные сегменты.

Таким образом, рассмотрим по четыре экземпляра всех рассматриваемых обобщенных эллипсов из предыдущего примера( а именно,  $\Delta_{\alpha}(k \times ne + nh2')$ ,  $\Delta_{\alpha}(k \times ne + 2nh2')$ ,  $\Delta_{\alpha}(k \times ne + 2nh2' + kh1' + 2q')$ ,  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$  и  $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q'))$  и отождествим их границы вышеописанным образом.



Рис. 24: Серия топологических биллиардов, называемых обобщенными торами, допускающих прямые склейки.

Тогда получим биллиарды с четырьмя коническими точками, перечисленные ниже:

- $\Delta_{\beta}(k \times ne + nh2')^4;$
- $\Delta_{\beta}(k \times ne + 2nh2')^4;$
- $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4;$
- $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4;$
- $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q')^4$ .

Доказательство того факта, что достаточно рассмотреть разбиение части границы на две части и отождествлять их друг с другом, то есть не нужно рассматривать дополнительно разбиение границы на четыре, шесть и т. д. частей, проведено в шаге 4 доказательства теоремы 3.1.

# 4 Подсчет инвариантов Фоменко-Цишанга для топологических биллиардов.

# 4.1 Особые и неосособые уровни интеграла

Рассмотрим топологический биллиард  $\Delta$ , полученный склейкой простых биллиардов  $\Psi_i$ .

Рассмотрим в фазовом пространстве  $M^4$  поверхность уровня интеграла  $v_E$  - трехмерное многообразие  $Q^3$ , называемое изоэнергетической поверхностью.

Меняя значения дополнительного интеграла  $\lambda$ , получим некоторое слоение изоэнергетического многообразия  $Q^3$ .

Дадим определение особых и неособых уровней интеграла  $\lambda$ .

**Определение 4.1.** Назовем выпуклыми граничными значениями те значения интеграла  $\lambda$ , которые соответствуют выпуклым относительно внутренности какой либо области  $\Psi_i$  граничным сегментам. Если внутренность области  $\Psi_i$  пересекает вырожденную квадрику с параметром  $\lambda = a$  или -b (которая совпадает с координатной осью у или х соответственно), то соответствующее значение интеграла называем седловым. Если склейка определена на прямом сегменте, соответствующем параметру квадрики  $\lambda = -b$  (или  $\lambda = a$ ), то уровень интеграла  $\lambda = -b$  (или  $\lambda = a$ ) также называем седловым.



Рис. 25: Серия топологических биллиардов с прямыми склейками с четырьмя коническими точками, которые можно получить как склейку четырех обобщенных эллипсов

Особыми значениями интеграла  $\lambda$  назовем выпуклые граничные и седловые значения, а все остальные значения интеграла - неособыми.

Опишем траектории, лежащие на особых уровнях интеграла.

Предельные траектории, лежащие на выпуклых граничных значениях интеграла, являются периодическими движениями вдоль этого сегмента. На выпуклом граничном уровне интеграла могут лежать также и неособые траектории (в случае, когда биллиард несимметричен и образ граничного значения интеграла включает в себя движение внутри области, ограниченной границей и выпуклым граничным значением).

Отметим, что при попадании материальной точки в граничную точку граничного сегмента - точках нарушения гладкости или касания с одной из общих касательных - вектор скорости отождествляется с равным ему по евклидовой скорости и противоположным по направлению вектором.

Таким образом, при одном и том же граничном значении интеграла  $\lambda$  предельные траектории могут быть различными. Такая ситуация возможна, если несколько граничных сегментов принадлежат одной и той же квадрике софокусного семейства. Поэтому в дальнейшем используется обозначение  $\lambda = \pm bord$ , где знак + указывает на то, что предельные траектории получены при стремлении значения интеграла  $\lambda$  к граничному значению  $\lambda = bord$  справа (тогда предельные траектории будут времени-подобными), а знак – указывает на стремление слева (предельные траектории будут пространственно-подобными).

Прообразы таких траекторий в изоэнергетической поверхности  $Q^3$  - объединение окружностей.

Траектории, лежащие на седловом уровне интеграла  $\lambda$ , делятся на три непересекающихся семейства: периодическая траектория, касательная к которой совпадает с вырожденной квадрикой с параметром  $\lambda$  равным седловому значению интеграла, и два множества гомоклинических траекторий (т. е. траекторий, которые стремятся к периодической траектории при  $t \to \pm \infty$ ), расположенных по разные стороны от периодической траектории. Для таких траекторий выполнено фокальное свойство: в любой момент времени траектория лежит на прямой, проходящей через один из фокусов (в случае  $\lambda = -b$  это фокусы, лежащие на оси x, и в случае  $\lambda = a$  это фокусы, лежащие на оси y), причем при отражении траектории о границу происходит смена фокуса.

Прообразы седловых траекторий в изоэнергетическом многообразии подробно описаны в разделе 4.4.

# 4.2 Аналог теоремы Лиувилля: связные компоненты регулярного слоя являются торами.

**Лемма 4.1.** Для топологических биллиардов, допускающих как выпуклые, так и прямые склейки, содержащих простой биллиард е, при  $\lambda \in (-\infty, -b) \cup (a, +\infty) \cup \{\infty\}$  прообразы неособых уровней интеграла  $\lambda$  в изоэнергетическом многообразии  $Q^3$  являются объединением двумерных торов, а именно:

- один тор для обобщенного эллипса, а также для биллиардов с одной или двумя коническими точками;
- четыре тора для обобщенного тора;
- два тора, если биллиард содержит четыре конических точки или является биллиардом-лентой.

Доказательство. Фиксируем значение  $\lambda$ , принадлежащее указанному интервалу.

Рассмотрим часть биллиарда, куда проектируются точки, лежащие на уровне интеграла  $\lambda$ . Поскольку квадрики, соответствующие значениям  $\lambda$  из указанного интервала, являются гиперболами или прямой на бесконечности, то на плоскости Минковского они не пересекаются с эллипсами. Поэтому проекция поверхности уровня таких значений интеграла будет в точности весь биллиардный стол.

Отметим, что в теореме классификации было доказано, что биллиардный стол любого топологического биллиарда, принадлежащего рассматриваемому в данной работе классу биллиардов, гомеоморфен прямоугольнику, несколько границ которого могут быть склеены по некоторым правилам.

Таким образом задача сводится к рассмотрению ровно шести случаев - проекция есть биллиард *e* (соответствует обобщенным эллипсам), два биллиарда *e*, с отождествленными противоположными ребрами (обобщенные ленты), с отождествленными смежными ребрами (соответствует биллиардам с одной конической точкой), с тремя отождествленными ребрами (соответствует биллиардам с двумя коническими точками), с четырьмя отождествленными ребрами (соответствует биллиардам с четырьмя коническими точками), и, наконец, четыре биллиарда *e* с отождествленными противоположными ребрами так, что биллиардный стол гомеоморфен тору (обобщенный тор).

В случае, когда проекция есть биллиард *e*, доказательство дословно повторяет доказательство для простого биллиарда *e*.

Рассмотрим случаи, когда проекция есть два биллиарда е.

Каждой точке биллиардов (x, y) соответствуют 4 вектора скорости  $v_i$  так, что точка  $(x, y, v_i)$  лежит на соответствующем уровне интеграла. Вектора скорости будем различать по направлению (на рис. 26 показаны 4 вида различных векторов). Получим восемь экземпляров биллиардов e, отвечающие за верхний и нижний листы топологического биллиарда, оснащенные одним из 4 векторов скорости. Обозначим их  $(\Omega^j, v_i)_1$  и  $(\Omega^j, v_i)_2$ , где *i* принимает значения 1,2,3,4, а *j* принимает значения 1 и 2. Склеим эти 8 экземпляров биллиардных областей по границе по закону отражения в топологическом биллиарде, и тем самым опишем слой интеграла  $\lambda$  в изоэнергетическом многообразии  $Q_3$ .



Рис. 26: Направление векторов скорости  $v_1, v_2, v_3, v_4$  в биллиарде  $\Omega$ .

Посмотрим, как отождествляются вектора на границе биллиарда.

В произвольном простом биллиарде на нижних и верхних сегментах по закону отражения отождествляем  $v_1 c v_2$ , а  $v_3 c v_4$ . На левых и правых сегментах отождествляем  $v_1 c v_4$ , а  $v_2 c v_3$ .

После осуществления операции склейки на верхнем сегменте  $v_1 \in \Omega^1$  будет отождествляться с  $v_2 \in \Omega^2$  (и, соответственно,  $v_1 \in \Omega^1$  отождествляем с  $v_2 \in \Omega^2$ ), а  $v_3 \in \Omega^1$  с  $v_4 \in \Omega^2$  (и, соответственно,  $v_3 \in \Omega^2$  с  $v_4 \in \Omega^1$ )

Поэтому экземпляры биллиардных областей  $(\Omega^j, v_i)$  склеиваем друг с другом следующим образом: по нижним сегментам склеиваем  $(\Omega^j, v_1)$  с  $(\Omega^j, v_2)$ , а  $(\Omega^j, v_3)$  с  $(\Omega^j, v_4)$  (здесь *j* принимает значения 1, 2), по левым и правым сегментам склеиваем  $(\Omega^j, v_1)$  с  $(\Omega^j, v_4)$ , а  $(\Omega^j, v_2)$  с  $(\Omega^j, v_3)$  (здесь *j* принимает значения 1, 2).

По верхнему сегменту склеиваем  $(\Omega^1, v_1)$  с  $(\Omega^2, v_2)$ ,  $(\Omega^2, v_1)$  с  $(\Omega^1, v_2)$ , а  $(\Omega^1, v_3)$  с  $(\Omega^2, v_4)$ ,  $(\Omega^2, v_3)$  с  $(\Omega^1, v_4)$ .

Этот алгоритм показан на рис. 27, пунктиром соединены отождествленные векторы.

Тогда особый уровень интеграла гомеоморфен восьми четырехугольникам, склеенным между собой по вышеописанному правилу. Легко видеть, что он представляет собой тор, если отождествлены один сегмент, два смежных или три сегмента границы, и он представляет собой два тора, если отождествлены два противоположных сегменты границы или четыре сегмента границы.

Для последнего случая (проекция есть четыре биллиарда *e*, скленных в тор) доказательство аналогичное.



Рис. 27: Отождествление векторов  $v_1, v_2, v_3, v_4$  на границе биллиарда  $\Omega$ .

Замечание 4.1. Отметим, что при доказательстве важно лишь количество граничных сегментов, отождествленных между собой операцией склейки (и их расположение относительно друг друга, если таких сегментов два). Таким образом, пусть при рассмотрении топологического биллиарда в образе неособого значения интеграла  $\lambda$  биллиардное движение происходит в области с несколькими отождествленными между собой граничными сегментами. Тогда для каждой такой области можно провести аналогичное доказательство и заключить, что на соответствующем уровне интеграла в изоэнергетической поверхности  $Q^3$  лежат двумерные торы. Количество торов будет таким же, как и в лемме 4.1, а именно: при склейке одного, двух смежных или трех сегментов тор будет один, при склейке двух противолежащих или четырех - два.

**Предложение 4.1.** Для топологического биллиарда  $\Delta$  прообразы неособых уровней интеграла являются объединением двумерных торов.

Если биллиард содержит область e, тогда для значений интеграла  $\lambda \in (-b, \lambda_2)$  имеем

• n+1 тор для обобщенного эллипса  $\Delta_{\alpha}(k \times ne + (\alpha_1 + \alpha_2)kh1 + (\beta_1 + \beta_2)nh2 + (\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_2\beta_2)q),$ для биллиарда с одной конической точкой  $\Delta_{\beta}((2k \times ne)_x + (\alpha_1 + \alpha_2)nh2 + \beta_2kh1 + (\beta\alpha_1 + \beta\alpha_2)q),$ 

для биллиарда с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y})$ , для биллиарда с одной конической точкой  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z)$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z);$ 

• 2п торов для

биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne)^2$ , для биллиарда-ленты  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ , биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2')^4$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ ;

- 4n торов для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne),$ для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2');$
- $2n + 1 \mod d$ ля биллиардов с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_{x,x} + \alpha 2kh1)$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y)$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y})$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + 2q')^4$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ ;
- $2n + 2 \mod d$ ля биллиарда-ленты  $\Delta_{\gamma}(2k \times 2ne + (\alpha_1 + \alpha_2)2kh1)_2$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 4nh2' + 2kh1' + (4q')_{2z})$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 2nh2' + (2kh1')_y + (2q')_z)$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ ;
- 4n + 4 торов для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2' + 4kh1' + 4q');$

Если биллиард содержит область е, тогда значений интеграла  $\lambda \in (\lambda_1, a)$  имеем

• k+1 тор для обобщенного эллипса  $\Delta_{\alpha}(k \times ne + (\alpha_1 + \alpha_2)kh1 + (\beta_1 + \beta_2)nh2 + (\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_2\beta_2)q),$ 

для биллиарда с одной конической точкой  $\Delta_{\beta}((2k \times ne)_x + (\alpha_1 + \alpha_2)nh2 + \beta 2kh1 + (\beta\alpha_1 + \beta\alpha_2)q),$ для биллиарда с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_{x,x} + \alpha 2kh1),$ для биллиарда с одной коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y),$ для биллиарда с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y),$ биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y}),$ биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 4nh2' + 2kh1' + (4q')_{2z}),$ для биллиарда с одной конической точкой  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z),$ для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 2nh2' + (2kh1') + (2q')_z),$ 

- 2k торов для обобщенной ленты  $\Delta_{\gamma}(2k \times ne + (\alpha_1 + \alpha_2)2kh1)_2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne)^2$ ;
- 4k торов для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne);$
- 2k+1 торов для

биллиарда-ленты  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ ,

для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2')^4$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$ , для биллиарда с четыръмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ ;

• 2k+2 тора для

биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y})$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^4$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$ , для биллиарда с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + (2q')_z)$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ , для биллиарда с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ ,

• 4k + 4 тора для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2'),$ для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2' + 4kh1' + 4q');$ 

Если биллиард содержит область h2, не содержит областей е и в нем допустимы лишь выпуклые склейки, тогда для значений интеграла  $\lambda \in (-b, \lambda_2)$  имеем

- $k + 1 \mod d$ ля биллиарда  $\Delta_{\alpha}(kh2 + (\alpha + \beta)q),$ для биллиарда  $\Delta_{\alpha}(2 \times kh2 + (\alpha + \beta)2q),$ для биллиарда  $\Delta_{\beta}(2 \times kh2),$ для биллиарда  $\Delta_{\beta}(2 \times 2kh2);$
- 2k торов для биллиарда  $\Delta_{\gamma}(2 \times kh2)_1$ , для биллиарда  $\Delta_{\gamma}(2 \times 2kh2)_1$ ;

Если биллиард содержит область h2, не содержит областей е, и в нем допустимы лишь выпуклые склейки, тогда для значений интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\infty\}$  имеем

- один тор для биллиарда  $\Delta_{\alpha}(kh2 + (\alpha + \beta)q),$ для биллиарда  $\Delta_{\alpha}(2 \times kh2 + (\alpha + \beta)2q),$ для биллиарда  $\Delta_{\beta}(2 \times kh2),$ для биллиарда  $\Delta_{\beta}(2 \times 2kh2);$
- два тора для биллиарда  $\Delta_{\gamma}(2 \times kh2)_1$ , для биллиарда  $\Delta_{\gamma}(2 \times 2kh2);$

Если биллиард содержит лишь область q и допустимы лишь выпуклые склейки, тогда при всех значениях интеграла  $\lambda$  имеем один тор.

Доказательство. Рассмотрим некоторый топологический биллиард  $\Delta$ . Для  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\infty\}$  утверждение доказано в лемме, поэтому фиксируем некоторое значение интеграла  $\lambda \in (-b, a)$ , которое, по условию, является неособым (то есть не является граничным).

Рассмотрим проекцию уровня интеграла  $\lambda$  на плоскость биллиарда, и вырежем из области  $\Delta$  те части, в которые не проецируются точки уровня интеграла. Получим некоторый биллиардный стол  $\Delta_1$ , возможно, несвязный. По алгоритму, описанному в лемме 4.1, каждая связная компонента склеится в объединение нескольких торов. Количество этих торов зависит от количества связных компонент и склеенных сегментов.

# 4.3 Атомы-бифуркации

Будем описывать перестройки торов, лежащих на разных уровнях интеграла, используя терминологию трехмерных атомов (см. [2])

Для этого введем определения двумерного атома и трехмерного атома, а также приведем примеры наиболее часто встречающихся атомов.

Определение 4.2. Двумерным атомом (или 2-атомом) называется пара  $(P^2, K)$ , где  $P^2$  - ориентированная связная компактная поверхность с краем, K - связный граф в ней, такой, что:

- либо К состоит из одной точки, либо все вершины графа К имеют степень 4;
- каждая компонента связности множества P<sup>2</sup> \ К гомеоморфна кольцу S<sup>1</sup> × (0, 1], причем множество колец можно разбить на два класса: положительные и отрицательные кольца - так, чтобы к каждому ребру графа К примыкало ровно одно положительное кольцо и ровно одно отрицательное кольцо.

Мы рассматриваем 2-атомы с точностью до эквивалентности, а именно: считаем два атома  $(P^2, K)$  и  $(P_1^2, K_1)$  эквивалентными, если между ними существует гомеоморфизм, сохраняющий их ориентацию, переводящий  $P^2$  в  $P_1^2$  и K в  $K_1$ .

Приведем несколько примеров 2-атомов.

Двумерный атом A гомеоморфен диску, расслоенному на концентрические окружности - неособые слои, которые стягиваются в центральную точку - особый слой.

Двумерный атом *В* представляет собой перестройку двух окружностей в одну через особый слой "восьмерку"

Двумерный атом C<sub>2</sub> представляет собой перестройку двух окружностей в две окружности.

Атомы B и  $C_2$  входят в бесконечные серии атомов  $B_n$  и  $C_n$ , где  $B_n$  есть перестройка n окружностей в одну через особый слой - граф с n вершинами, а  $C_n$  есть перестройка n окружностей в две через особый слой - граф с n вершинами. На рис. 28 показан пример атома из серии  $B_n$  при n = 3 и пример атома из серии  $C_n$  при n = 4.



Рис. 28: Примеры часто встречающихся 2-атомов.

Добавим к уже описанным двумерным атомам новые атомы, которые будем называть атомы со звездочками.

Возьмем произвольный атом  $(P^2, K)$  и рассмотрим его граф K. При этом наряду с прежними атомами рассмотрим еще один простой атом, получающийся следующим образом. В качестве поверхности P мы возьмем кольцо и объявим графом K любую его осевую окружность. Изготовим теперь новые атомы со звездочками. Отметим на некоторых ребрах графа K произвольное число внутренних точек, объявим их новыми вершинами графа K и обозначим их звездочками.

Теперь построим отображение, которое сопоставит каждому двумерному атому некоторый трехмерный атом.

Рассмотрим двумерный атом  $(P^2, K)$ , и построим на  $P^2$  функцию Морса f такую, что ее единственный критический уровень совпадает с графом K. Такая функция определена однозначно с точностью до послойной эквивалентности. Она естественным образом расслаивает  $P^2$  своими линиями уровня. Из теоремы 3.11 [2] вытекает что по базе  $P^2$  однозначно (с точностью до послойной эквивалентности восстанавливается 3-многообразие U(L) со структурой расслоения Зейферта. Так как неособые линии уровня функции f на  $P^2$  представляют собой окружности, то их образ в 3-многообразии U(L)представляют собой торы.

Если в атоме  $(P^2, K)$  нет звездочек, то особый слой - образ графа K будет представлять собой прямое произведение графа K на окружность.

Пусть атом  $(P^2, K)$  содержит звездочки. Для такого атома можно построить его его дубль  $(\hat{P}^2, \hat{K})$  - разветвленное двулистное накрытие над  $(P^2, K)$  так, чтобы точки ветвления были в точности точкизвездочки. Сделать это можно разрезав атом трансверсально графу K в точках-звездочках и склеив два экземпляра разрезанных атомов вдоль границы разреза.

Для построения трехмерного атома со звездочками рассмотрим инволюцию  $\tau$  на дубле  $(\hat{P}^2, \hat{K})$ , которая меняет местами две части дубля  $\hat{P}^2$ . Такая инволюция обладает следующими свойствами:

- $\tau^2 = id;$
- $\tau$  сохраняет ориентацию.

Рассмотрим цилиндр  $\hat{P}^2 \times [0, 2\pi]$  и склеим его основания, отождествляя точки  $(x, 2\pi)$  с  $(\tau(x), 0)$ . В результате получим ориентируемое многообразие U с краем, которое и будем называть 3-атомом со звездочками.

В качестве дубля атома  $A^*$  будем рассматривать атом B (изображен на рис. 29, с.), в качестве дублей серий атомов  $B_n^*$  и  $B_n^{**}$  будут выступать атомы  $B_{2n+1}$  и  $C_{2n+1}$  соответственно.

Примеры трехмерных атомов представлены на рис. 29.

Атом A ( рис. 29, а.), представляющий собой полноторие, расслоенное на концентрические торы, которые стягиваются на окружность - ось полнотория.

Далее изображен атом *B* ( рис. 29, b.), представляющий собой полноторие, из которого вырезаны два тонких тора. Особый слой представляет собой произведение восьмерки на окружность.



Рис. 29: Примеры часто встречающихся 3-атомов.

# 4.4 Поверхности уровней особых значений интеграла в топологических биллиардах с выпуклыми склейками: седловые значения

**Предложение 4.2.** Особыми уровнями для топологических биллиардов, допускающих только выпуклые склейки, содержащих е, будут уровни, соответствующие значениям интеграла  $\lambda = -b, a$ .

Тогда на поверхностях уровня седловых значений интеграла лежат особые слои следующих атомов

- $B_k \ \partial n \pi \ \lambda = a \ b \ observed observed observed \ \Delta_{\alpha}(k \times ne + (\alpha_1 + \alpha_2)kh1 + (\beta_1 + \beta_2)nh2 + (\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_2\beta_2)q),$   $b \ \delta unnuapde \ c \ odhoù \ kohuveckoù \ movkoù \ \Delta_{\beta}((k \times ne)_x + \alpha_1nh1 + \beta_1kh2 + \alpha_1\beta_1q))$  $u \ b \ \delta unnuapde \ c \ deyma \ kohuveckumu \ movkamu \ \Delta_{\beta}((2k \times ne)_{x,x} + \alpha_12kh1);$
- два экземпляра  $B_n$  для  $\lambda = -b$  в обобщенной ленте  $\Delta_{\gamma}(2k \times ne + (\beta_1 + \beta_2)nh1)_2;$
- два экземпляра  $B_k$  для  $\lambda = a$  в обобщенной ленте  $\Delta_{\gamma}(k \times 2ne + (\beta_1 + \beta_2)nh2)_1;$
- $B_{2n}$  для  $\lambda = -b$  в биллиарде с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_{x,x} + \alpha_1 2kh1);$
- $C_{2n} \ \partial_{\mathcal{A}\mathcal{B}} \lambda = -b$

в биллиарде с четырьмя коническими точками  $\Delta_{eta}(k imes ne)^2;$ 

- $C_{2k}$  для  $\lambda = a$  в обобщенной ленте  $\Delta_{\gamma}(2k \times ne + (\beta_1 + \beta_2)nh1)_2$  и биллиарде с четыръмя коническими точками  $\Delta_{\beta}(k \times ne)^2$ ;
- два экземпляра  $C_{2n}$  для  $\lambda = -b$  в обобщенном торе  $\Delta_{\alpha}^{T}(2k \times 2ne);$
- два экземпляра  $C_{2k}$  для  $\lambda = a$  в обобщенном торе  $\Delta_{\alpha}^{T}(2k \times 2ne)$ .

#### Доказательство. шаг 1.

Докажем следующее утверждение: приклеивание к биллиарду e биллиарда h1 h2 не меняет грубую молекулу.

Рассмотрим склейку биллиарда e с биллиардом h1 по верхнему ребру. Поверхность уровня, соответствующая значению дополнительно интеграла  $\lambda = -b$ , в изоэнергетической поверхности биллиарда e - атом B, а в изоэнергетической поверхности биллиарда h1 - тор. При осуществлении операции склейки производится надрез особого уровня атома B и тора по кривым, состоящим из прообразов точек верхнего сегмента - такая кривая на особом слое атома B параллельна особой окружности, а для тора является его параллелью. Вдоль этих кривых склеивались векторы на верхних сегментах на h1 (верхний лист) и e (нижний лист):  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$ . После разреза циклы склеятся в соответствии с законом отражения: точки  $(x, v_1)_u$  отождествляются с  $(x, v_2)_d$  и наоборот,  $(x, v_3)_u$  с  $(x, v_4)_d$  и наоборот. Таким образом, вновь имеем особый слой атома B.

Аналогично, поверхность уровня, соответствующая значению дополнительного интеграла  $\lambda = a$ , в изоэнергетической поверхности биллиарда e и h2 - атом B. При осуществлении операции склейки разрезаем особые уровни атомов B по кривым, состоящим из прообразов точек верхнего сегмента - такие кривые трансверсальны особым окружностям. Вдоль этих кривых склеивались векторы на верхних сегментах на h1 (верхний лист) и e (нижний лист):  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$ . После разреза циклы склеятся в соответствии с законом отражения. Таким образом, вновь имеем особый слой атома B.

Доказательство того, что при приклеивани<br/>и $h1,\,h2$ и qкeособые уровни интеграла останутся торами а<br/>налогично вышеописанному.

### шаг 2.

Рассмотрим склейку двух биллиардов *e* по правому сегменту. Поверхности уровня значений интеграла  $\lambda = a, -b$  - особые уровни атомов *B*. Чтобы понять, как преобразуется уровень интеграла  $\lambda = a$ при склейке, разрезаем особые уровни атомов *B* по кривым, состоящим из прообразов точек правого сегмента - такие кривые параллельны особым окружностям. Вдоль этих кривых склеивались векторы на правых сегментах на верхнем и нижнем листах:  $v_1 c v_4$  и  $v_3 c v_2$ . После разреза циклы склеятся в соответствии с законом отражения: точки  $(x, v_1)_u$  отождествляются с  $(x, v_4)_d$  и наоборот,  $(x, v_3)_u c$  $(x, v_2)_d$  и наоборот. Таким образом, вновь имеем особый слой атома  $B_2$ . Для преобразования уровня интеграла интеграла  $\lambda = -b$  разрезаем особые уровни атомов B по трансверсальным особым окружностям кривым - тем, которые являются прообразами точек правого сегмента. Вдоль них склеивались векторы на правых сегментах на верхнем и нижнем листах. Осуществляя переклейку в соответствии с законом отражения (описан в абзаце выше), получим особый слой атома B.

Склеив два простых биллиарда *e* по нижней границе, аналогично доказывается, что поверхность уровня полученного топологического биллиарда, соответствующая  $\lambda = -b$  - особый слой атома  $B_2$ , а соответствующая  $\lambda = a$  - особый слой атома *B*. Разница будет в законе отражения - после разреза точки кривой  $(x, v_1)_u$  отождествляются с точками  $(x, v_4)_d$  и наоборот, точки  $(x, v_3)_u$  с  $(x, v_2)_d$  и наоборот.

Итак, приклеивая необходимое количество строк и столбцов биллиардов по различным сегментам, аналогичными рассуждениями доказывается, что для обобщенного эллипса, состоящего из k столбцов и n строк, поверхность уровня значения интеграла  $\lambda = -b$  - особый уровень атома  $B_n$ , а поверхность уровня значения интеграла  $\lambda = a$  - особый уровень атома  $B_k$ .

Аналогично шагу 1 доказывается, что на вид грубой молекулы не влияют приклеенные биллиарды h1, h2 и q.

#### Шаг 3.

Для того, чтобы понять, как выглядят особые уровни биллиардов с одной конической точкой, вновь рассмотрим частный случай такого биллиарда - два биллиарда e, склеенные по нижнему и правому сегментам. Он может быть получен отождествлением нижних сегментов в топологическим биллиарде, являющимся склеенными по правому сегменту двум e (его поверхность уровня, соответствующая  $\lambda = -b$  это особый слой атома B, а соответствующая  $\lambda = a$  - особый слой атома  $B_2$ ). Тогда кривая, состоящая из прообразов точек нижних сегментов, в атоме B параллельна особой окружности, а в атоме  $B_2$  - трансверсальна особым окружностям. Вдоль этих кривых склеивались векторы  $v_1 c v_2$  и  $v_3 c v_4$ . После разреза кривые склеятся в соответствии с законом отражения: точки  $(x, v_1)_u$  отождествляются с  $(x, v_2)_d$  и наоборот,  $(x, v_3)_u c (x, v_4)_d$  и наоборот. При таком отождествлении наглядно показано, что особый слой атома B. Заметим, что такой биллиард мог быть получен отождествлением правых сегментов топологического биллиарда, состоящего из двух e, склеенных по нижнему сегменту. В таком случае из особого слоя атома B на поверхности уровня значения интеграла  $\lambda = a$  аналогично получим особый слой атома B.

Отметим, что в дальнейшем доказательстве будем избегать склеивания вдоль кривых, трансверсальных особым окружностям.

Аналогично доказывается, что имея обобщенный эллипс с 2k столбцами и n строчками, после склейки вдоль нижних (или верхних) сегментов, получим, что особый слой атома  $B_n$  (которые лежал на поверхности уровня интеграла  $\lambda = -b$ ) перейдет в особый слой атома  $B_n$ , а особый слой атома  $B_{2k}$ (которые лежал на поверхности уровня интеграла  $\lambda = a$ ) перейдет в особый слой атома  $B_k$ 

#### шаг 4.

Рассмотрим обобщенный эллипс, состоящий из n строк и 2k столбцов, и отождествим между собой свободные боковые сегменты - получим биллиард-ленту  $\Delta_{\gamma}(2k \times ne)_2$ . Посмотрим, как в обобщенном эллипсе изменятся при осуществлении описанной склейки поверхности уровня значений интеграла  $\lambda = -b$  (особый слой атома  $B_n$ ) и значений интеграла  $\lambda = a$  (особый слой атома  $B_{2k}$ ).

Для этого рассмотрим частный случай, когда n = k = 1. Разрежем поверхности уровня атомов *B* и *B*<sub>2</sub> вдоль кривых, состоящих из прообразов точек левых сегментов: в атоме *B*<sub>2</sub> она параллельна особым окружностям, а в атоме *B* - трансверсальна особой окружности. Вдоль этих кривых склеивались векторы  $v_1$  с  $v_4$  и  $v_3$  с  $v_2$ . После разреза кривые склеятся в соответствии с законом отражения: точки  $(x, v_1)_u$  отождествляются с  $(x, v_4)_d$  и наоборот,  $(x, v_3)_u$  с  $(x, v_2)_d$  и наоборот. Особый слой атома *B* преобразуется в два особых слоя атома *B*, а особый слой атома *B*<sub>2</sub> преобразуется в особый слой атома *C*<sub>2</sub>.

Аналогичными рассуждениями получим, что особый слой атома  $B_n$  (соответствующий уровню интеграла  $\lambda = -b$ ) преобразуется в два особых слоя атома  $B_n$ , а особый слой атома  $B_{2k}$  (соответствующий уровню интеграла  $\lambda = a$ ) преобразуется в особый слой атома  $C_{2k}$ .

Шаг 5

Рассмотрим обобщенный эллипс, образованный n строками и 2k столбцами биллиардов e. В нем отождествим верхние и боковые сегменты так, чтобы получить биллиард  $\Delta_{\beta}((2k \times ne)_{x,x})$ , имеющий две конических точки.

Чтобы сделать доказательство более наглядным, предположим, что биллиард получаем соответствующей склейкой боковых сегментов в биллиарде из 2n строк и k столбцов (для него поверхность уровня значений интеграла  $\lambda = -b$  есть особый слой атома  $B_{2n}$ , а значений интеграла  $\lambda = a$  - особый слой атома  $B_k$ ). Для того, чтобы понять, как изменятся поверхности уровня особых значений, рассмотрим частный случай n = k = 1.

Посмотрим, как преобразуется особый слой атома B (поверхность уровня значений интеграла  $\lambda = a$ ). Прообразы боковых сегментов, вдоль которых склеивались векторы  $v_1$  с  $v_4$  и  $v_3$  с  $v_2$ , есть два цикла, параллельных особой окружности для особого слоя атома B. После отождествления этих циклов в соответствии с правилами склейки точки  $(x, v_1)_u$  отождествляются с  $(x, v_4)_d$  и наоборот,  $(x, v_3)_u$  с  $(x, v_2)_d$  и наоборот. Тогда особый слой атома B перейдет в особый слой атома B (на рис. показана данная операция лишь для одного цикла, со вторым происходит аналогичная ситуация).

Чтобы понять, как преобразуется особый слой атома  $B_2$  (поверхность уровня значений интеграла  $\lambda = -b$ ), предположим, что биллиард был получен отождествлением верхних сегментов в биллиарде, состоящим из двух e со склеенными боковыми сегментами. В нем поверхность уровня значений интеграла  $\lambda = -b$  это два атома B. Прообразы верхних сегментов в них есть циклы, параллельные особым окружностям, и вдоль них отождествлялись векторы  $v_1 c v_2$  и  $v_3 c v_4$ . Теперь в соответствии с правилами склейки точки  $(x, v_1)_u$  отождествляются с  $(x, v_2)_d$  и наоборот,  $(x, v_3)_u c (x, v_4)_d$  и наоборот. Тогда два особых слоя атома B преобразуются в особый слой атома  $B_2$ .

Итак, аналогичными выкладками можно показать, что в таком топологическом биллиарде (в котором  $2k \times n$  биллиардов e) поверхность уровня значений интеграла  $\lambda = -b$  есть особый слой атома  $B_{2n}$ , а значений интеграла  $\lambda = a$  - особый слой атома  $B_k$ .

#### Шаг 6.

Рассмотрим биллиард, состоящий из n строк и 2k столбцов, все свободные сегменты которого отождествлены между собой так, что топологический биллиард содержит четыре конические точки (такая склейка показана на рис. 18, с).

Пусть он образован из биллиарда из пункта 5 отождествлением свободных верхних сегментов. Для того, чтобы понять, как преобразуются его поверхности уровня особых значений интеграла, рассмотрим частный случай n = k = 1.

Тогда имеем биллиард, состоящий из двух экземпляров биллиарда e, с отождествленными боковыми и нижними сегментами. Посмотрим, как преобразуется поверхность уровня значения интеграла  $\lambda = -b$  - особый слой атома  $B_2$ . На нем нужно сделать разрез вдоль цикла, параллельного особым окружностям, вдоль которого склеивались векторы  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$ . После отождествления точек этих циклов в соответствии с законом отражения  $((x, v_1)_u$  отождествляются с  $(x, v_2)_d$  и наоборот,  $(x, v_3)_u$  с  $(x, v_4)_d$  и наоборот), особый слой атома  $B_2$  преобразуется в особый слой атома  $C_2$ .

Поскольку данный биллиард можно получить отождествлением правых сегментов в биллиарде, состоящем из двух экземпляров биллиарда e, с отождествленными нижними, верхними и левыми сегментами, доказательство того, что на поверхности уровня значения интеграла  $\lambda = a$  - из особого слоя атома  $B_2$  получается особый слой атома  $C_2$  аналогично предыдущему.

Итак, аналогично доказывается, что в топологическом биллиарде, состоящем из  $2k \times n$  биллиардов e, отождествленных по всем сегментам, уровню интеграла  $\lambda = -b$  соответствует  $C_{2n}$ , а уровню интеграла  $\lambda = a$  соответствует  $C_{2k}$ .

#### Шаг 7.

Рассмотрим биллиард, состоящий из 2n строк и 2k столбцов, все свободные сегменты которого отождествлены между собой в соответствии с рис. 13, с (без образования конических точек). Напомним, что такой биллиард мы называем обобщенным тором.

Пусть он образован из двух биллиардов с отождествленными боковыми сегментами (и состоящими из  $2k \times n$  биллиардов e) путем склеивания свободных верхних и нижних сегментов. Для того, чтобы понять, как преобразуются его поверхности уровня особых значений интеграла, рассмотрим частный случай n = k = 1.

Тогда имеем два биллиарда, каждый из которых состоит из двух экземпляров биллиарда е с отож-

дествленными боковыми сегментами. Посмотрим, как преобразуется поверхность уровня значения интеграла  $\lambda = -b$  - особые слои атомов  $C_2$ . На них нужно сделать разрез вдоль циклов, которые являются прообразами верхних и нижних сегментов (вдоль таких циклов склеивались векторы  $v_1 c v_2 u v_3 c v_4$ ). Такие циклы параллельных особым окружностям атомов. Отождествим точки этих циклов в соответствии с законом отражения: точки  $(x, v_1)_u$  с верхнего листа одного биллиарда отождествляются с точками  $(x, v_2)_u$  верхнего листа другого и наоборот,  $(x, v_3)_u c (x, v_4)_u$  и наоборот. Прообразы точек нижних листов обоих биллиардов отождествляем друг с другом аналогичным образом. Тогда два особых слоя атома  $C_2$  преобразуются в два особых слоя атома  $C_2$ .

Аналогично доказывается, что на поверхности уровня интеграла  $\lambda = a$  тоже лежат два особых слоя атомов  $C_2$ .

Итак, в обобщенному тору из  $2k \times 2n$  биллиардов e, уровню интеграла  $\lambda = -b$  соответствует два экземпляра особых слоев атома  $C_{2n}$ , а уровню интеграла  $\lambda = a$  соответствует два экземпляра особых слоев атома  $C_{2k}$ .

**Предложение 4.3.** Особым уровнем для биллиардов, допускающих только выпуклые склейки, содержащих h2, будет уровень, соответствующий значению интеграла  $\lambda = -b$ .

Тогда на поверхности уровня седлового значения интеграла лежат особые слои следующих атомов:

- $B_k$  для биллиарда без конических точек  $\Delta_{\alpha}(kh2 + \alpha q + \beta q)$  и его удвоенной версии  $\Delta_{\alpha}(2 \times kh2 + 2\alpha q + 2\beta q)$ , а также для биллиардов с одной конической точкой  $\Delta_{\beta}((2 \times nh2)_x + 2\alpha_1 q)$  и с двумя коническими точками  $\Delta_{\beta}((2 \times nh2)_{x,x});$
- $C_{2k}$  для биллиарда-ленты  $\Delta_{\gamma}(2kh2)_1$  и его удвоенной версии  $\Delta_{\gamma}(2 \times 2kh2)_1$ .

**Предложение 4.4.** В топологических биллиардах, состоящих из склеенных между собой простых биллиардов q, нет седловых уровней интеграла.

Доказательство вышеприведенных утверждений аналогично доказательству предложения 4.2. Рассмотрим поверхности уровня значений интеграла  $\lambda = a, -b$  в простых биллиарда h2 и q (это, соответственно, тор и особый слой атома B для биллиарда h2 и по тору для обоих значений интеграла для биллиарда q). Далее возьмем необходимое количество экземпляров такой поверхности (очевидно, равное количеству простых биллиардов, входящих в топологический) и сделаем разрезы на этих поверхностях вдоль циклов, являющихся прообразами склеиваемых ребер. Отождествим точки на краях этих разрезов в соответствии с законом отражения для каждого топологического биллиарда. Таким образом получим требуемое утверждение.

# 4.5 Поверхности уровней особых значений интеграла в топологических биллиардах, допускающих прямые склейки: седловые значения

**Предложение 4.5.** Особыми уровнями для топологических биллиардов, допускающих прямые склейки, содержащих е, будут уровни, соответствующие значениям интеграла  $\lambda = -b, a$ .

Тогда на поверхностях уровня седловых значений интеграла лежат особые слои следующих атомов

- $B_n$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_\beta(k \times ne + (nh2')_y), \Delta_\beta(k \times ne + (nh2')_{2y});$
- $B_{2n}$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y), \Delta_{\beta}(2k \times ne + (4nh2')_{y,y});$
- два экземпляра  $B_n$  на уровне  $\lambda = -b$  для обобщенных лент  $\Delta_{\gamma}(2k \times ne + 2nh2')_2;$
- $B_{2n+1}$  на уровне  $\lambda = -b$  для  $\Delta_{\beta}(2k \times ne + 4nh2' + 2nh1' + (4q')_{2z}), \ \Delta_{\beta}(2k \times ne + 2nh2' + (2kh1')_y + (2q')_z);$
- $C_{2n}$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_{\beta}(k \times ne + nh2')^2$ ,  $\Delta_{\beta}(k \times ne + nh2')^4$ ,  $\Delta_{\beta}(k \times ne + 2nh2')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2')^4$ ;

- $C_{2n+1}$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ ;
- $C_{2n+2}$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^4$ ;
- два  $C_{2n}$  на уровне  $\lambda = -b$  для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2');$
- два  $C_{2n+1}$  на уровне  $\lambda = -b$  для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2' + 4kh1' + 4q')$ , обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1' + 4q')$ ;
- $B_n^*$  на уровне  $\lambda = -b$  для биллиардов  $\Delta_\beta(2k \times ne + 2nh2' + 2kh1' + (2q')_z), \ \Delta_\beta(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z);$
- $B_{2k+1}$  на уровне  $\lambda = a$  для биллиардов  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y}), \Delta_{\beta}(2k \times ne + (2nh2')_{y} + 2kh1' + (2q')_{z});$
- $B_k^*$  на уровне  $\lambda = a$  для биллиардов  $\Delta_\beta(2k \times ne + (2nh2')_y), \ \Delta_\beta((2k \times ne)_y + (2nh2')_y), \ \Delta_\beta(2k \times ne + 2nh2' + 2kh1' + (2q')_z), \ \Delta_\beta(2k \times ne + 2nh2' + (2kh1')_y + (2q')_z);$
- $B_k^{**}$  на уровне  $\lambda = a$  для биллиардов  $\Delta_\beta(2k \times ne + (4nh2')_{y,y}), \ \Delta_\beta(2k \times ne + 4nh2' + 2kh1' + (4q')_{2z});$
- $C_{2k+1}$  на уровне  $\lambda = a$  для обобщенной ленты  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$ , а также для биллиардов  $\Delta_{\beta}(k \times ne + nh2')^2$ ,  $\Delta_{\beta}(k \times ne + nh2')^4$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ ;
- $C_{2k+2}$  ha yposhe  $\lambda = a$  das buanuapdos  $\Delta_{\beta}(k \times ne + 2nh2')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2')^4$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 4q')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^4$ ;
- два  $C_{2k}$  на уровне  $\lambda = a$  для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1');$
- два  $C_{2k+1}$  на уровне  $\lambda = a$  для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2')$  и для обобщенного тора  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2' + 4kh1' + 4q');$

#### Доказательство. Шаг 1.

Рассмотрим области, образованные склейкой двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + nh2')$ . Как уже известно, в изоэнергетической поверхности такого обобщенного эллипса на уровне интеграла  $\lambda = -b$  лежит атом  $B_n$ , а на уровне  $\lambda = a$  лежит атом  $B_k$ .

1. Биллиард с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$  получен отождествлением прямых сегментов и нижних выпуклых сегментов двух рассматриваемых обобщенных эллипсов. Отождествляя прямые сегменты, получим биллиард, эквивалентный биллиарду  $\Delta_{\alpha}((2k + 1) \times ne)$ . В его изоэнергетической поверхности на уровне интеграла  $\lambda = -b$  лежит атом  $B_n$ , а на уровне  $\lambda = a$ лежит атом  $B_{2k+1}$ .

Осуществляя склейку вдоль нижних сегментов, проследим, как преобразуются особые уровни интеграла.

Рассмотрим частный случай, когда k = n = 1.

Тогда на особом уровне интеграла  $\lambda = -b$  лежит особый слой атома *B*. Необходимо осуществить его разрез вдоль кривой, параллельной особой окружности. Эта кривая является прообразом нижних сегментов. Вдоль этих сегментов до разреза отождествлялись векторы  $v_1$  с  $v_2$  и  $v_4$  с  $v_3$ на верхних и нижних листах. После разреза необходимо склеить края разреза в соответствии с новым биллиардным законом, а именно: точки, являющиеся прообразами нижнего сегмента нижнего листа *e*, оснащенные векторами  $v_1$  и  $v_4$ , необходимо склеить с точками, являющимися прообразами нижнего сегмента верхнего листа *e*, оснащенными векторами  $v_2$  и  $v_3$  соответственно. Нетрудно заметить, что получим вновь особый слой атома *B*.

На уровне интеграла  $\lambda = a$  изначально лежит особый слой атома  $B_3$ . Разрез необходимо осуществить вдоль кривой, трансверсальной особой окружности, которая является прообразом нижних

сегментов биллиарда. После склейки краев разреза в соответствии с новым биллиардным законом, особый слой атома  $B_3$  «перекручивается», и получаем особый слой атома  $B^*$ .

Таким образом, для произвольного числа листов в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$  на уровне интеграла  $\lambda = -b$  лежит атом  $B_n$ , а на уровне  $\lambda = a$  лежит атом  $B_k^*$ .

2. Область с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y})$  получена из области из предыдущего пункта отождествлением верхних сегментов.

Рассмотрим частный случай, когда k = n = 1.

Тогда на особом уровне интеграла  $\lambda = -b$  лежит особый слой атома *B*. Необходимо осуществить его разрез вдоль кривой, параллельной особой окружности. Эта кривая является прообразом верхних сегментов. Аналогично предыдущему пункту вновь получим особый слой атома *B*.

На уровне интеграла  $\lambda = a$  до осуществления склейки лежит особый слой атома  $B^*$ . Заметим, что в предыдущем пункте он был получен после разреза особого слоя атома  $B_3$  вдоль кривой, трансверсальной особой окружности, и последующим отождествлением краев разреза с «перекруткой» одного из срезов. Теперь осуществим разрез особого слоя атома  $B^*$  вдоль кривой, трансверсальной особой окружности, которая является прообразом верхних сегментов биллиарда. Тогда при склейке краев разреза с «перекруткой» одного из них, вновь получим особый слой атома  $B_3$ .

Таким образом, для произвольного числа листов в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y})$  на уровне интеграла  $\lambda = -b$  лежит атом  $B_n$ , а на уровне  $\lambda = a$  лежит атом  $B_{2k+1}$ .

3. Биллиард-лента  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$  получен из двух обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + nh2')$  склейкой их прямых сегментов и склейкой противоположных им выпуклых сегментов (боковых свободных сегментов границы).

Чтобы понять, как преобразуется уровень интеграла  $\lambda = a$  при склейке, рассмотрим частный случай, когда k = n = 1.

Тогда в изоэнергетической поверхности обобщенного эллипса  $\Delta_{\alpha}(e+h2')$  на уровнях интеграла  $\lambda = a, -b$  лежат атомы B.

Рассмотрим уровень интеграла  $\lambda = -b$ . До разреза на этом уровне в изоэнергетической поверхности лежали особые слои двух атомов B. Особый слой первого атома B полностью состоит из прообразов точек лишь одного из экземпляров обобщенного эллипса  $\Delta_{\alpha}(e + h2')$ , а особый слой второго атома B - из прообразов второго. При осуществлении склейки двух таких областей вдоль прямых сегментов и вдоль противоположных им боковых сегментов, необходимо разрезать особые уровни атомов B вдоль кривых, являющихся прообразами точек данных сегментов. Эти кривые трансверсальны особой окружности атома B, их две на каждом из особых слоев. Вдоль них до разреза отождествлялись векторы  $v_1 c v_4 u v_2 c v_3$ . После осуществления операции склейки каждый из краев разрезов нужно будет склеить по следующему правилу: точки прообразов прямых сегментов одного экземпляра области, оснащенные векторами  $v_1$  и  $v_2$ , будут отождествляться с точками прообразов прямых сегментов второго экземпляра области, особые слои двух атома B после описанной склейки преобразов прямых сегментов второго экземпляра области, особые слои двух атома B после описанной склейки преобразов прямых сегментов второго экземпляра области, оснащенные векторами  $v_1$  и  $v_2$ , будут отождествляться с точками прообразов прямых сегментов второго экземпляра области, оснащенные векторами  $v_4$  и  $v_3$  соответственно, и наоборот. Таким образом, особые слои двух атома B после описанной склейки преобразуются в особые слои двух атомов B.

На уровне интеграла  $\lambda = a$  до разреза также лежали особые уровни двух атомов *B*. Разрез осуществляется по кривым, параллельным особым окружностям, и таких кривых две на каждом атоме *B*. При склейке полученных после разреза частей в соответствии с биллиардным законом, учтем, что кривые, вдоль которых осуществлялся разрез (а именно, прообразы прямых сегментов) необходимо отождествить между собой, так как в новом биллиарде прямой сегмент является образом еще одной особой окружности атома, лежащего на этом уровне интеграла. Итак, получим особый слой атома  $C_3$ .

Итак, если число листов произвольное, то при склейке двух областей  $\Delta_{\alpha}(k \times ne+nh2')$  в биллиардленту  $\Delta_{\gamma}(2k \times ne+2nh2')_2$  на уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов  $B_n$ , уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+1}$  4. Чтобы получить из рассмотренного выше биллиарда-ленты область с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y)$ , необходимо склеить все нижние сегменты между собой. Посмотрим, как при такой операции преобразуются поверхности уровней интеграла  $\lambda = -b$ , *a* в изоэнергетической поверхности.

Для наглядности, опять же, рассмотрим частный случай, когда k = n = 1.

На уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов *B*. На каждом особом слое делаем по разрезу вдоль прообразов нижних сегментов биллиарда. Разрезы осуществляются по кривым, параллельным особой окружности. Вдоль образов этих кривых на нижних сегментах отождествлялись векторы  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$  на каждом из листов. После разреза необходимо отождествить образы точек нижнего сегмента верхнего листа *e*, оснащенные векторами  $v_1$  и  $v_3$ , с образами точек нижнего сегмента нижнего листа *e*, оснащенными векторами  $v_2$  и  $v_4$  соответственно. Аналогично поступаем с точками нижних сегментов верхнего и нижнего листов биллиарда h2'. Отметим, что отождествляемые точки лежат на особых уровнях различных атомов *B*. Таким образом особые слои двух атомов *B* перейдут в особый слой одного атома  $B_2$ .

На особом уровне интеграла  $\lambda = a$  лежит особый слой  $C_3$ . Разрез осуществляется вдоль кривой, являющейся прообразом нижних сегментов - такая кривая трансверсальна особой окружности. Отождествляем точки по различным сторонам разреза в соответствии с вышеописанным правилом. При склейке один из краев разреза «перекручивается». Так особый слой атома  $C_3$  переходит в особый слой атома  $B^*$ .

Таким образом, для произвольного числа листов получим, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y)$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_{2n}$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $B_k^*$ .

5. Чтобы получить область  $\Delta_{\beta}(k \times ne + nh2')^2$  обобщенной ленты из пункта 3, необходимо склеить между собой все нижние сегменты и все верхние сегменты.

Вновь обратиться к частному случаю, когда k = n = 1.

На уровне интеграла  $\lambda = -b$  осуществляем по два разреза на обоих особых слоях атомов *B*. Разрезы проходят вдоль кривых, являющихся прообразами верхних и нижних сегментов. До разреза на этих сегментах отождествлялись векторы  $v_1 c v_2 u v_3 c v_4$  на каждом из листов, как и в предыдущем примере. После склеивания в соответствии с новым законом отражения мы отождествляем прообразы точек нижнего и верхнего сегментов с верхнего листа *e*, оснащенные векторами  $v_1$  и  $v_3$ , с прообразами точек нижнего и верхнего сегментов с нижнего листа *e*, оснащенные векторами  $v_2$  и  $v_4$  соответственно, и аналогично поступаем с образами точек сегментов h2'. Получим особый уровень атома  $C_2$ .

На уровне интеграла  $\lambda = a$  делаем два разреза вдоль кривых, трансверсальных особой окружности, и осуществляя склейку различных сторон разреза в соответствии с новым законом отражения будем вновь иметь особый слой атома  $C_2$ : «перекрутка» одного края разреза давала атом  $B^*$  в предыдущем примере, осуществив «перекрутку» обоих краев срезов, получим тот же самый особый слой того же атома.

Таким образом для произвольного числа листов в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(k \times ne + nh2')^2$  на уровне  $\lambda = -b$  имеем особый слой атома  $C_{2n}$ , а на уровне  $\lambda = a$  имеем особый слой атома  $C_{2k+1}$ .

#### Шаг 2.

Рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + 2nh2')$ . Рассматриваемая в данном шаге группа биллиардов с прямыми склейками будет получена осуществлением операции склейки различных сегментов этих обобщенных эллипсов.

В теореме 4.2 было доказано, что приклеивание к биллиарду ряда n h2' не изменит грубую молекулу. Таким образом, для того, чтобы получить новые слоения Лиувилля, неэквивалентные рассмотренным ранее, необходимо оба прямых ребра сделать ребрами склейки. Для начала, склейкой двух прямых ребер получим биллиард-ленту, эквивалентный биллиарду  $\Delta_{\alpha}((2k + 2) \times ne)$ . В изоэнергетической

поверхности на уровне  $\lambda = -b$  имеем два особых слоя атомов  $B_n$ , а на уровне  $\lambda = a$  имеем особый слой атома  $C_{2k+2}$ .

1. Чтобы получить из вышеописанного биллиарда-ленты топологический биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y})$ , необходимо склеить между собой все нижние сегменты.

Для наглядности рассмотрим случай k = n = 1. Тогда имеем биллиард, составленный из двух биллиардов e и четырех биллиардов h2', эквивалентный биллиарду-ленте  $\Delta_{\alpha}(4e)$ .

Склеим все его нижние сегменты, причем учтем что биллиард имеет два нижних сегмента биллиарда e и две пары нижних сегментов биллиардов h2'.

На уровне  $\lambda = -b$  имеем два особых слоя атомов *B*. Аналогично пункту 4 шага 1 доказывается, что два особых слоя атома *B* переходят в особый слой атома  $B_2$ .

На уровне  $\lambda = a$  имеем особый слой атома  $C_4$ . Осуществим разрез вдоль кривой, трансверсальной особой окружности, являющейся прообразом точек нижних сегментов биллиарда. Вдоль них до разреза отождествлялись векторы  $v_1$  с  $v_2$  и  $v_4$  с  $v_3$  на нижних и верхних листах. После разреза необходимо отождествить образы точек нижнего сегмента верхнего листа e, оснащенные векторами  $v_1$  и  $v_3$ , с образами точек нижнего сегмента нижнего листа e, оснащенные векторами  $v_1$  и  $v_3$ , с образами точек нижнего сегмента нижнего листа e, оснащенными векторами  $v_2$  и  $v_4$  соответственно. Аналогично поступаем с точками нижних сегментов верхних и нижних листов биллиардов h2'. Таким образом происходит «перекрутка» особого слоя атома  $C_4$ , в результате которой получим атом  $B^{**}$ .

Рассуждая аналогичным образом, для произвольного числа листов в биллиарде  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y})$  в изоэнергетической поверхности на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_{2n}$ , а на на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_{k}^{**}$ .

2. Чтобы получить из биллиарда-ленты топологический биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2')^2$ , необходимо осуществить склейку вдоль всех верхних сегментов и всех нижних сегментов.

Вновь обратимся к частному случаю k = n = 1. Таким образом, рассмотрим биллиард-ленту, эквивалентный биллиарду  $\Delta_{\alpha}(4e)$  и отождествим его верхние сегменты.

Тогда на уровне интеграла  $\lambda = -b$  лежат два особых слоя атомов *B*. Аналогично пункту 5 шага 1 доказываем, что два особых слоя атомов *B* перейдут в особый слой атома  $C_2$ .

На уровне интеграла  $\lambda$  = лежит особый слой атома  $C_4$ . Аналогично пункту 5 шага 1 доказываем, что особый слой атома  $C_4$  перейдет в особый слой атома  $C_4$ .

Таким образом, для произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(k \times ne + 2nh2')^2$  на уровне интеграла  $\lambda = -b$  имеем особый слой атома  $C_{2n}$ , а на уровне интеграла  $\lambda = a$  имеем особый слой атома  $C_{2k+2}$ .

# Шаг 3.

Рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + 2nh2' + kh1' + 2q')$  и попробуем склейкой таких биллиардов получить все возможные биллиарды из теоремы классификации (теорема 3.2).

Как и в шаге 2, будем рассматривать только те биллиарды, в которых все прямые сегменты являются сегментами склейки.

1. Тогда первый возможный биллиард - область с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 4nh2' + 2kh1' + (4q')_{2z})$ . Удобнее всего его получить как склейку нижних прямых сегментов биллиардаленты  $\Delta_{\gamma}(2k \times ne + 4nh2' + 2kh1' + 4q')_2$  - в нем сегментами склейки являются прямые сегменты биллиардов h2', и такой биллиард эквивалентен обобщенной ленте  $\Delta_{\gamma}((2k+2) \times ne)_2$ . В изоэнергетической поверхности такого биллиарда на уровне интеграла  $\lambda = -b$  лежат два особых слоя атомов  $B_n$ , а на уровне интеграла  $\lambda = a$  имеем особый слой атома  $C_{2k+2}$ .

Вновь для наглядности рассуждений обратимся к частному случаю k = n = 1.

Тогда на особом уровне интеграла  $\lambda = -b$  в изоэнергетической поверхности биллиарда-ленты лежат два особых уровня атомов B. Разрежем каждый экземпляр вдоль кривой, параллельной особой окружности, которая является прообразом нижних прямых сегментов. Вдоль таких сегментов отождествлялись векторы  $v_1 c v_2 u v_3 c v_4$  на каждом из листов. После разреза необходимо отождествить точки по разным краям разреза в соответствии со следующим правилом: образы точек нижнего сегмента верхнего листа h1', оснащенные векторами  $v_1$  и  $v_3$ , с образами точек нижнего сегмента нижних сегментов верхнего и нижнего листа h1', оснащенными векторами  $v_2$  и  $v_4$  соответственно. Аналогично поступаем с точками нижних сегментов верхнего и нижнего листов биллиардов q'. Отметим что образы таких отождествляемых точек лежат на особом уровне различных атомов B. Таким образом два атома B перейдут в один атом  $B_2$ . Далее необходимо отождествить кривые склейки между собой, так как сегменты склейки есть образ особой окружности. Таким образом особый слой атома  $B_2$  перейдет в особый слой атома  $B_3$ .

На уровне интеграла  $\lambda = a$  имеем особый слой атома  $C_4$ . Рассуждая аналогично пункту 1 шага 2, получим, что особый слой атома  $C_4$  переходит в особый слой атома  $B^{**}$ .

Таким образом, для произвольного числа листов имеем: в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + 4nh2' + 2kh1' + (4q')_{2z})$  на уровне интеграла  $\lambda = -b$  имеем особый слой атома  $B_{2n+1}$ , а на уровне интеграла  $\lambda = a$  имеем особый слой атома  $B_k^{**}$ .

2. Биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$  получен из биллиардаленты  $\Delta_{\gamma}(2k \times ne + 4nh2' + 2kh1' + 4q')_2$ , описанного в предыдущем пункте, отождествлением верхних сегментов между собой и нижних сегментов между собой.

Рассмотрим частный случай n = k = 1.

Тогда на уровне интеграла  $\lambda = -b$  в изоэнергетической поверхности биллиарда-ленты лежат два особых слоя атомов *B*. Сначала отождествим нижние сегменты между собой, и тем самым в изоэнергетической поверхности получим атом *B*<sub>3</sub>, рассуждая аналогично предыдущему пункту.

Теперь осуществим склейку верхних сегментов. Необходимо осуществить разрез вдоль кривой, параллельной особой окружности атома  $B_3$ . Образ этой кривой есть верхние сегменты, вдоль них отождествлялись векторы  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$ . Края разреза необходимо склеить в соответствии с новым биллиардным законом, а именно: точки, являющиеся прообразами верхнего сегмента нижнего листа e, оснащенные векторами  $v_1$  и  $v_4$ , необходимо склеить с точками, являющимися прообразами верхнего сегмента верхнего листа e, оснащенными векторами  $v_2$  и  $v_3$  соответственно. Аналогично поступим с точками, являющимися прообразами верхних сегментов листов h2' и q'. Таким образом из особого слоя атома  $B_3$  склейкой верхних сегментов биллиарда получим особый слой атома  $C_3$ .

Рассуждениями, аналогичными рассуждениям в пункте 5 шага 1, на уровне интеграла  $\lambda = a$  из особого слоя атома  $C_4$  получим особый слой атома  $C_4$ .

Таким образом, в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^2$  на уровне интеграла  $\lambda = -b$  имеем особый слой атома  $C_{2n+1}$ , а на уровне интеграла  $\lambda = a$  имеем особый слой атома  $C_{2k+2}$ .

## Шаг 4.

Рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q')$  и попробуем склейкой таких биллиардов получить все возможные биллиарды из теоремы классификации (тоерема 3.2).

Как и ранее, рассмотрим лишь те случаи, когда все прямые сегменты есть сегменты склейки. Тогда мы получим биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$ . Его удобно получить из соответствующего биллиарда-ленты  $\Delta_{\gamma}(2k \times ne + 4nh2' + 4kh1' + 8q')_2$  (в нем сегментами склейки являются прямые боковые сегменты) отождествлением свободных верхних и нижних сегментов, являющихся, очевидно, прямыми.

Для наглядности вновь остановимся на частном случае k = n = 1.

Рассмотрим уровень интеграла  $\lambda = -b$ . Если бы верхний сегмент был выпуклым, то по аналогии с пунктом 4 шага 3 отождествлением нижних прямых сегментов из двух особых слоев атомов B мы

получили особый слой атома  $C_3$ . Однако, теперь кривые, являющиеся прообразами верхних сегментов, которые в новом биллиарде являются сегментами склейки, необходимо отождествить. Такие кривые параллельны особой окружности атома. Таким образом получим особый слой атома  $C_4$ .

Рассуждениями, аналогичными рассуждениям в пункте 5 шага 1, на уровне интеграла  $\lambda = a$  из особого слоя атома  $C_4$  получим особый слой атома  $C_4$ .

Таким образом, в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^2$  на уровне интеграла  $\lambda = -b$  имеем особый слой атома  $C_{2n+2}$ , а на уровне интеграла  $\lambda = a$  имеем особый слой атома  $C_{2k+2}$ .

#### Шаг 5.

Рассмотрим два экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$  и попробуем их склейкой получить биллиарды из теоремы классификации (теорема 3.2). Этот биллиард имеет на границе как прямые сегменты (без ограничения общности считаем что это нижние и левые сегменты) и выпуклые (в нашем предположении, это верхние и правые сегменты).

Как и в предыдущих шагах, обязательно будем отождествлять все прямые сегменты.

1. Именно отождествлением всех прямых сегментов получим первый возможный биллиард - область с одной конической точкой  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z)$ .

Для того чтобы понять, какие особые слои лежат на уровнях интеграла  $\lambda = -b, a$ , рассмотрим частный случай k = n = 1.

Сначала отождествим между собой боковые сегменты двух экземпляров обобщенных эллипсов  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$ , получим биллиард, эквивалентный  $\Delta_{\alpha}(3 \times 1e)$ , тогда на уровне интеграла  $\lambda = a$  будет лежать особый слой атома  $B_3$ . Аналогично примеру, рассмотренному в пункте 1 шага 1, получим, что особый слой атома  $B_3$  переходит в особый слой атома  $B^*$ .

Отождествляя сначала нижние сегменты, а потом боковые, аналогично получим, что на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B^*$ .

Таким образом в случае произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z)$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_n^*$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $B_k^*$ .

2. Отождествлением прямых сегментов и верхних сегментов получим биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z).$ 

Рассмотрим частный случай k = n = 1.

Рассматриваемый биллиард  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$  можно получить из биллиарда из предыдущего пункта  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z)$  отождествлением верхних сегментов. Тогда на уровне интеграла  $\lambda = a$  необходимо осуществить разрез вдоль кривой, трансверсальной особой окружности атома  $B^*$ . Образ этой кривой есть верхние сегменты, вдоль них отождествлялись векторы  $v_1 c v_2$  и  $v_3 c v_4$ . Края разреза необходимо склеить в соответствии с новым биллиардным законом, а именно: точки, являющиеся прообразами верхнего сегмента нижнего листа e, оснащенные векторами  $v_1$  и  $v_4$ , необходимо склеить с точками, являющимися прообразами верхнего сегмента верхнего листа e, оснащенными векторами  $v_2$  и  $v_3$  соответственно. Аналогично поступим с листами h2'.

Отметим, что в пункте 1 шага 5 и в пункте 1 шага 1 такой переклейкой особый слой атома  $B_3$ «перекручивался» и переходил в особый слой атома  $B^*$ . Совершая «перекрутку» второй раз, из особого слоя атома  $B^*$  вновь получим особый слой атома  $B_3$ .

На уровне интеграла  $\lambda = -b$  до отождествления верхних сегментов лежит особый слой атома  $B^*$ . При отождествлении верхних сегментов необходимо осуществить разрез вдоль кривой, параллельной особой окружности. Эта кривая есть образ верхних сегментов биллиарда, вдоль которых склеивались векторы  $v_1$  с  $v_2$  и  $v_4$  с  $v_3$ . После разреза необходимо отождествить образы точек верхнего сегмента верхнего листа e, оснащенные векторами  $v_1$  и  $v_3$ , с образами точек верхнего сегмента нижнего листа e, оснащенными векторами  $v_2$  и  $v_4$  соответственно. Аналогично поступаем с точками верхних сегментов верхних и нижних листов биллиардов h2'. Таким образом, особый слой атома  $B^*$  переходит в особый слой атома  $B^*$ . Таким образом в случае произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_n^*$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $B_{2k+1}$ .

3. Биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 2nh2' + (2kh1')_y + (2q')_z)$  может быть получен из биллиарда из первого пункта  $\Delta_{\beta}(2k \times ne + 2nh2' + 2kh1' + (2q')_z)$  отождествлением боковых выпуклых сегментов.

Рассмотрим частный случай k = n = 1.

Тогда на уровне интеграла  $\lambda = -b$  лежал особый слой атома  $B^*$ . Отметим, что он был получен из особого слоя атома  $B_3$  разрезом вдоль трансверсальной особой окружности атома кривой и отождествлением краев разреза с «перекруткой» одного из краев, причем образ кривой разреза - нижние сегменты биллиарда. Аналогично, разрезая особый слой атом  $B^*$  вдоль кривой, являющейся прообразом верхних сегментов, и вновь отождествляя края разреза с «перекруткой» одного из краев, получим, что особый слой атома  $B^*$  вновь перейдет в особый слой атома  $B_3$ .

Отметим, что в предыдущем пункте из особого слоя атома  $B^*$  отождествлением сегментов, прообразы которых параллельны особой окружности атома  $B^*$ , вновь получили атом  $B^*$ . Таким образом, на уровне  $\lambda = a$  из особого слоя атома  $B^*$  разрезом вдоль кривой параллельной особой окружности атома  $B^*$  и аналогичной склейкой краев разреза вновь получим особый слой атома  $B^*$ 

Таким образом в случае произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_{2n+1}$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $B_k^*$ .

4. Наконец, биллиард с четырьмя коническими точками  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$  можем получить из биллиарда из предыдущего пункта  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$  отождествлением верхних сегментов.

Рассмотрим частный случай k = n = 1.

На уровне интеграла  $\lambda = -b$  лежит особый слой атома  $B_3$ . Поступая аналогично пункту шага 3, склейкой вдоль верхнего сегмента получим особый слой атома  $C_3$ .

Отметим, что биллиард  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$  также может быть получен из биллиарда из пункта 2  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z)$  отождествлением боковых выпуклых сегментов. Тогда, вновь обращаясь к частному случаю k = n = 1, аналогичным методом на уровне интеграла  $\lambda = a$  из особого слоя атома  $B_3$  получим особый слой атома  $C_3$ .

Таким образом в случае произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^2$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n+1}$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+1}$ .

# Шаг 6.

Следующая часть доказательства будет полностью посвящена областям, полученным склеиванием всех свободных сегментов биллиардов, имеющих на границе два угла  $\pi/2$ . Удобнее всего такие биллиарды представить как склеиванием четырех экземпляров обобщенных эллипсов

1. Для начала рассмотрим четыре экземпляра обобщенного эллипса  $\Delta_{\alpha}(k \times ne + nh2')$ , две пары которых образуют два обобщенных биллиарда с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$ , для удобства будем будем называть их биллиард I и II.

Чтобы склеить из двух биллиардов  $\Delta_{\beta}(2k \times ne + (2nh2')_y)$  первый биллиард из рассматриваемой в этом шаге серии, необходимо отождествить все свободные сегменты между собой - верхние выпуклые и боковые выпуклые.

Для того чтобы проследить как изменятся особые слои интеграла  $\lambda = -b, a$  в изоэнергетической поверхности, рассмотрим частный случай k = n = 1.

Итак, для начала склеим боковые выпуклые сегменты и получим биллиард, вообще говоря эквивалентный биллиарду  $\Delta_{\beta}(4 \times 1e + (4h2')_{2y})$ .

На уровне интеграла  $\lambda = -b$  лежит  $B_3$ . При осуществлении склейки вдоль верхних сегментов, мы делаем два разреза особого слоя вдоль кривых, параллельных особым окружностям. Вдоль образов этих кривых до разреза склеивались векторы  $v_1$  с  $v_2$  и  $v_3$  с  $v_4$ . Отождествим края разреза по следующему правилу - прообразы точек верхнего сегмента на верхнем листе e биллиарда I, оснащенные векторами  $v_1$  и  $v_3$ , отождествим с прообразами точек верхнего сегмента на верхнем листа e биллиарда II, оснащенными векторами  $v_2$  и  $v_4$ . Аналогично поступим с прообразами точек верхних сегментов нижних листов e, а также верхних сегментов верхних и нижних листов левого и правого h2'. Таким образом особый слой атома  $B_2$  переходит в особый слой атома  $C_2$ .

Чтобы понять, как преобразуется особый слой атома на уровне интеграла  $\lambda = a$ , гораздо удобнее будет сначала отождествить верхние сегменты экземпляров *I* и *II*, а потом уже и боковые.

После отождествления верхних сегментов получим биллиард, эквивалентный  $\Delta_{\beta}(1 \times 4e + (4h2')_{2y})$ . На уровне  $\lambda = a$  лежит особый слой атома  $B_3$ . Аналогичными рассуждениями получим, что такой особый слой переходит в особый слой атома  $C_3$ .

Итак, для произвольного числа листов имеем, что в изоэнергетической поверхности  $\Delta_{\beta}(k \times ne + nh2')^4$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n}$ , на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+1}$ .

2. Теперь рассмотрим обобщенный эллипс  $\Delta_{\alpha}(k \times ne + 2nh2')$ . Возьмем четыре таких эллипса, и склеим из них пару обобщенных биллиардов с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2nh2')$ , для удобства будем будем называть их биллиард *I* и *II*.

Следующий биллиард из этой серии будет получен отождествлением всех свободных сегментов между собой, а именно верхних выпуклых и боковых прямых.

Вновь обратимся к частному случаю k = n = 1.

Отождествив сначала прямые боковые сегменты, а потом верхние выпуклые, на уровне интеграла  $\lambda = -b$  аналогично разобранному примеру сначала получим особый слой атома  $B_2$ , а потом разрежем и склеим его в особый слой атома  $C_2$ .

Отождествляя сначала верхние выпуклые сегменты, а потом боковые прямые, как и в примере выше уровне интеграла  $\lambda = a$  сначала получим особый слой атома  $B_3$ . При разрезе и последующей склейке его особого слоя вдоль кривых, являющихся образами боковых сегментов, учтем, что теперь вдоль бокового сегмента проходит особая окружность нового атома. Таким образом, из особого слоя атома  $B_3$  получим особый слой атома  $C_4$ .

Таким образом, для произвольного числа листов имеем, что в изоэнергетической поверхности  $\Delta_{\beta}(k \times ne+2nh2')^4$  на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n}$ , на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+2}$ .

- 3. Аналогичными рассуждениями из четырех экземпляров  $\Delta_{\alpha}(k \times ne + nh2' + kh1' + q')$  получим биллиард  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ , на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n+1}$ , на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+1}$ .
- 4. Аналогичными рассуждениями из четырех экземпляров  $\Delta_{\alpha}(k \times ne + 2nh2' + kh1' + 2q')$  получим биллиард  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$ , на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n+1}$ , на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+2}$ .
- 5. Аналогичными рассуждениями из четырех экземпляров  $\Delta_{\alpha}(k \times ne + 2nh2' + 2kh1' + 4q')$  получим биллиард  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^4$ , на уровне интеграла  $\lambda = -b$  лежит особый слой атома  $C_{2n+2}$ , на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+2}$ .

# Шаг 7.

Рассмотрим области, гомеоморфные торам:  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2')$ , эквивалентный ему  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1')$ , и  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1' + 4nh2' + 4q')$ .

1. Биллиард  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2')$  получим склейкой верхних и нижних сегментов биллиарда-ленты  $\Delta_{\gamma}(2k \times 2ne + 4nh2')_{2}$ . В изоэнергетической поверхности такого биллиарда-ленты на уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов  $B_{2n}$ , а на уровне интеграла  $\lambda = a$  лежит особый слой атома  $C_{2k+1}$ .

Рассмотрим частный случай k = n = 1.

Тогда в изоэнергетической поверхности биллиарда-ленты  $\Delta_{\gamma}(2 \times 2e + 4h2')_2$  на уровне  $\lambda = a$  лежит особый слой атома  $C_3$ . Осуществим разрез особого слоя по кривым, являющихся прообразами верхних и нижних сегментов. Таких кривых ровно две, они трансверсальны особым окружностям. Вдоль них отождествлялись векторы  $v_1$  с  $v_2$  и  $v_4$  с  $v_3$  на верхних и нижних сегментах. Осуществим склейку краев разреза в соответствии с биллиардным законом: прообразы точек верхних сегментов биллиардов e, оснащенные векторами  $v_1$  и  $v_4$ , склеим с прообразами точек нижних сегментов биллиардов e, оснащенных векторами  $v_1$  и  $v_4$ . Аналогично поступим с прообразами точек сегментов биллиардов h2'. Отметим, что отождествляемые точки принадлежат одной компоненте связности разрезанного особого слоя. Тогда один особый слой атома  $C_3$ перейдет в два особых слоя атома  $C_3$ .

Отметим, что такой обобщенный тор можно также получить из биллиарда-ленты  $\Delta_{\gamma}(2k \times 2ne + 4nh2')_1$  отождествлением боковых прямых сегментов. Рассматривая вновь частный случай k = n = 1, на уровне интеграла  $\lambda = -b$  в изоэнергетической поверхности биллиарда-ленты  $\Delta_{\gamma}(2 \times 2e + 4h2')_1$  имеем особый слой атома  $C_2$ . Аналогично предыдущему пункту доказываем, что склейкой боковых сегментов биллиардного стола особый слой атома  $C_2$  перейдет в два особых слоя атома  $C_2$ .

Таким образом, для произвольного числа листов имеем, что в изоэнергетической поверхности биллиарда  $\Delta_{\alpha}^{T}(2k \times 2ne + 4nh2')$  на уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов  $C_{2n}$ , а на уровне интеграла  $\lambda = a$  лежат особые слои двух атомов  $C_{2k+1}$ .

- 2. Аналогично предыдущему пункту доказывается следующее утверждение: в изоэнергетической поверхности биллиарда  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1')$  на уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов  $C_{2n+1}$ , а на уровне интеграла  $\lambda = a$  лежат особые слои двух атомов  $C_{2k}$ .
- 3. Аналогично пункту 1 доказывается следующее утверждение: в изоэнергетической поверхности биллиарда  $\Delta_{\alpha}^{T}(2k \times 2ne + 4kh1' + 4nh2' + 4q')$  на уровне интеграла  $\lambda = -b$  лежат особые слои двух атомов  $C_{2n+1}$ , а на уровне интеграла  $\lambda = a$  лежат особые слои двух атомов  $C_{2k+1}$ .

# 5 Вычисление инвариантов Фоменко-Цишанга.

# 5.1 Молекула Фоменко-Цишанга - полный инвариант лиувиллевой эквивалентности

Итак, выше для каждого из топологических биллиардов было дано описание каждого слоя слоения Лиувилля, а именно была доказано, что неособые слои являются торами, а особые слои описываются 3-атомами. Однако, для полного описания топологии строения Лиувилля необходима дополнительная информация о том, как склеены между собой регулярные окрестности особых слоев. На каждом граничном торе выберем допустимые базисы и укажем матрицу перехода от одного базиса к другому. Структура атома задает правило выбора допустимых базисов.

Напомним, на граничном торе атома A в качестве цикла  $\lambda$  выбираем меридиан полнотория, то есть цикл, стягивающийся в точку внутри полнотория, а цикл  $\mu$  должен дополнять его до базиса. В этот случае удобно считать цикл  $\mu$  слоем расслоения Зейферта. Слои расслоения Зейферта имеют естественную ориентацию, задаваемую гамильтоновым векторным полем. Более точно, один из этих слоев является траекторией рассматриваемого векторного поля, а именно - критическая окружность дополнительного интеграла  $\lambda$ , ось полнотория. Ориентация этого слоя позволяет точно определить ориентацию на цикле  $\mu$  Трехмерный атом B имеет структуру тривиального  $S^1$ -расслоения на двумерным атомом B, а именно прямое произведение 2-атома B (утолщенной восьмерки) на окружность. В качестве цикла  $\lambda_i$  на каждом из граничных торов  $T_i$  возьмем слой этого расслоения. Дополнительные циклы  $\mu_i$  выберем следующим образом. Рассмотрим произвольное сечение P 3-атома B. Оно высекает на каждом граничном торе  $T_i$  некоторый цикл  $\mu_i$ , который и берем в качестве второго базисного цикла на  $T_i$ . Ориентация, как и в предыдущем случае, выбирается однозначно.

На других седловых атомах без звездочек выбор циклов осуществляется аналогичным образом, а именно цикл  $\lambda$  есть слой расслоения Зейферта, а циклы  $\mu$  высекаются на граничных торах сечением трехмерного атома плоским атомом.

На торах седловых атомов со звездочками выбор меток осуществляется по следующему правилу: цикл  $\lambda$  вновь выбираем как слой расслоения Зейферта. Теперь подробно опишем, исходя из каких соображений будем выбирать цикл  $\mu$ . В случае атома со звездочками сечение расслоение Зейферта имеет следующую особенность: дубль базы расслоения Зейферта  $\hat{P}$  можно вложить в сечение так, чтобы любой неособый слой пересекал этот дубль два раза, а особый слой - один раз.

Обозначим за U небольшую окрестность особого слоя атома

Рассмотрим вложенный в атом дубль  $\hat{P}$ , его границу обозначим  $\partial \hat{P} = \hat{P} \cap U$ .

Пусть  $\hat{\mu}_i$  это та часть границы дубля  $\hat{P}$ , которая лежит на рассматриваемом торе  $T_i$ . Возможны два нижеперечисленных случая.

Если  $\hat{\mu}_i$  есть объединение двух циклов, каждый из которых пересекает ранее выбранный  $\lambda_i$  ровно один раз, то в качестве цикла  $\mu_i$  выберем компоненту связности  $\hat{\mu}_i$  - поскольку  $\hat{\mu}_i$  есть сечение расслоения Зейферта на граничном торе  $T_i$ 

Если  $\hat{\mu}_i$  пересекает ранее выбранный цикл  $\lambda_i$  дважды (напомним, что  $\lambda_i$  есть слой расслоение Зейферта), то в качестве  $\mu$  выберем  $\frac{\hat{\mu}+\lambda_i}{2}$ . Отметим, что в этом случае локально выбранный  $\mu$  и есть настоящее сечение расслоения Зейферта на граничном торе  $T_i$ .

Для согласования различных способов задания циклов необходимо к одному из циклов  $\mu$ , выбранных вышеописанным способом, добавить цикл, кратный слою  $\lambda$ , причем кратность выбирается так, чтобы было выполнено следующее соотношение

$$\sum_{i} \mu_{i} = \frac{1}{2} \left( \sum \hat{\mu}_{i} + s\lambda \right) = \frac{\partial \hat{P} + s\lambda}{2}$$

В данной формуле *s* есть число звездочек в атоме.

Итак, каждое ребро молекулы мы разрезаем по тору и на берегах разреза задаем системы координат (базисы в фундаментальной группе), которые определяются согласованно с граничными атомами ребра. Матрица перехода от одного базиса к другому называется матрицей склейки. Поскольку допустимые базисы выбираются неоднозначно, матрица склейки может быть различной при различном выборе базисов. Однако, по одной матрице склейки можно вычислить числовые метки  $r, \varepsilon, n$ , которые инвариантны относительно допустимых замен базисов на граничных торах (см. леммы 4.5 и 4.6 книги [2]). Правила подсчета этих чисел подробно описаны в [2].

**Определение 5.1.** Молекула, снабженная метками r,  $\varepsilon$ , n, называется меченой молекулой или инвариантом Фоменко-Цишанга.

#### 5.2 Подсчет меток.

При доказательстве следующей теоремы введем обозначение. Для простых биллиардов e, h1, h2, q (а также топологических биллиардов, полученных склейкой из этих биллиардов) параметр верхнего (и нижнего, если он выпуклый) сегмента обозначим  $\lambda_2$ , а параметр правого (и левого, если он выпуклый) сегмента обозначим  $\lambda_1$ .

**Определение 5.2.** Назовем ориентацию цикла **согласованной**, если его ориентация совпадает с ориентацией векторов скорости, и **несогласованной**, если ориентация цикла противоположна ориентации векторов скорости.

**Предложение 5.1.** Все неэквивалентные друг другу топологические эллиптические биллиарды, допускающие лишь выпуклые склейки, представлены таблице в пункте 6.3. В левом столбце - их схематичное обозначение, далее следует частный случай для конкретных значений  $n, k, \alpha_{-}, \beta_i$ , и последний столбец - меченые молекулы, соответствующие каждому классу биллиардов.

Отметим, что все классы содержат счетное количество биллиардов, кроме класса, включающего в себя биллиарды, содержащие лишь q, таких биллиардов ровно четыре.

Все неэквивалентные друг другу топологические эллиптические биллиарды, допускающие лишь прямые склейки и содержащие биллиард е, представлены таблице в пункте 6.4.

В левом столбце - их схематичное обозначение, в правом столбце - меченые молекулы, соответствующие каждому классу биллиардов.

В тех случаях, когда можно удобно изобразить частный случай биллиарда, его изображение представлено слева от схемы.

Доказательство. Опишем, как выглядит грубая молекула для различных типов топологических биллиардов, основываясь на результатах предложений 4.1, 4.2, 4.5.

Грубые молекулы топологических биллиардов, содержащих область e, устроены следующим образом: Поскольку такие биллиарды имеют два особых уровня интеграла  $\lambda = -b, a$  - на таких уровнях в изоэнергетической поверхности лежат особые слои седловых атомов. Кроме того, имеем два граничных значения интеграла  $\lambda = \lambda_2, \lambda_1$  -на таких уровнях лежат атомы A.Все остальные слои в изоэнергетической поверхности - торы. Таким образом, грубые молекулы имеют три вида ребер - ребра, соединяющие граничные атомы A, соответствующие значению интеграла  $\lambda = -\lambda_2$  с первым седловым атомом, соответствующим значению интеграла  $\lambda = -b$ . Такие ребра соответствуют значениям интеграла  $\lambda \in (-b, -\lambda_2)$ . Следующий тип ребер соединяет седловые атомы (таких ребер одно, два или четыре), и эти ребра соответствуют значениям интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\pm \infty\}$ . Последний тип ребер соединяет седловой атом, соответствующий значению интеграла  $\lambda = a$ , с граничными атомами A, соответствующими значениям интеграла  $\lambda = \lambda_1$ . Такие ребра соответствуют значениям интеграла  $\lambda \in (+\lambda_1, a)$ .

Отметим, что для всех таких молекул каждому световому тору (их может быть один, два или четыре в зависимости от области, как следует из теоремы 4.1) соответствует точка на одном из средних ребер молекулы (которых также один, два или четыре в зависимости от области). Такие точки лежат на уровне  $\lambda = \pm \infty$ . Тогда вся левая часть молекулы соответствует вещественным торам и атомам, а правая - мнимым торам и атомам.

Грубые молекулы биллиардов с выпуклыми склейками, не содержащих область *e*, но содержащих область *h*2, устроены следующим образом:

Такие биллиарды имеют особый уровень интеграла  $\lambda = -b$  - на его поверхности уровня в изоэнергетической поверхности лежит седловой атом. Все ребра молекулы делятся на два типа. Первый тип соединяет граничные атомы A, соответствующие значению интеграла  $\lambda = -\lambda_2$  седловым атомом. Такие ребра соответствуют значениям интеграла  $\lambda \in (-b, -\lambda_2)$ . Второй тип ребер соединяет седловой атом с граничными атомами A, соответствующими значениям интеграла  $\lambda = \lambda_1$ . Отметим, что таких ребер либо одно, либо два, и они соответствуют значениям интеграла  $\lambda \in (-\infty, -b) \cup (+\lambda_1, \infty) \cup \{\pm\infty\}$ . Подчеркнем, что значение интеграла  $\lambda = a$  не является особым для таких биллиардов.

В данных молекулах точки, соответствующие световым торам, могут принадлежать лишь правым ребрам молекулы. Тогда вся часть молекулы, лежащая по левую сторону от такой точки, соответствует вещественным торам и атомам, а правая часть - мнимым торам и атомам.

Наконец, грубые молекулы биллиардов с выпуклыми склейками, содержащими лишь область q, устроены совсем просто, поскольку в их изоэнергетической поверхности нет седловых атомов. Таким образом, имеем два атома A, соответствующих граничным значениям интеграла  $\lambda = -\lambda_2, +\lambda_1$ , которые соединены ребром, соответствующим значениям интеграла  $\lambda \in (-\infty, -\lambda_2) \cup (+\lambda_1, \infty) \cup \{\pm\infty\}$ .

В данных молекулах точка ребра, соответствующая световому тору (то есть уровень интеграла  $\lambda = \pm \infty$ ), лежит на единственном ребре, по левую сторону от такого уровня энергии в молекуле обозначены вещественные торы и атомы, по правую - мнимые торы и атомы.

#### Шаг 1. Подсчет меток для биллиардов, не содержащих конические точки.

1. Рассмотрим топологические биллиарды без конических точек, содержащие е.

Посчитаем метки для ребер, соответствующих значениям интеграла  $\lambda \in (-b, -\lambda_2)$  (то есть правые ребра молекул). Фиксируем некоторое значение интеграла и обозначим его  $-\Lambda$ . Поверхность уровня для этого значения в изоэнергетической поверхности есть несколько торов. Рассмотрим один из этих торов (и подсчет метки осуществим именно для того ребра, к которому относится выбранный тор). Очевидно, что для остальных ребер нижеописанные действия аналогичны, а значит и подсчитанная метка будет такой же.



Рис. 30: Выбор обобщенных циклов  $\mu$  и  $\lambda$  для граничных торов, соответствующих левым ребрам молекулы. Показан частный случай, когда листов четыре (два простых биллиарда *e* и два *h*1).

Выберем циклы на граничном торе A. Рассмотрим проекцию уровня интеграла на биллиардный стол. Эта проекция есть несколько склеенных между собой частей простых биллиардов e и, возможно, частей простых биллиардов h1, h2, q, и данные части отсекаются от соответствующих биллиардных столов квадрикой с параметром  $\lambda = -\Lambda$ . Обозначим эти части за  $\Psi_i$ .

Вспомним, как осуществлялся выбор циклов  $\lambda$  и  $\mu$  в простых биллиардах e, h1, h2 и q для этого же значения  $\Lambda$  на граничном торе атоме A. А именно, в качестве цикла  $\lambda$  выбираем прообраз дуги эллипса с параметром  $\lambda \in (a, \lambda_1)$ , а в качестве цикла  $\mu$  - прообраз дуги эллипса с параметром  $\lambda \in (-\Lambda, -\lambda_2)$ .

Вернемся к выбору циклов в топологическом биллиарде. Теперь на каждом  $\Psi_i$  выберем циклы  $\lambda_i$ и  $\mu_i$ , которые совпадают с выбранными ранее циклами на соответствующем простом биллиарде (рис.30, а.) Отметим, что эллипсы, дуги которых являются образами циклов  $\lambda_i$ , должны иметь один и тот же параметр, а также все эллипсы, дуги которых являются образами циклов  $\mu_i$ , тоже должны иметь один и тот же параметр.

Далее, на границе склейки склеим циклы  $\lambda_i$  и  $\mu_i$  между собой по правилу отождествления векторов: тогда все множество  $\lambda_i$  и  $\mu_i$  разбивается на несколько связных компонент. В качестве  $\lambda$  (а также  $\mu$ ) возьмем некоторую связную компоненту объединения всех  $\lambda_i$  (и, соответственно,  $\mu_i$ ). На рис. 30, b. показано, как конструировать такие циклы для частного случая. Ориентацию  $\mu$  выберем согласованной с ориентацией критической окружности атома A.

Определение 5.3. Итак, циклы, выбранные вышеописанным образом будем называть обобщенными циклами  $\lambda$  и  $\mu$ .

Теперь выберем циклы на граничном торе седлового атома.

Аналогично, будем конструируем обобщенные циклы  $\lambda$  и  $\mu$ . Для этого вспомним, как выбирались циклы  $\lambda$ ,  $\mu$  на граничных торах седловых атомов (имеются в виду конечно же атомы, соответствующие значению интеграла  $\lambda = -b$ ). На простых биллиардах e и h2 (лишь для этих биллиардов значение интеграла  $\lambda - -b$  является особым) в качестве  $\lambda$  брали прообраз дуги эллипса с параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , а в качестве цикла  $\mu$  - прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ . Далее, вернемся к выбору циклов в топологическом биллиарде. На всех входящих в топологический биллиард областях e и h2 выберем в качестве  $\lambda_i$  прообраз дуги эллипса с параметром  $\lambda \in (-\Lambda, -\lambda_2)$  (причем для всех областей параметр дуги должен быть одинаков, и должен лежать в указанном интервале), а в качестве цикла  $\mu_i$  - прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$  (аналогично, параметр дуги для всех областей должен быть одинаков и лежать в указанном интервале). Рассмотрим объединение всех  $\lambda_i$  между собой и объединение всех  $\mu_i$  между собой в соответствии с биллиардным законом.

Отметим, может возникнуть ситуация, когда кривая, являющаяся объединением  $\lambda_i$  или  $\mu_i$ , имеет край не на границе топологического биллирда, а на одном из его сегментов склейки. Такая ситуация возникает, если в состав биллиарда входят области h1 или q, так как для этих биллиардов значение  $\lambda = -b$  неособое. В таком случае необходимо дополнить объединение циклов дугами на областях h1 или q, причем эти дуги - части квадрики с тем же самым параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , который мы ранее выбирали в качестве параметра для всех дуг  $\lambda_i$  (или, соответственно, с параметром  $\lambda \in (\lambda_1, a)$ , который мы ранее выбирали в качестве параметра для всех дуг  $\mu_i$ , если речь идет о выборе цикла  $\mu$ . Необходимо добавлять такие часть на всех необходимых листах биллиарда, пока наконец края кривой, которая получена объединением образов  $\lambda_i$  и  $\mu_i$ , будут лежать на границе биллиарда

В качестве обобщенных  $\lambda$  берем компоненту связности объединения всех  $\lambda_i$ , а в качестве обобщенного  $\mu$  берем компоненту связности объединения всех  $\mu_i$  (причем эта компонента, если это необходимо, должна быть продолжена так, как описано в предыдущем абзаце).

Определение 5.4. Обобщенные циклы  $\lambda$  и  $\mu$  на граничном торе седлового атома выбираются вышеописанным способом.

Ориентацию  $\lambda$  выберем согласованной с ориентацией критической окружности, а ориентацию  $\mu$  выберем согласованной.

Ориентируем ребро к седловому атому, базисные циклы  $\lambda$  и  $\mu$  на торе атома A будут иметь индекс –, а на торе седлового атома - индекс +.

Очевидно, что как и в случае простых биллиардов, при таком выборе циклов  $\lambda$  и  $\mu$  будет выполняться следующее соотношение  $\lambda_{+} = \mu_{-}, \mu_{+} = \pm \lambda_{-}.$ 

Тогда матрица склейки будет иметь вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , причем именно на этапе выписывания матрицы склейки выбирается ориентация цикла  $\lambda_{-}$  на граничном торе атома A, а именно она выбирается из условия на определитель матрицы склейки. Итак, метки на всех таких ребрах будут  $r = 0, \varepsilon = 1$ .

Каждое такое ребро, если оно является выходящим из семьи или входящим в семью, дает нулевой вклад в метку n.

Очевидно, что для всех биллиардов, рассматриваемых в этом шаге доказательства, верно следующее утверждение: когда на граничных торах для поверхности уровня некого значения интеграла выбирать именно обобщенные циклы, то метки на соответствующем ребре в молекуле метки будут такими же, как и на ребре молекулы простого биллиарда e, отвечающих таким же значениям интеграла.

Далее, рассмотрим ребра молекулы, соответствующие значениям интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\pm \infty\}$  - средние ребра в молекуле. Ориентируем ребра к атому, соответствующему  $\lambda = a$ . Выберем некоторое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном интервале. В изоэнергетической поверхности на этом уровне интеграла лежат несколько торов. Выберем один из них и рассмотрим проекцию его на биллиардный стол. Проекция такого уровня интеграла будет весь биллиардный стол.

Отметим что таким образом мы посчитаем метку лишь для одного ребра, однако метки на остальных центральных ребрах считается аналогичным образом и будут совпадать с подсчитанными ниже.

Циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = -b$  будем писать с индексом –, а циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = a$  будем писать с индексом +.

Выберем на торах обоих седловых атомов обобщенные циклы  $\lambda$  и  $\mu$  вышеописанным способом.

Отметим, что на торе, соответствующем  $\lambda = -b$ , ориентация цикла  $\mu_{-}$  должна удовлетворять условию существования глобального сечения, поэтому она будет несогласована с ориентацией критической окружности. Ориентацию  $\lambda_{+}$  и  $\lambda_{-}$  на торах обоих седловых атомов выберем согласованной с их критическими окружностями.

Таким образом, имеем следующее соотношение:  $\lambda_{+} = -\mu_{-}, \ \mu_{+} = \mp \lambda_{-}.$ 

Тогда из условия на определитель матрицы склейки выбираем ориентацию цикла  $\mu_+$  несогласованной, и матрица склейки имеет вид  $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ . Метки на всех центральных ребрах будут иметь вид  $r = 0, \varepsilon = -1$ . Каждое такое ребро дает нулевой вклад в метку n, если оно является входящим или выходящим ребром для семьи.

Циклы на ребрах, соответствующих значениям  $\lambda \in (+\lambda_1, a)$  (то есть на правых ребрах молекул) выбираются так же, как и на левых ребрах, соответствующих значениям интеграла  $\lambda \in (-b, -\lambda_2)$ . Таким образом, метки на всех центральных ребрах ребрах будут  $r = 0, \varepsilon = 1$ , и каждое из них даст нулевой вклад в метку n.

Таким образом каждая молекула имеем две семьи, и обе метки n = 0

2. Теперь рассмотрим топологические биллиарды без конических точек, допускающие лишь выпуклые склейки, содержащие простые биллиарды h2 и не содержащие простых биллиардов e. Все такие биллиарды перечислены далее:  $\Delta_{\alpha}(kh2 + \alpha q + \beta q), \Delta_{\alpha}(2 \times kh2 + 2\alpha q + 2\beta q), \Delta_{\gamma}(2 \times kh2)_1, \Delta_{\gamma}(2 \times 2kh2)_1.$ 

Рассмотрим ребра, соответствующие значениям интеграла  $\lambda \in (-b, -\lambda_2)$ . Зафиксируем некоторое значение интеграла  $\lambda$  из этого промежутка и обозначим его за  $-\Lambda$ . Поверхность уровня этого значения интеграла в изоэнергетической поверхности есть несколько торов, соответствующих различным ребрам. Выберем один из этих торов и рассмотрим проекцию поверхности уровня этого интеграла на биллиардный стол - эта проекция есть объединение частей простых биллиардов  $h^2$  и,возможно, биллиардов q или их частей. Обозначим каждую из частей как  $\Psi_i$ . Далее опишем подсчет метки для того ребра, что соответствует выбранному тору. Очевидно, что для остальных ребер подсчет меток происходит аналогичным образом.

Ориентируем ребро к седловому атому. Циклы на торе атома A будем обозначать  $\lambda_-$  и  $\mu_-$  а циклы на торе седлового атома будем обозначать  $\lambda_+$  и  $\mu_+$ 

Перед выбором обобщенных циклов  $\lambda$  и  $\mu$  на граничных торах атомов A вновь вспомним, как выбирались циклы на граничных торах атома A, который соответствовал тому же значению интеграла, в простых биллиардах h2 и q. В качестве  $\lambda$  выберем прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ , а в качестве  $\mu$  - прообраз дуги эллипса с параметром  $\lambda \in (-\Lambda, -b)$ .

Далее, на каждой части  $\Psi_i$  выберем в точности вышеописанные циклы  $\lambda_i$  и  $\mu_i$  (отметим, что их образ - дуга эллипса - должен соответствовать одинаковому значению параметра для всех  $\lambda_i$  и одинаковому значению параметра для всех  $\mu_i$ ). Конструируем из этих циклов обобщенные циклы  $\lambda_-$  и  $\mu_-$  так же, как и в предыдущем шаге. Ориентацию  $\mu_-$  согласуем с ориентацией критической окружности атома A, ориентацию  $\lambda_-$  выберем позднее.

Теперь опишем выбор циклов на граничных торах седлового атома. Вспомним, как в простых биллиардах h2 и q осуществлялся выбор циклов на граничных торах седлового атома, соответствующего такому же значению интеграла.

В качестве  $\lambda$  выбираем прообраз дуги эллипса с параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , а в качестве  $\mu$  выбираем прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ .

Далее на каждом  $\Psi_i$  выбираем  $\lambda_i$  и  $\mu_i$ , в точности те, что описаны параграфом выше. Отметим, что образы всех  $\lambda_i$  должны лежать на эллипсе с одним и тем же параметром, а также образы всех  $\mu_i$  тоже лежат на эллипсе с одним и тем же параметром.

Конструируем из них обобщенные циклы  $\lambda_+$  и  $\mu_+$ .

Ориентируем  $\lambda_+$  так же, как ориентирована критическая окружность в седловом атоме, а ориентацию  $\mu_+$  выберем согласованной с ориентацией особой окружности.

Итак,  $\lambda_{+} = \mu_{-}, \ \mu_{+} = \pm \lambda_{-}.$ 

Теперь выпишем матрицу склейки и зафиксируем ориентацию цикла  $\lambda$  на граничном торе атома A так, чтобы определитель матрицы склейки был равен -1.

Матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

Тогда метки  $r = 0, \varepsilon = 1.$ 

Итак, как нетрудно видеть из вышеописанного алгоритма, вновь выбирая на всех ребрах молекулы обобщенные циклы, метки для каждого ребра будут такими же, как и метки для ребер молекулы для простого биллиарда h2. Конечно, в молекулах разное количество ребер, однако в данном случае все ребра, которые соответствуют одним и тем же значениям интеграла, имеют одни и те же метки.

Теперь рассмотрим ребра, соответствующие значениям интеграла  $\lambda \in (-\infty, -b) \cup (+\lambda_1, \infty) \cup \{\pm \infty\}$ . Вновь зафиксируем значение интеграла, лежащее в указанном промежутке, и обозначим его  $\Lambda$ . Поверхность уровня этого значения интеграла в изоэнергетической поверхности есть несколько торов, соответствующих различным ребрам. Выберем один из этих торов и рассмотрим проекцию поверхности уровня этого интеграла на биллиардный стол - эта проекция есть объединение частей простых биллиардов  $h^2$  и, возможно, биллиардов q или их частей. Обозначим каждую из частей как  $\Psi_i$ . Далее опишем подсчет метки для того ребра, что соответствует выбранному тору. Очевидно, что для остальных ребер подсчет меток происходит аналогичным образом.

Ориентируем ребро к седловому атому.

Циклы на торе атома Aбудем обозначать  $\lambda_-$  и  $\mu_-$ а циклы на торе седлового атома будем обозначать  $\lambda_+$  и  $\mu_+$ 

Выберем циклы  $\lambda$  и  $\mu$  на граничном торе седлового атома так же, как и на предыдущем ребре. Однако теперь ориентацию  $\lambda_+$  согласуем с ориентацией критической окружности, а ориентацию  $\mu_+$  выберем не согласованной с ориентацией критической окружности (в самом деле, ориентации циклов  $\mu$  по разные стороны от седлового атома должны быть связаны условием существования глобального сечения).

Вспомним, как выбирались циклы на граничных торах атомов A для таких значений интеграла для простых биллиардов h2 и q: в качестве  $\lambda$  выбирали прообраз дуги эллипс параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , а в качестве  $\mu$  выбираем прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ .

Далее вновь на каждом  $\Psi_i$  выбираем в качестве  $\lambda_i$  и  $\mu_i$  дуги квадрик так, как описано выше, причем образы всех  $\lambda_i$  должны лежать на эллипсе с одним и тем же параметром, а также образы всех  $\mu_i$  лежат на эллипсе с одним и тем же параметром. Сконструируем из частей  $\lambda_i$  и  $\mu_i$ обобщенные циклы  $\lambda_-$  и  $\mu_-$ .

Ориентацию  $\mu_{-}$  выберем несогласованной. Таким образом  $\lambda_{+} = \pm \lambda_{-}, \mu_{+} = \mu_{-}$ .

Выпишем матрицу склейки и зафиксируем ориентацию цикла  $\lambda_{-}$  так, чтобы определитель матрицы склейки был равен -1.

Матрица склейки имеет вид  $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ .

Тогда метки  $r = \infty, \varepsilon = -1.$ 

Семей, очевидно, в таких молекулах нет.

3. Рассмотрим, наконец, топологические биллиарды без конических точек, допускающие лишь выпуклые склейки, содержащие только простые биллиарды *q*. Таких лишь три. Ребро в их молекулах всего одно, ориентируем его к атому A, соответствующему значению  $\lambda = +\lambda_1$ . Это ребро соответствует значениям интеграла  $\lambda \in (-\infty, -\lambda_2) \cup (+\lambda_1, \infty) \cup \{\pm \infty\}$ . Зафиксируем некоторое значение интеграла  $\lambda$  из этого промежутка и обозначим его за  $\Lambda$ . Поверхность уровня этого значения интеграла в изоэнергетической поверхности есть один тор. Рассмотрим проекцию этого тора на биллиардный стол - проекция включает в себя весь биллиардный стол либо его часть (отметим, что эта часть - связная), и состоит из двух простых биллиардов q (либо их частей) - обозначим эти части  $\Psi_1$ .

Циклы на торе атома A, соответствующем значению интеграла  $\lambda = -\lambda_2$  (левый атом) будем обозначать  $\lambda_-$  и  $\mu_-$ , а циклы на торе атома A, соответствующем значению интеграла  $\lambda = \lambda_1$  (правый атом) будем обозначать  $\lambda_+$  и  $\mu_+$ 

Вспомним, как выбирались циклы на граничных торах левых атомов A для таких значений интеграла для простых биллиардов q: в качестве  $\lambda$  выбирали прообраз дуги эллипс параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , а в качестве  $\mu$  выбираем прообраз дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ .

Далее на обоих  $\Psi_i$  выбираем в качестве  $\lambda_i$  и  $\mu_i$  дуги квадрик так, как описано выше, причем образы всех  $\lambda_i$  должны лежать на эллипсе с одним и тем же параметром, а также образы всех  $\mu_i$  лежат на эллипсе с одним и тем же параметром. Сконструируем из частей  $\lambda_i$  и  $\mu_i$  обобщенные циклы  $\lambda_-$  и  $\mu_-$ .

Циклы на граничных торах правых атомов A для таких значений интеграла в простых биллиардах q выбирались несколько иначе: в качестве  $\lambda$  выбирали прообраз дуги квадрики  $\lambda \in (\lambda_1, a)$ , в качестве  $\mu$  выбираем прообраз дуги квадрики с параметром  $\lambda \in (-\Lambda, -\lambda_2)$ ,.

Аналогично - на обоих  $\Psi_i$  выбираем в качестве  $\lambda_i$  и  $\mu_i$  дуги квадрик так, как описано выше, причем образы всех  $\lambda_i$  должны лежать на эллипсе с одним и тем же параметром, а также образы всех  $\mu_i$  лежат на эллипсе с одним и тем же параметром. Сконструируем из частей  $\lambda_i$  и  $\mu_i$  обобщенные циклы  $\lambda_+$  и  $\mu_+$ .

Выберем ориентации  $\mu_{-}$  и  $\mu_{+}$  согласованными с ориентацией критических окружностей их атомов, а ориентации  $\lambda_{-}$  и  $\lambda_{+}$  также выберем согласованными. Таким образом  $\lambda_{+} = \mu_{-}, \mu_{+} = \lambda_{-},$ и матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

Метки на ребре  $r = 0, \varepsilon = -1.$ 

# Шаг 2. Подсчет меток для случаев, когда топологический биллиард содержит конические точки, а его молекула не содержит атомов со звездочками.

1. Рассмотрим топологические биллиарды с коническими точками, содержащие простой биллиард е, причем выделим среди них те, грубые молекулы которых не содержат атомов со звездочкми.

Рассмотрим значения интеграла  $\lambda \in (-b, -\lambda_2)$ . Им соответствуют левые ребра молекул, посчитаем метки для этих ребер. Зафиксируем некое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном выше промежутке. Поверхностью уровня этого значения интеграла являются несколько торов в изоэнергетическом многообразии  $Q^3$ . Рассмотрим естественные проекции торов на биллиардный стол, которые разделим на три вида: не содержащие конических точек, содержащие одну коническую точку и содержащие две конические точки.

Для проекций, не содержащих конических точек, на обоих граничных торах циклы  $\lambda$  и  $\mu$  выбираются обобщенными (так же, как и для аналогичных проекций в предыдущего пункта доказательства теоремы). Отметим, что ориентация на циклах  $\mu$  на граничных торах седлового атома является согласованной. Таким образом, на ребрах, которые в графе соответствуют торам, чьи проекции на биллиардный стол не содержат конических точек, метки  $r = 0, \varepsilon = 1$ , и такие ребра дают нулевой вклад в метку n

Рассмотрим проекции, содержащие одну коническую точку. Цикл  $\lambda_{-}$  и  $\lambda_{+}$  выбираются аналогично предыдущему пункту - а именно,  $\lambda_{-}$  конструируется как обобщенный цикл из  $\lambda_{i}$ , являющихся дугами эллипсов с параметром  $\lambda \in (\lambda_{1}, a)$ , а  $\lambda_{+}$  конструируется из  $\lambda_{i}$ , являющихся дугами эллипсов с параметром  $\lambda \in (\Lambda, -\lambda_{2})$ , и ориентация на нем выбирается согласованной с ориентацией критической окружности седлового атома. На рис.31, а. показано, как выбираются циклы  $\mu$  для проекций, содержащих коническую точку. Ориентацию  $\mu_{-}$  выберем согласованной критической окружностью атома A. Ориентация  $\mu_{+}$  выбирается согласованной с критической окружностью седлового атома. Тогда  $\mu_{-} = \mu_{+} = \frac{\lambda_{+} + \lambda_{-}}{2}$ .

Таким образом, матрица склейки имеет вид  $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ . Определить матрицы равен -1. Метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ . Если ребро с такой матрицей склейки является входящим в семью, то оно дает вклад в метку n равный -1 (как в данном случае), а если ребро с такой матрицей склейки является выходящим из семьи, то его вклад в метку n также равен -1.

Рассмотрим проекции, содержащие две конические точки. Циклы  $\lambda_{-}$  и  $\lambda_{+}$  выбираются аналогично предыдущему пункту. Циклы  $\mu_{-}$  и  $\mu_{+}$  представлены на рис.31, b. Ориентация  $\mu_{-}$  согласована с ориентацией критической окружности атома A, и ориентация  $\mu_{+}$  также должна быть согласована с ориентацией критической окружности атома - уже седлового. Далее, поскольку  $\mu_{+} = \lambda_{-}$ ,  $\lambda_{+} = \mu_{-}$ , матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Определитель матрицы равен -1. Таким образом метки имеют вид  $r = 0, \varepsilon = 1$ . Если ребро с такой матрицей склейки является входящим в семью или выходящим из нее, то оно дает вклад в метку n равный 0.



Рис. 31: Циклы  $\mu$  и  $\lambda$  для граничных торов правых ребер в молекулах. Показан частный случай, когда листа всего 2 (то есть k = n = 1).

Теперь рассмотрим значения интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\pm \infty\}$ . Таким значениям соответствует средние ребра молекул рассматриваемых биллиардов. Зафиксируем некоторое значение интеграла  $\lambda$ , лежащее в этом промежутке, и обозначим его  $\Lambda$ . Рассмотрим естественную проекцию поверхности уровня интеграла  $\Lambda$  в изоэнергетическом многообразии на биллиардный стол. Отметим, что теперь проекция включает в себя весь топологический биллиард, и может содержать либо одну, либо две конических точки.

Рассмотрим случай одной конической точки. Базисные циклы выбираются так же, как в случае проекции с одной конической точкой в предыдущем пункте. Циклы  $\lambda_+$  и  $\lambda_-$  являются обобщенными циклами, конструируемыми из дуг эллипсов с параметрами  $\lambda \in (\lambda_1, a)$  и  $\lambda \in (-b, -\lambda_2)$  соответственно, а их ориентации согласованы с ориентациями критических окружностей седловых атомов. Циклы  $\mu_-$  и  $\mu_+$  представлены на рис.32, а. Далее, поскольку ориентации  $\mu$  граничных торов седлового атома связаны условием существования глобального сечения, то ориентация  $\mu_-$  несогласована. Ориентация  $\mu_+$  также выбирается несогласованной.

Таким образом  $\mu_{+} = \mu_{-} = -\frac{\lambda_{-} + \lambda_{+}}{2}$ . Тогда  $\lambda_{+} = -\lambda_{-} - \mu_{-}$ ,  $\mu_{+} = \mu_{-}$ . Матрица склейки имеет вид  $\begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$ . Метки на ребре  $r = \frac{1}{2}$ ,  $\varepsilon = -1$ . Ребра с такой матрицей склейки дают нулевой вклад в метку n в случае, когда они являются входящими или выходящими из семьи.

Рассмотрим случай двух конических точек. Базисные циклы  $\lambda_{-}$  и  $\lambda_{+}$  и их ориентации выбираются так как, как и в предыдущем случае. Циклы  $\mu_{-}$  и  $\mu_{+}$  представлены на рис.32, b. Аналогично, ориентация  $\mu_{-}$  несогласована, тогда ориентация  $\mu_{+}$  также несогласована,  $\mu_{+} = -(\lambda_{+} + \lambda_{-})$ . Поскольку  $\lambda_{+} = -\mu_{-}$ , тогда можем выразить  $\mu_{+} = -\lambda_{+}\mu_{-}$  и записать матрицу склейки. Матрица

склейки имеет вид  $\begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}$ . Метки на ребре  $r = 0, \varepsilon = -1$ . Если ребро является входящим, тогда оно дает вклад в метку n равный 1, если же такое ребро выходит из семьи, то вклад в метку n нулевой.



Рис. 32: Циклы  $\mu$  и  $\lambda$  для граничных торов средних ребер в молекулах. Показан частный случай, когда листа всего 2 (то есть k = n = 1).

Метки на ребрах, соответствующих значениям интеграла  $\lambda \in (\lambda_1, a)$  подсчитываются аналогично случаю  $\lambda \in (-b, -\lambda_2)$ , а именно: Если проекция поверхности уровня фиксированного значения интеграла  $\lambda$ , лежащего в указанном промежутке, не содержит конических точек, то матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , а метки на ребре  $r = 0, \varepsilon = 1$ , вклад в метку n нулевой, если ребро входящее или выходящее.

Если проекция содержит одну коническую точку, то матрица склейки имеет вид  $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ , следовательно, метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ , вклад в метку n равен -1, если ребро входящее или выходящее

Если проекция содержит две конических точки, то матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ , а метки на ребре  $r = 0, \varepsilon = 1$ , вклад в метку n также нулевой.

2. Рассмотрим топологические биллиарды с коническими точками, не содержащие *e*, но содержащие *h*2 и допускающие лишь выпуклые склейки.

Таких биллиардов всего два:  $\Delta_{\beta}((2 \times kh2)_x + 2\alpha q)$  и  $\Delta_{\beta}((2 \times kh2)_{x,x})$ .

Начнем с подсчета меток для ребер, отвечающих значениям интеграла  $\lambda \in (-b, -\lambda_2)$ . Зафиксируем некоторое значение интеграла, лежащее в этом промежутке, и обозначим его как  $\lambda = \Lambda$ . Далее рассмотрим проекцию поверхности уровня этого значения интеграла в изоэнергетической поверхности на плоскость биллиарда. Проекция распадается на несколько компонент связности, каждая из которых может либо содержать одну коническую точку, либо не содержать их вовсе.

Сначала рассмотрим те проекции, что не содержат конических точек.

Выбор циклов на граничных торах атомов A и седловых атомов такой же, как и в пункте 2 доказательства для областей без конических точек, а именно циклы  $\lambda$  и  $\mu$  конструируются из из циклов  $\lambda_i$  и  $\mu_i$ , которые мы выбираем на простых биллиардах, входящих в состав топологического.

Тогда, как и в предыдущем пункте, метки на таких ребрах буду<br/>т $r=0, \varepsilon=1.$ 

Далее, рассмотрим проекцию, содержащую коническую точку. Очевидно, что таких проекций будет одна для биллиарда  $\Delta_{\beta}((2 \times kh2)_x + 2\alpha q)$  и две для биллиарда  $\Delta_{\beta}((2 \times kh2)_{x,x})$ .

Выбор циклов на таких биллиардах показан на рис.33, а. Цикл  $\mu_A$  совпадает с выбранным  $\mu_B$  (с точностью до знака). Ориентация на  $\mu_A$  задается критической окружностью атома A (а именно,

совпадает с ней), и  $\mu_A = \frac{\lambda_A + \lambda_B}{2} = \pm \mu_B$ . Ориентацию  $\mu_B$  выберем согласованной (то есть  $\mu_A = \mu_B$ ). Тогда матрица склейки имеет вид  $\begin{pmatrix} -1 & 2\\ 0 & 1 \end{pmatrix}$ , а метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ .

Теперь рассмотрим значения интеграла  $\lambda \in (-\infty, -b) \cup (\lambda_1, \infty) \cup \{\pm \infty\}$ . Этим значениям соответствует правые ребра в молекулах для топологических биллиардов  $\Delta_{\beta}((2 \times kh2)_x + 2\alpha q)$  и  $\Delta_{\beta}((2 \times kh2)_{x,x})$ . Зафиксируем значение интеграла  $\lambda$ , лежащее в указанном промежутке, и обозначим его как  $\Lambda$ . Рассмотрим проекцию поверхности уровня интеграла  $\lambda = \Lambda$  на биллиардный стол. Имеем два случая - проекция может содержать либо одну, либо две конических точки.

Рассмотрим случай одной конической точки.

Выбор циклов показан на рисунке.33, b. Циклы  $\mu_+$  (на граничном торе седлового атома) и  $\mu_-$  (на граничном торе атома A) выбирается так же, как и для проекций, содержащих одну коническую точку. Ориентация  $\mu_-$  согласована с ориентацией критической окружности атома A, а ориентация  $\mu_+$  уже задана ориентацией  $\mu$  на предыдущем ребре - несогласована.

Циклы  $\lambda_+$  и  $\lambda_-$  выбираются как дуги эллипса с параметром  $\lambda \in (-b, -\lambda_2)$ , ориентация на  $\lambda_+$  согласована с ориентацией критической окружности седлового атома. Тогда матрица склейки имеет вид  $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  (отметим что ориентация цикла  $\lambda_-$  выбирается так чтобы определитель матрицы был -1). Тогда метки на ребре  $r = \infty, \varepsilon = 1$ .

Рассмотрим случай двух конических точек.

Выбор циклов  $\lambda_+$  и  $\lambda_-$  аналогичен описанному выше, а циклы  $\mu_+$  и  $\mu_-$  показаны на рис.33, с. Ориентация  $\mu_-$  такая же как и ориентация критической окружности атома A, а ориентация цикла  $\mu_+$  выбирается несогласованой по тем же соображениям, что описаны выше.

Тогда матрица склейки имеет вид  $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ , и метки на ребре  $r = \infty, \varepsilon = 1$ .



Рис. 33: Циклы  $\mu$  и  $\lambda$  для граничных торов, соответствующих левым ребрам молекулы (a.) и правым ребрам молекулы (b, c.) Показан частный случай, когда листа всего 2 (то есть k = 1).

3. Рассмотрим четыре топологических биллиарда, которые образованы склейками простых биллиардов q. Молекулы для них имеют всего одно ребро, соединяющее два атома A, которые лежат на уровнях интеграла λ = λ<sub>1</sub>, -λ<sub>2</sub>. Подсчет меток происходит аналогично вышеописанным шагам рассматривается проекция поверхности уровня некоторого фиксированного значения интеграла λ на биллиардный стол и в зависимости от вида проекции выбираются обобщенные циклы λ и μ для граничных торов атомов A.

Итак, если проекция не содержит конических точек, то матрица склейки на ребре имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , и метки на ребре  $r = 0, \varepsilon = 1$ .

Если проекция содержит коническую точку, то матрица склейки и имеет вид  $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ , и метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ .

# Шаг 3. Подсчет меток для случаев, когда топологический биллиард содержит конические точки, и его молекула содержит атомы со звездочками.

Итак, в завершение подсчитаем метки для топологических биллиардов, допускающих прямые склейки, имеют конические точки и их молекула содержит атомы со звездочками

1. Рассмотрим биллиарды, допускающие прямые склейки и содержащие *e*, и выберем из них те, что включают атомы со звездочками. Отметим, что такие атомы появляются лишь при наличии одной или двух конических точек.

Без ограничения общности считаем, что атом со звездочкой лежит на уровне интеграла  $\lambda = a$ .

Тогда выбор циклов на ребрах, соответствующих значениям интеграла  $\lambda \in (-b, -\lambda_2)$  (правых ребрах молекулы) выбираются так же, как описано в шаге 2.

Рассмотрим ребра, соответствующие значениям интеграла  $\lambda \in (-\infty, -b) \cup (+\lambda_1, \infty) \cup \{\pm \infty\}$  (средние ребра молекулы). Выберем значение интеграла  $\lambda$ , лежащее в указанном промежутке, и обозначим его  $\Lambda$ . На уровне интеграла  $\lambda = \Lambda$  в изоэнергетической поверхности лежит тор. Рассмотрим его проекцию на биллиардный стол - это будет в точности весь биллиардный стол. Таким образом, проекция может либо содержать одну коническую точку, либо две конических точки.

Ориентируем ребро молекулы к атому, лежащему на уровне интеграла  $\lambda = a$ . Циклы на торе седлового атома, соответствующего значению  $\lambda = -b$ , будем обозначать  $\lambda_{-}$  и  $\mu_{-}$  а циклы на торе седлового атома, соответствующего значению  $\lambda = a$ , будем обозначать  $\lambda_{+}$  и  $\mu_{+}$ 

Если проекция содержит одну коническую точку, то выбор циклов на торе седлового атома, лежащего на уровне интеграла  $\lambda = -b$  происходит так же, как в шаге 2, а именно - в качестве  $\lambda_{-}$  выберем обобщенный цикл, конструируемый из дуг эллипсов с параметром  $\lambda \in (-b, -\lambda_2)$  и ориентацию на нем выберем согласованной, а цикл  $\mu_{-}$  имеет несогласованную ориентацию и показан на рис. 34, а.

На торе атома, соответствующему значению  $\lambda = a$ , цикл  $\lambda_+$  также выберем как обобщенный цикл, конструируемый из дуг эллипсов с параметром  $\lambda \in (\lambda_1, a)$  и ориентацию на нем выберем согласованной. Чтобы выбрать цикл  $\mu_+$  необходимо для начала выбрать цикл  $\hat{\mu}$  - он показан на рис. 34, b.

Поскольку  $\hat{\mu}$  пересекает  $\lambda_+$  в двух точках, выделенных красным на рисунке, значит к циклу  $\hat{\mu}$  необходимо добавить цикл  $\lambda_+$  нужное количество раз и полученный цикл и выбрать в качестве цикла  $\mu_+$ . Итак, в данном случае  $\mu_+ = \pm \frac{\lambda_+ + \hat{\mu}}{2} = \pm \frac{\lambda_+ + \lambda_-}{2}$ . Таким образом, ориентацию  $\mu_+$  выбираем несогласованной, получим что  $\mu_- = \mu_+ = -\frac{\lambda_+ + \lambda_-}{2}$ . Матрица склейки имеет вид  $\begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$ , и метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ . Такое ребро, будь оно входящим или выходящим, дает нулевой вклад в метку n.



Рис. 34: Циклы  $\mu$  и  $\lambda$  для граничных торов седлового атома со звездочками для средних ребер в молекулах в случае одной конической точки. Показан частный случай, когда листов 4.

Если проекция содержит две конических точки, то выбор циклов на торе седлового атома, лежащего на уровне интеграла  $\lambda = -b$  происходит так же, как в шаге 2, а именно - в качестве  $\lambda_{-}$  выберем обобщенный цикл, конструируемый из дуг эллипсов с параметром  $\lambda \in (-b, -\lambda_2)$  и ориентацию на нем выберем согласованной, а цикл  $\mu_-$  имеет несогласованную ориентацию и показан на рис. 35,а.

На торе атома, соответствующему значению  $\lambda = a$ , цикл  $\lambda_+$  также выберем как обобщенный цикл, конструируемый из дуг эллипсов с параметром  $\lambda \in (\lambda_1, a)$  и ориентацию на нем выберем согласованной. Выберем цикл  $\hat{\mu}$  так, как показано на рис. 35, b.

Отметим, что и в данном случае  $\hat{\mu}$  пересекает  $\lambda_+$  в двух точках, выделенных красным на рисунке. Добавить к циклу  $\hat{\mu}$  цикл  $\lambda_+$  нужное количество раз: в данном случае  $\mu_+ = \pm(\lambda_+ + \hat{\mu}) = \pm(\lambda_+ + \lambda_-)$ . Вновь ориентацию  $\mu_+$  выбираем несогласованной, получим что  $\mu_+ = -(\lambda_+ + \lambda_-)$ , и при этом  $\mu_- = -\lambda_+$ . Матрицы склейки имеет вид  $\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$ , и метки на ребре  $r = 0, \varepsilon = 1$ . Такое ребро, будь оно входящим, даст вклад в метку n равный -1, а если оно выходящее, то вклад в метку n равен 1.



Рис. 35: а, b. Циклы  $\mu$  и  $\lambda$  для граничных торов седловых атомов для средних ребер в молекулах в случае двух конических точек. Показан частный случай, когда листов 4. с,d. Циклы  $\mu$  и  $\lambda$  для граничных торов на правых ребрах в молекулах в случае одной конической точки. Показан частный случай, когда листов 4.

Теперь рассмотрим ребра, соответствующие значениям интеграла  $\lambda \in (\lambda_1, a)$ . Выберем некоторое значение интеграла в указанном промежутке и обозначим его  $\Lambda$ . В изоэнергетической поверхности на уровне этого интеграла лежат торы, выберем один из них и рассмотрим его проекцию на биллардный стол. Эта проекция - часть биллиардного стола, ограниченная дугой эллипса с параметром  $\lambda = \Lambda$ , и состоит из склеенных простых биллиардов, каждый из которых мы обозначим за  $\Psi_i$ . Проекция может содержать одну коническую точку либо не содержать их вообще. Отсутствие случая двух конических точек проекции следует из теоремы классификации областей с прямыми склейками.

Ориентируем ребро к седловому атому. Будем обозначать циклы на атоме A как  $\lambda_{-}$  и  $\mu_{-}$ , а циклы на седловом атоме как  $\lambda_{+}$  и  $\mu_{+}$ .

Рассмотрим случай, когда проекция не содержит конических точек. На торе атома A циклы выбираются так же, как и в шаге 1 доказательства, а именно  $\lambda_{-}$  конструируется как обобщенный цикл из  $\lambda_i$  на каждом простом биллиарде  $\Psi_i$ , которые являются дугами эллипса с одинаковым параметром  $\lambda \in (-b, -\lambda_2)$  (причем для всех областей параметр дуги должен быть одинаков, и должен лежать в указанном интервале), а цикл  $\mu_{-}$  конструируется из циклов  $\mu_i$  - дуг эллипса с параметром  $\lambda \in (-\Lambda, a)$ .

Циклы на торе седлового атома выбираются следующим образом: в качестве  $\lambda_+$  выберем обобщенный цикл, состоящий из дуг эллипса, выбранных на областях  $\Psi_i$ , с одинаковым параметром, лежащим в промежутке  $\lambda \in (-\Lambda, a)$ , а  $\hat{\mu}$  - обобщенный цикл, состоящий из дуг эллипса с одинаковым параметром  $\lambda \in (-b, -\lambda_2)$ . Поскольку  $\lambda_+$  и  $\hat{\mu}$  пересекаются в одной точке, то  $\mu_+ = \hat{\mu}$ .

Ориентацию на всех циклах выберем согласованной (на  $\mu_+$  она задается условием существования глобального сечения), тогда  $\lambda_+ = \mu_-$ ,  $\lambda_- = \mu_+$  и матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , а метки на

ребре $r=0, \varepsilon=1.$ Такое ребро, будь оно входящим или выходящим, дает нулевой вклад в меткуn.

Теперь рассмотрим случай одной конической точки.

дает вклад в метку n равный 0.

Циклы на торе атома A выбираются так же, как и в шаге 2 доказательства теоремы, а именно  $\lambda_{-}$  конструируется как обобщенный цикл из  $\lambda_i$  на каждом простом биллиарде  $\Psi_i$ , которые являются дугами эллипса с одинаковым параметром  $\lambda \in (-b, -\lambda_2)$  (причем для всех областей параметр дуги должен быть одинаков, и должен лежать в указанном интервале), а  $\mu_{-} = \pm \frac{\lambda_{+} + \lambda_{-}}{2}$ . Выбор циклов показан на рис. 35, с.

Циклы на торе седлового атома выбираются следующим образом: в качестве  $\lambda_+$  выберем обобщенный цикл, состоящий из дуг эллипса, выбранных на областях  $\Psi_i$ , с одинаковым параметром, лежащим в промежутке  $\lambda \in (-\Lambda, a)$ , а  $\hat{\mu}$  - обобщенный цикл, состоящий из дуг эллипса с одинаковым параметром  $\lambda \in (-b, -\lambda_2)$ . Выбор циклов показан на рис. 35, d. Поскольку  $\lambda_+$  и  $\hat{\mu}$  пересекаются в двух точках, то  $\mu_+ = \pm \frac{\hat{\mu} + \lambda_+}{2} = \pm \frac{\lambda_- + \lambda_+}{2}$ . Отметим, что ориентация на  $\mu_+$  задается условием существования глобального сечения, поэтому является согласованной. Таким образом,  $\mu_- = \mu_+ = \frac{\lambda_- + \lambda_+}{2}$ . Матрица склейки имеет вид  $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ , а метки на ребре  $r = \frac{1}{2}, \varepsilon = 1$ . Такое

ребро, будь оно входящим или выходящим, дает вклад в метку n равный -1.

Выбор циклов в случае, когда атом со звездочкой лежит на уровне  $\lambda = -b$  осуществляется аналогичным образом.

# Шаг 4. Подсчет меток для случаев, когда топологический биллиард содержит четыре конические точки.

Итак, рассмотрим биллиарды, имеющие четыре конические точки. Множество таких биллиардов делится две группы, как следует из теорем классификации 3.1, 3.2.

1. Первая из таких групп - группа биллиардов, полученная склейкой двух обобщенных эллипсов, а именно,  $\Delta_{\beta}(k \times ne)^2$ ,  $\Delta_{\beta}(k \times ne + nh2')^2$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q)^2$ ,  $\Delta_{\beta}(k \times ne + nh2' + 2nh2')^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q)^2$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q)^2$ ).

Рассмотрим значения интеграла  $\lambda \in (-b, -\lambda_2)$ . Им соответствуют левые ребра молекул. Зафиксируем некое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном выше промежутке. Поверхностью уровня этого значения интеграла являются несколько торов в изоэнергетическом многообразии  $Q^3$ . Рассмотрим естественную проекцию одного из этих торов на биллиардный стол. Эта проекция либо не содержит конических точек, либо содержит ровно две конические точки.

Таким образом, в случае двух конических точек выбор циклов  $\lambda$  и  $\mu$  для граничных торах, лежащих на уровне интеграла  $\lambda \in (-b, -\lambda_2)$ , рассмотрен в пункте 1 шага 2, а в случае отсутствия конических точек - рассмотрен в пункте 1 шага 1. В обоих случаях матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Метки на ребрах, соответствующих таким значениям интеграла, имеют вид  $r = 0, \varepsilon = 1$ . Если ребро с такой матрицей склейки является входящим в семью или выходящим из нее, то оно

Очевидно, что аналогично считаются метки для значений интеграла  $\lambda \in (\lambda_1, a)$ , так как проекция любого тора, лежащего на таких уровнях интеграла, также либо не содержит конических точек, либо содержит две конические точки. Таким образом, метки на всех правых ребрах молекулы также будут  $r = 0, \varepsilon = 1$ , и такие ребра дают нулевой вклад в метку n, если они являются входящим в семью или выходящим из нее.

Рассмотрим значения интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\pm \infty\}$  - им соответствуют два средних ребра в молекуле. Зафиксируем некое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном выше промежутке. Поверхностью уровня этого значения интеграла являются два тора в изоэнергетическом многообразии  $Q^3$ . Рассмотрим естественную проекцию одного из этих торов на биллиардный стол. Эта проекция будет в точности весь биллиардный стол, то есть будет содержать четыре конические точки. Обозначим простые биллиарды, входящие в состав топологического биллиарда, как  $\Psi_i$ .

Ориентируем оба ребра к атому, лежащему на уровне интеграла  $\lambda = a$ . Циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = -b$  будем писать с индексом –, а циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = a$  будем писать с индексом +.

В данном случае выбор циклов на граничных торах седловых атомов осуществляется также, как и в пункте 1 шага 1, а именно: на граничном торе седлового атома, лежащего на уровне интеграла  $\lambda = -b$  конструируем обобщенный цикл  $\lambda_{-}$  из дуг  $\lambda_i$ , прообразов дуг эллипса с параметром  $\lambda \in (-\Lambda, -\lambda_2)$ , выбранных на простых областях  $\Psi_i$  (причем для всех областей параметр дуги должен быть одинаков, и должен лежать в указанном интервале), а цикл  $\mu_{-}$  конструируется как обобщенный цикл из  $\mu_i$  - прообразов дуги эллипса с параметром  $\lambda \in (\lambda_1, a)$ , выбранных на каждом простом биллиарде  $\Psi_i$  (аналогично, параметр дуги для всех областей должен быть одинаков и лежать в указанном интервале). На граничном торе седлового атома, лежащего на уровне интеграла  $\lambda = a$ , цикл  $\lambda_+$  конструируем как обобщенный цикл из  $\lambda_i$ , дуг эллипса с параметром  $\lambda \in (\lambda_1, a)$ , а цикл  $\mu_+$  - как обобщенный цикл из  $\mu_i$ , дуг эллипса с параметром  $\lambda \in (-b, -\lambda_2)$ . Тогда, как это было отмечено в пункте 1 шага 1, матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Метки на ребрах имеют вид  $r = 0, \varepsilon = 1$ , и такие ребра дают нулевой вклад в метку n, если они являются входящими в семью или выходящими из семьи.

2. Вторая группа биллиардов с четырьмя коническими точками образована склейкой четырех обобщенных эллипсов, а именно  $\Delta_{\beta}(k \times ne)^4$ ,  $\Delta_{\beta}(k \times ne + nh2')^4$ ,  $\Delta_{\beta}(k \times ne + 2nh2')^4$ ,  $\Delta_{\beta}(k \times ne + nh2' + kh1' + q')^4$ ,  $\Delta_{\beta}(k \times ne + 2nh2' + kh1' + 2q')^4$  и  $\Delta_{\beta}(k \times ne + 2nh2' + 2kh1' + 4q')^4$ .

Рассмотрим значения интеграла  $\lambda \in (-b, -\lambda_2)$ . Им соответствуют левые ребра молекул. Зафиксируем некое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном выше промежутке. Поверхностью уровня этого значения интеграла являются несколько торов в изоэнергетическом многообразии  $Q^3$ . Рассмотрим естественную проекцию одного из этих торов на биллиардный стол. Эта проекция либо не содержит конических точек, либо содержит две конические точки. Для таких проекций циклы граничных торах атомов выбираются также, как и в пунке 1 шага 1 (в случае отсутствия конических точек), либо выбор таких циклов описан в пункте 1 шага 2 и показан на рис. 31, b.(в случае, когда проекция содержит две конические точки). В обоих случаях матрица склейки имеет вид  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , метки на ребрах  $r = 0, \varepsilon = 1$ , и такие ребра дают нулевой вклад в метку n, если они являются входящими в семью или выходящими из семьи.

Отметим, что метки на ребрах, соответствующих значениям интеграла  $\lambda \in (\lambda_1, a)$  (правые ребра мелекулы), вычисляются аналогичным образом и также равны  $r = 0, \varepsilon = 1$ . Такие ребра тоже дают нулевой вклад в метку n, если они являются входящими в семью или выходящими из семьи.

Рассмотрим значения интеграла  $\lambda \in (-\infty, -b) \cup (a, \infty) \cup \{\pm \infty\}$  - им соответствуют два средних ребра в молекуле. Зафиксируем некое значение интеграла  $\lambda = \Lambda$ , лежащее в указанном выше промежутке. Поверхностью уровня этого значения интеграла являются два тора в изоэнергетическом многообразии  $Q^3$ . Рассмотрим естественную проекцию одного из этих торов на биллиардный стол. Эта проекция будет в точности весь биллиардный стол, то есть будет содержать четыре конические точки. Обозначим простые биллиарды, входящие в состав топологического биллиарда, как  $\Psi_i$ .

Ориентируем оба ребра к атому, лежащему на уровне интеграла  $\lambda = a$ . Циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = -b$  будем писать с индексом –, а циклы  $\lambda$  и  $\mu$  на торах седлового атома, соответствующего значению интеграла  $\lambda = a$  будем писать с индексом +.

Выбор циклов  $\lambda_{-}$ ,  $\mu_{-}$  и  $\lambda_{+}$ ,  $\mu_{+}$  на граничных торах седловых атомов показан на рис.36 под буквами а. и b. соответственно. Ориентацию  $\lambda_{-}$  выберем согласованной с ориентацией критической окружности атома, а ориентация  $\mu_{-}$  задается условием существования глобального сечения, и, поскольку ориентация циклов  $\mu$  на левых ребрах молекулы уже выбрана согласованной, значит, ориентация  $\mu_{-}$  должна быть несогласованной. Ориентацию  $\lambda_{+}$  также выберем согласованной с ориентацией критической окружности атома. Тогда ориентация  $\mu_+$  должна быть несогласованной. Поскольку  $\mu_+ = \mu_- = -\frac{\lambda_+ + \lambda_-}{2}$ , матрица склейки имеет вид  $\begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$ , метки на ребрах  $r = \frac{1}{2}, \varepsilon = -1$ , и такие ребра дают нулевой вклад в метку n, если они являются входящими в семью или выходящими из семьи.



Рис. 36: Циклы μ и λ для граничных торов седловых атомов для средних ребер в молекулах в случае четырех конических точек. Показан частный случай, когда листов 4.

# 6 Итоги исследования.

# 6.1 Классификация слоений Лиувилля для топологических биллиардов на плоскости Минковского.

В работе полностью классифицированы следующие группы топологических биллиардов на плоскости Минковского: эллиптические биллиарды с выпуклыми склейками, а также биллиарды, допускающие прямые склейки и включающие в себя простой биллиард *e* (то есть биллиард, эквивалентный эллипсу). Для каждого класса эквивалентности подсчитана меченая молекула Фоменко-Цишанга - инвариант гамильтоновой системы, полностью определяющий тип слоения Лиувилля ее изоэнергетической поверхности.

Список топологических биллиардов с выпуклыми склейками представлен в таблице в пункте 6.3. Список топологических биллиардов, допускающих также прямые склейки, и включающих простой биллиард, эквивалентный эллипсу, представлен в таблице в пункте 6.4.

В каждом топологическом биллиарде на плоскости Минковского уровень интеграла  $\lambda = \pm \infty$  делит изоэнергетическую поверхность на две связные части. На уровне интеграла  $\lambda = \pm \infty$  в изоэнергетической поверхности лежат световые торы. Их может быть один, два или четыре. Часть изоэнергетической поверхности, соответствующая значениям интеграла  $\lambda \in (-\infty, -\lambda_2)$  содержит вещественные торы и атомы. Этим значениям интеграла соответствует часть молекулы, лежащая по левую сторону от уровня интеграла  $\lambda = \pm \infty$  и именно в этой части изоэнергетического многообразия лежит слой  $\lambda = -b$ . Часть изоэнергетической поверхности, соответствующая значениям интеграла  $\lambda \in (\lambda_1, \infty)$  содержит мнимые торы и атомы. Таким значениям интеграла соответствует часть молекулы, лежащая справа от значения интеграла  $\lambda = \pm \infty$ , и в этой части лежит слой, соответствующий  $\lambda = a$ .

Итак, любую молекулу можем разбить на три части: световая часть, состоящая из одной, двух или четырех точек ребер, лежащих на уровне интеграла  $\lambda = \pm \infty$ , вещественная часть, которая находится по левую сторону от уровня интеграла  $\lambda = \pm \infty$ , и мнимая часть, которая лежит справа от уровня интеграла  $\lambda = \pm \infty$  соответственно.

Для каждого класса эквивалентности указана схема биллиарда и инвариант Фоменко-Цишанга.

Выделим в данной классификации некоторые биллиарды, обладающие интересным свойством, а именно следующую группа биллиардов:

- обобщенная лента  $\Delta_{\gamma}(2k \times ne + 4kh1)_2$ ,
- биллиард с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_{x,x} + 2kh1),$

- биллиард с одной конической точкой  $\Delta_{\beta}(2k \times ne + (2nh2')_u),$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_{2y}),$
- биллиард-лента  $\Delta_{\gamma}(2k \times ne + 2nh2')_2$
- биллиард с двумя коническими точками  $\Delta_{\beta}((2k \times ne)_x + (2nh2')_y),$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (4nh2')_{y,y}),$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 4nh2' + 2nh1' + (4q')_{2z}),$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + 2nh2' + (2kh1')_y + (2q')_z),$
- биллиард с двумя коническими точками  $\Delta_{\beta}(2k \times ne + (2nh2')_y + 2kh1' + (2q')_z).$

Все эти биллиарды несимметричны относительно одной из координатных осей.

Ранее было отмечено что два биллиарда, полученные друг из друга евклидовым поворотом на  $\pi/2$ мы будем считать эквивалентными. Оказывается, если для каждого биллиарда  $\Delta$  из списка выше рассмотреть ему эквивалентный биллиард  $\Delta'$ , полученный евклидовым поворотом на  $\pi/2$ , изоэнергетическая поверхность  $Q^3$  преобразуется следующим образом: те торы и атомы, что были времениподобными в  $Q^3$ , станут пространственноподобными в изоэнергетической поверхности  $Q'^3$  биллиарда  $\Delta'$ и наоборот. Итак, полученный биллиард  $\Delta'$  будет лиувиллево эквивалентен исходному, однако диффеоморфизм между изоэнергетическими поверхностями  $Q^3$  и  $Q'^3$  переводит пространственноподобные слои во времениподобные и наоборот, а световой слой в  $Q^3$  он переводит в световой слой в  $Q'^3$ . Меченая молекула биллиарда  $\Delta$  при преобразовании его в биллиард  $\Delta'$  отразится относительно прямой, трансверсально пересекающей центральные ребра, лежащей на уровне интеграла  $\lambda = \pm\infty$ .

# 6.2 Биллиарды на плоскости Минковского как модели некоторых случаев интегрируемости твердого тела

Движение твердого тела с закрепленной точкой в поле силы тяжести описывается системой уравнений Эйлера-Пуассона (см. [17], [18]):

$$\begin{aligned} A\dot{\omega} &= A\omega \times \omega - Pr \times \nu, \\ \dot{\nu} &= \nu \times \omega \end{aligned} \tag{6.1}$$

Выберем систему координат такой, что ее оси будут направлены вдоль главных осей инерции тела.

Фазовые переменные здесь таковы:  $\omega$  - вектор угловой скорости тела,  $\nu$  - вектор восходящей вертикали. Параметрами системы являются: диагональная матрица  $A = diag(A_1, A_2, A_3)$ , задающая тензор инерции твердого тела, P - вес тела, r - радиус-вектор центра масс тела. Запись  $a \times b$  означает векторное произведение в  $\mathbb{R}^3$ .

Существуют многочисленные обобщения данной задачи.

Н. Е. Жуковский исследовал задачу о движении твердого тела, имеющего полости, полностью заполненные идеальной несжимаемой жидкостью, совершающей безвихревое движение [19]. Кинетический момент тела в таком случае равен  $A\omega + \lambda$ , где  $\lambda$  - постоянный вектор (в системе координат, жестко связанной с телом), характеризующий циклические движение жидкости в полостях. Аналогичный вид кинетический момент тела имеет в случае, когда в теле закреплен маховик, ось которого направлена вдоль вектора  $\lambda$ . Такую механическую систему называют гиростатом. Движение гиростата в поле силы тяжести, а также некоторые другие задачи (см. например, [21]) описываются системой уравнений

$$A\dot{\omega} = (A\omega + \lambda) \times \omega - Pr \times \nu,$$
  
$$\dot{\nu} = \nu \times \omega$$
(6.2)

Другое обобщение этой задачи связано с заменой внешнего однородного поля, т. е. силы тяжести, на более сложное. Уравнения движения твердого тела с закрепленной точкой в произвольном потенциальном силовом поле были получены Лагранжем. Если это поле имеет ось симметрии, то ее можно считать вертикальной. Тогда уравнения движения тела имеют вид

$$A\dot{\omega} = A\omega \times \omega + \nu \times \frac{\partial U}{\partial \nu},$$
  
$$\dot{\nu} = \nu \times \omega$$
(6.3)

Здесь  $U(\nu)$  - потенциальная функция, а через  $\frac{\partial U(\nu)}{\partial \nu}$  обозначен вектор с компонентами  $(\frac{\partial U}{\partial \nu_1}, \frac{\partial U}{\partial \nu_2}, \frac{\partial U}{\partial \nu_3})$ . Отметим, что если поле сил есть поле силы тяжести, т. е.  $P\langle r, \nu \rangle = U$ , получаем систему уравнений 6.2. Здесь через  $\langle a, b \rangle$  обозначено стандартное евклидово скалярное произведение векторов в  $\mathbb{R}^3$ .

Наиболее общие уравнения, описывающие различные задачи динамики твердого тела, имеют вид (см., например, книгу М. П. Харламова [20]):

$$A\dot{\omega} = (A\omega \times \omega + \kappa) + \nu \times \frac{\partial U}{\partial \nu},$$
  
$$\dot{\nu} = \nu \times \omega$$
(6.4)

где  $\kappa(\nu)$  - вектор-функция, компоненты которой являются коэффициентами некоторой замкнутой 2-формы на группе вращений SO(3), т. е. формой гироскопических сил. Вектор-функция  $\kappa(\nu)$  имеет вид:

$$\kappa = \lambda + (\Lambda - div\lambda \cdot E)\nu, \tag{6.5}$$

где  $\lambda(\nu)$  - произвольная вектор-функция,  $div\lambda = \frac{\partial\lambda_1}{\nu_1} + \frac{\partial\lambda_2}{\nu_2} + \frac{\partial\lambda_3}{\nu_3}$ , а  $\Lambda = (\frac{\partial\lambda_i}{\nu_j})^T$  - транспонированная матрица Якоби. Очевидно, системы (6.2)-(6.2) являются частными случаями общей системы (6.2)

У системы (6.2) всегда существует геометрический интеграл  $F = \langle \nu, \nu \rangle = 1$  и интеграл энергии  $E = \frac{1}{2} \langle A\omega, \omega \rangle + U(\nu).$ 

Если  $\kappa(\nu)$  имеет вид (6.2), то существует интеграл площадей  $G = \langle A\omega + \lambda, \nu \rangle$ .

Можно показать (см. например [20]) что уравнения (6.2),(6.2) являются гамильтоновыми на совместных 4-поверхностях уровня геометрического интеграла и интеграла площадей. Более того, уравнения (6.2),(6.2) можно представить в виде уравнений Эйлера для шестимерной алгебры Ли *e*(3) группы движений трехмерного евклидового пространства.

На линейном пространстве  $e(3)^*$  определена скобка Ли-Пуассона двух произвольных гладких функций f и g:

$$\{f,g\}(x) = x([d_x f, d_x g]),$$

где  $x \in e(3)^*$ , через [,] обозначен коммутатор в алгебре Ли e(3), а  $d_x f$  и  $d_x g$  - это дифференциалы функций f и g в точке x. Эти дифференциалы принадлежат в действительности алгебре Ли e(3) как ковекторы на  $e(3)^*$ , при стандартном отождествлении пространства  $e(3)^{**}$  с алгеброй e(3). В естественных координатах  $S_1, S_2, S_3, R_1, R_2, R_33$  на пространстве  $e(3)^*$  эта скобка записывается следующим образом

$$\{S_i, S_j\} = \varepsilon_{ijk}S_k, \{R_i, S_j\} = \varepsilon_{ijk}R_k, \{R_i, R_j\} = 0,$$

$$(6.6)$$

где  $\{i, j, k\} = \{1, 2, 3\}, \varepsilon_{ijk} = \frac{1}{2}(i-j)(j-k)(k-i).$ 

Гамильтонова система на пространстве  $e(3)^*$  со скобкой (6.2), т.е. уравнения Эйлера, по определению имеют вид:

$$\dot{S}_i = \{S_i, H\}, \dot{R}_i = \{R_i, H\}$$

, где H - функция на  $e(3)^*$ , называемая гамильтонианом. Вводя векторы  $S = (S_1, S_2, S_3), R = (R_1, R_2, R_3),$  эти уравнения можно переписать в виде обобщенных уравнений Кирхгофа

$$\dot{S} = \left(\frac{\partial H}{\partial S}\right) \times S + \left(\frac{\partial H}{\partial R}\right) \times R, \dot{R} = \left(\frac{\partial H}{\partial S}\right) \times R \tag{6.7}$$

Предложение 6.1. Отображение  $\phi \colon \mathbb{R}^6(\omega, \nu) \to \mathbb{R}^6(S, R)$ , заданное формулами

$$S = -(A\omega + \lambda), R = \nu \tag{6.8}$$

устанавливает изоморфизм системы (6.2), (6.2) и системы (6.2) с гамильтонианом

$$H = \frac{(S_1 + \lambda_1)^2}{2A_1} + \frac{(S_2 + \lambda_2)^2}{2A_2} + \frac{(S_3 + \lambda_3)^2}{2A_3} + U$$
(6.9)

, где параметры системы  $A_1, A_2, A_3$  и функции  $\lambda_1, \lambda_2, \lambda_3, U$  берутся из системы (6.2), (6.2), но функции заданы не на пространстве  $\mathbb{R}^3(\nu)$ , а на пространстве  $\mathbb{R}^3(R)$ 

Следствие 6.1. Условие (6.2), налагаемое на вектор-функцию  $\kappa(\nu)$ , равносильно тому, что система уравнений (6.2) эквивалентна системе, задаваемой уравнениями Эйлера на пространстве e(3)\*, т.е. уравнениями (6.2), с гамильтонианом, квадратичным по переменным S, то есть гамильтонианом вида

$$H = \langle CS, S \rangle + \langle W, S \rangle + V \tag{6.10}$$

, где C - постоянная симметричная матрица  $3 \times 3$ , W(R) - произвольная вектор-функция, V(R) - произвольная гладкая функция.

При построении отображения (6.1) интегралы  $F = \langle \nu, \nu \rangle$  и  $G = \langle A\omega + \lambda, \nu \rangle$  переходит в инварианты алгебры Ли e(3):

$$f_1 = R_1^2 + R_2^2 + R_3^2, f_2 = S_1 R_1 + S_2 R_2 + S_3 R_3$$

, а интеграл энергии  $E = \frac{1}{2} \langle A\omega, \omega \rangle + U(\nu)$  переходит в гамильтониан (6.1). Система (6.2) является гамильтоновой на совместных четырехмерных поверхностях уровня двух гладких функций, т. е. интегралов  $f_1$  и  $f_2$ :

$$M_{c,g}^4 = \{f_1 = R_1^2 + R_2^2 + R_3^2 = c, f_2 = S_1 R_1 + S_2 R_2 + S_3 R_3 = g\}$$
(6.11)

. Для почти всех значений c и g эти совместные уровни являются неособыми гладкими подмногообразиями в  $e(3)^*$ . В дальнейшем будем считать, что c и g являются именно такими регулярными значениями.

Легко видеть, что эти симплектические 4-многообразия  $M_{c,g}^4$  диффеоморфны, при c > 0, касательному расслоению  $TS^2$  к двумерной сфере  $S^2$ . Симплектическая структура задается здесь ограничением скобки Ли-Пуассона на  $TS^2$  из объемлющего шестимерного пространства  $e(3)^*$ . Поскольку линейное преобразование  $S' = S, R' = \gamma R$ , где  $\gamma = const$ , очевидно, сохраняет скобку (6.2), мы будем считать в дальнейшем, что всегда c = 1.

Как уже отмечалось, система уравнений (6.2) с гамильтонианом (6.1) (или эквивалентная система уравнений (6.2), (6.2)) описывает различные задачи динамики твердого тела и некоторые близкие к ней системы.

Начиная с этого момента мы будем рассматривать систему уравнений (6.2) с гамильтонианом (6.1) на симплектическом многообразии  $M_{1,g}^4 = \{f_1 = 1, f_2 = g\}$  в шестиемерном пространстве  $e(3)^*$ .

Приведем список некоторых известных сегодня интегрируемых случаев для уравнений (6.2), (6.1) с указанием: кем, когда и для какой задачи этот случай интегрируемости был впервые обнаружен. Для каждого случая указаны Гамильтониан H и дополнительный интеграл K, функционально независимый с H. При этом дополнительный интеграл K может существовать не на всех 4-поверхностях уровня функций  $f_1$  и  $f_2$ , а лишь для некоторых постоянных значений постоянной g.

Случай Эйлера (1750 год). Движение тяжелого твердого тела с закрепленной точкой, совпадающей с центром масс твердого тела.

$$H = \frac{S_1^2}{2A_1} + \frac{S_2^2}{2A_2} + \frac{S_3^2}{2A_3}, K = S_1^2 + S_2^2 + S_3^2$$
(6.12)

. Здесь интеграл К - квадратичный.

Случай Лагранжа (1788 год). Движение тяжелого твердого тела с закрепленной точкой и указанным ниже условием симметрии твердого тела.

$$H = \frac{S_1^2}{2A} + \frac{S_2^2}{2A} + \frac{S_3^2}{2B} + aR_3, K = S_3$$
(6.13)

. Здесь интеграл K - линейный. В этом случае твердое тело имеет ось симметрии, поскольку  $A_1 = A_2 = A$ . При этом закрепленная точка твердого тела располагается именно на этой оси.

Случай Жуковского (1885 год). Движение гиростата в поле силы тяжести

$$H = \frac{(S_1 + \lambda_1)^2}{2A_1} + \frac{(S_2 + \lambda_2)^2}{2A_2} + \frac{(S_3 + \lambda_3)^2}{2A_3}, K = S_1^2 + S_2^2 + S_3^2$$
(6.14)

. Здесь интеграл K - квадратичный. Этот случай является обобщением случая Эйлера. Случай Эйлера получается отсюда, когда  $\lambda_1 = \lambda_2 = \lambda_3 = 0$ .

Грубые молекулы для основных случаев интегрируемости были первоначально вычислены А. А. Ошемковым [7], [11], [12]. Затем разными авторами были определены числовые метки на этих молекулах, что позволило в итоге вычислить меченые молекулы. См. А.В. Болсинов [13], П. Й. Топалов [14], А. В. Болсинов, А. Т. Фоменко [15], [16].

Отметим, что для различных значений параметров системы, а также для различных уровней энергии, слоения Лиувилля изоэнергетической поверхности для одной и той же задачи оказывались различным. Таким образом, каждый случай интегрируемости имеет несколько меченых молекул.

Лиувиллево неэквивалентные системы, возникающие в рамках одного случая, принято обозначать различными цифрами после названия (так, например, случай Эйлера (1), случай Эйлера(2) и случай Эйлера (3) имеют принципиально различные слоения изоэнергетической поверхности).

**Теорема 6.1.** Среди меченых молекул для вышеперечисленных случаев динамики твердого тела встречались некоторые вычисленные мной молекулы. Ниже приведен список топологических биллиардов на плоскости Минковского, которые моделирует следующие случаи динамики твердого тела:

- 1. топологические биллиарды, составленные из простых биллиардов q и допускающих лишь выпуклые склейки (см. рис.37, а), моделируют (т.е. Лиувиллево эквивалентны) случаи Эйлера (1) (см. [2]), Лагранжа(1) (см. [2]) и Жуковского(7) (см. [7]) динамики твердого тела;
- топологический биллиард с конической точкой, составленный из простых биллиардов q и допускающий лишь выпуклые склейки (см. рис.37, b), моделирует (т.е. Лиувиллево эквивалентен) случаи Лагранжа(3) (см. [2]) и Жуковского(11) (см. [7]) динамики твердого тела;
- обобщенные ленты Δ<sub>γ</sub>(2 × 2h2)<sub>1</sub> и Δ<sub>γ</sub>(2h2)<sub>1</sub> (см. рис.37, с) моделируют (т.е. Лиувиллево эквивалентны) случай Эйлера(2) (см. [2]) динамики твердого тела;
- топологические биллиарды Δ<sub>α</sub>(2×1h2+2(α+β)q) и Δ<sub>α</sub>(h2+(α+β)q) (см. рис.37, d) моделируют (т.е. Лиувиллево эквивалентны) случай Жуковского(8) (см. [7]) динамики твердого тела.



Рис. 37: Биллиарды на плоскости Минковского как модели динамики твердого тела

6.3 Таблица с инвариантами Фоменко-Цишанга для всех эллиптических биллиардов с выпуклыми склейками.



Рис. 38: Меченые молекулы для топологических биллиардов, допускающих только выпуклые склейки, содержащих e



Рис. 39: Меченые молекулы для топологических биллиардов, допускающих только выпуклые склейки, содержащих  $h2,\,q$ 

6.4 Таблица с инвариантами Фоменко-Цишанга для топологических биллиардов, допускающих прямые склейки и содержащих область *e*.



Рис. 40: Меченые молекулы для топологических биллиардов, допускающих прямые склейки, содержащие область e



Рис. 41: Меченые молекулы для топологических биллиардов, допускающих прямые склейки, содержащие область e

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$







Рис. 42: Меченые молекулы для топологических биллиардов, допускающих прямые склейки, содержащие область e



Рис. 43: Меченые молекулы для топологических биллиардов, допускающих прямые склейки, содержащие область e

# Список литературы

- [1] Биркгоф Дж. Д., Динамические системы, Издательский дом «Удмуртский университет», 1999.
- [2] Болсинов А. В., Фоменко А. Т., Интегрируемые гамильтоновы системы. Геометрия, топология, классификация. Ижевск НИЦ «Регулярная и хаотическая динамика», 1999, Т.1
- [3] Драгович В., Раднович М., Топологические инварианты эллиптических биллиардов и геодезических потоков на эллипсоиде в пространстве Минковского, Фундаментальная и прикладная математика, 2015, Т. 20(2), С. 51-64.
- [4] Козлов В. В., Трещев Д. В., Генетическое введение в динамику систем с ударами, М.: Издательство МГУ, 1991
- [5] Фокичева В. В., Топологическая классификация биллиардов в локально-плоских областях, ограниченных дугами софокусных квадрик // Математический сборник. — 2015. — Т. 206, № 10. С. 127–176.
- [6] Gutkin E., Billiard dynamics: a survey with the emphasis on open problems. // Regul. and Chaotic Dyn., 8:1(2003), 1-13.
- [7] Oshemkov A. A., Fomenko Invariants for the Main Integrable Cases of the Rigid Body Motion Equations. // Advances in Soviet Mathematics, AMS, v. 6, 1991, 67-146.
- [8] V. Dragovic, M. Radnovic, «Bifrucations of Liouville tori in elliptical billiards», Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
- [9] В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, Нелинейная динам., 6:2 (2010), 449–450
- [10] Ведюшкина В. В., Харчева И. С. Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем // Математический сборник. 2018. Т. 209, № 12.
- [11] А. А. Ошемков, Топология изоэнергетических поверхностей и бифуркационные диаграммы интегрируемых случаев динамики твердого тела на SO(4)», УМН, 42:6(258) (1987), 199–200.
- [12] Ошемков А.А. Описание изоэнергетических поверхностей для некоторых интегрируемых гамильтоновых систем с двумя степенями свободы // Труды семинара по вект. и тенз. анализу, Т.23, М.: МГУ, 1988, С.122–131.
- [13] Bolsinov A.V. Methods of calculation of Fomenko-Zieschang topological invariant», Adv. in Soviet Math., 6, c. 147–183 (1991).
- [14] П. Й. Топалов, Вычисление тонкого инварианта Фоменко–Цишанга для основных интегрируемых случаев движения твердого тела, Матем. сб., 187:3 (1996), 143–160.
- [15] Болсинов А. В., Фоменко А. Т. Геодезический поток эллипсоида траекторно эквивалентен интегрируемому случаю Эйлера в динамике твердого тела // Доклады РАН, 1994, т. 339, вып. 3, с. 293-296.
- [16] А. В. Болсинов, А. Т. Фоменко, Траекторная классификация геодезических потоков двумерных эллипсоидов. Задача Якоби траекторно эквивалентна интегрируемому случаю Эйлера в динамике твердого тела, Функц. анализ и его прил., 29:3 (1995), 1–15;
- [17] В. В. Козлов, Методы качественного анализа в динамике твердого тела, Изд-во МГУ, 1980.
- [18] Ю. А. Архангельский, Аналитическая динамика твердого тела, М.: Наука, 1977.
- [19] Я. Е. Жуковский, О движении твердого тела, имеющего полости, наполненные однородной капельной жидкостью. В томе 1 «Собрания сочинений», Т. 1,2. Москва, 1949.

- [20] М. П. Харламов, Топологический анализ интегрируемых задач динамики твердого тела. Л.: Изд-во Ленинградского ун-та, 1988.
- [21] М. П. Харламов, Лекции по динамике твердого тела. Л.: Изд-во НГУ, 1965.