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Introduction.

In this work we study local skew fields, which are natural generalisation of n-dimensional
local fields, and their applications to the theory of central division algebras over
henselian fields.

Local fields appear in a natural way in algebraic geometry and algebraic number
theory if anyone try to find a connection between local and global properties of such
objects like algebraic number fields, arithmetic schemes and algebraic varieties.

Historically the first examples of 1-dimensional local fields appeared in the 19 cen-
tury in complex analisys and in algebraic number theory. These examples are known
fields C((z)) and Qp. Now we say that 1-dimensional local field is a quotient field of a
complete discrete valuated ring.

A little bit later the first examples of local skew fields were found. They were finite
dimensional division algebras over classical local fields, and they were completely stud-
ied by Hasse, Brauer, Noether and Albert. At the same time there were several works
of Witt ([34]) about skew fields over discrete valuated fields, which opened researching
of skew fields over henselian fields. Basic results about a structure of such skew fields
were recently got by Jacob and Wandsworth in ([9]).

In the middle of 70-th A.N.Parshin introduced a notion of a multidimensional local
field which generalised the notion of a usual local field ([19],[24], [7]).

n-dimensional local field is a complete discrete valuated field such that the residue
field is a n − 1-dimensional local field.

One of the typical examples of such a field is an iterated Laurent series field
k((z1))((z2)) . . . ((zn)). Elements z1, . . . , zn are called local parameters of this field.

Multidimensional local fields appears also as natural generalisations of local objects
on 1-dimensional scheme. As an example let us consider the following construction.

Consider an algebraic scheme X of dimension n. Let Y0 ⊃ . . . ⊃ Yn be a flag
of closed subschemes in X such that Y0 = X, Yn = x is a closed point on X, Yi

is a codimension 1 subscheme in Yi−1 (1 ≤ i ≤ n), x is a smooth point on all Yi

(0 ≤ i ≤ n). Then there exists a construction which assign in canonical way to any
given flag a n-dimensional local field. Moreover, let X be an algebraic variety over a
field k, x be a rational point over k, z1, z2, . . . , zn ∈ k(X) be fixed local parameters such
that zn−i+1 = 0 is an equation of Yi on Yn−1 in a neiborhood of the point x (1 ≤ i ≤ n).
Then our n-dimensional local field can be identified with k((z1))((z2)) . . . ((zn)) ([24],
[7]).

Using this assignment a number of results known earlier only for the case of a curve
was generalised to a higher dimensional case. These are such well-known results as
multi-dimensional reciprocity lows of Parshin-Lomadze ([19], [15], [20], [7]).

During the last 25 years there was opened another direction in the theory of local
fields. This is an application to the theory of integrable systems connected with the
Krichever-Sato-Wilson correspondence on a curve (for more details on the Krichever
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correspondence see [6], [29], [16], [27]).
Recently there were issued several papers [17], [18], [23], where the ideas of the

Krichever-Sato-Wilson correspondence on a curve were developed to the case of vari-
eties of higher dimension. In particular, A.N. Parshin pointed out one class of non-
commutative local fields arising in differential equations and showed that these skew
fields possesses many features of commutative fields. He defined a skew field of for-
mal pseudo-differential operators in n variables and studied some of their properties.
He raised a problem of classifying non-commutative local skew fields. It was the first
argument to begin to study such skew fields.

A generalisation of a notion ”local field” looks very natural:
n-dimensional local skew field is a complete discrete valuated skew field such that the
residue skew field is a n − 1-dimensional local skew field.

In this work we try to study n-dimensional local skew fields bearing in mind only the
definition. Unfortunately, there appear very hard obstructions already on the first steps
which leads us to some restrictions. So, we study only skew fields with commutative
residue skew field. By the way, a number of results valid in general case (see, for
example, proposition 0.7 and corollary 1) and a number of results can be generalised
to the case of skew fields with residue skew field finite dimensional over its centre (see,
for example, section 1.4).

Some applications of developed theory to the Krichever correspondence we get in
section 1.6. Namely, we get some generalisations of the classical KP-equations (hierar-
chy).

Surprisingly the studying of local skew fields leads to some new unexpected results
in the valuation theory on finite dimensional division algebras. Using general formulas
for splittable local skew fields (i.e. for skew fields such that the residue skew field can
be embedded into the valuation ring) we get a decomposition theorem for a class of
splittable wild division algebras over a Laurent series field with arbitrary residue field of
characteristic greater than two. This theorem is a generalisation of the decomposition
theorem for tame division algebras given by Jacob and Wadsworth in [9]. An extensive
analysis of the wild division algebras of degree p over a field F with complete discrete
rank 1 valuation with char(F̄ ) = p was given by Saltman in [28] ( Tignol in [32]
analysed more general case of the defectless division algebras of degree p over a field F
with Henselian valuation). In his recent revue [33] Wadsworth pointed out that for most
of the specific examples and applications it is suffice to consider Henselian valued fields
like iterated Laurent series fields, that is n-dimensional local fields. So, we get in some
sense the complete picture of a local structure of the Brauer group over such fields. As
a corollary we get the positive answer on the following conjecture: the exponent of A
is equal to its index for any division algebra A over a C2-field F = F1((t2)), where F1

is a C1-field (see [26], 3.4.5.).
From the other hand, the problem of classification of local skew fields leads to

the problem of classification of conjugacy classes in the automorphism group of an
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n-dimensional local (commutative) field. We solve this problem for the group of con-
tinuous automorphisms.

We note that the automorphism group of a local field of positive characteristic is
intensively studied now in the algebraic number theory (we mean recent applications to
the problem of description the Galois group of an arithmetically profinite extension).
Moreover, the automorphism group of the field Fq((t)) (so called Nottingham group)
is now carefully studied in the group theory (for more details see papers [5], [3], [12],
[8], [13], [14], [10], [11], [36]. We hope that our results on the automorphism group will
be applied in the future to obtain some useful results about the Galois group of an
arithmetically profinite extension.

Here is a brief overview of this thesis. It consists of two chapters.

The first chapter consists of five paragraphs. In §1 we give general definitions of a
local skew field, of a splitness and of an isomorphism of local skew fields. Also we study
some general properties of splittable skew fields.

Thereafter except §4 we study mostly two-dimensional local skew fields with com-
mutative residue skew field. In §2 we give a sufficient condition for a skew field to be
split. Namely, a local skew field splits if a canonical automorphism has infinite order.
The canonical automorphism can be defined as a restriction of an inner automorphism
ad(z) on the residue field, where z is any local parameter. We show that there exist
counterexamples when this condition does not hold. We note that this condition and
counterexamples are true even in more general situation when the skew field is not
two-dimensional skew field or the residue skew field is not commutative. We classify
all the skew fields which possess this condition up to isomorphism. The results of §2
don’t depend on the characteristic of a skew field.

In §3 we classify all the local splittable skew fields of characteristic 0 with commu-
tative residue skew field and with the canonical automorphism of finite order.

In §4 we study splittable local skew fields of characteristic p > 2 with commutative
residue skew field and with the canonical automorphism of finite order. We give a
criterium when such a skew field is finite dimensional over its centre. Then we prove that
every tame finite dimensional division algebra over a local complete field splits. Using
this fact we prove the decomposition theorem for splittable algebras. As a corollary we
get the proof of the conjecture mentioned above.

In §5 we study some properties of local skew fields described in §3. In particular,
we give a criterium when two elements from such a skew field conjugate. This is a
generalisation of analogous theorems from [23]. As a corollary we prove that almost
all such skew fields are infinite dimensional over their centre. Also we prove that the
Scolem-Noether theorem holds only in the case of the classical ring of pseudo-differential
operators.

In §6 we get new KP-hierarchies for every class of isomorphic two-dimensional local
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skew fields, which were studied in section 3. We derive new equations of the KP-type
for some hierarchies.

In the second chapter we classify conjugacy classes in the group of continuous
automorphisms of a two-dimensional local field of characteristic zero with the residue
field of the same characteristic. Some facts about automorphisms of a local field of
characteristic p > 0 one can find in lemma 1.3. Also in this chapter we show how this
classification can be generalised to the case of a n-dimensional local field, n > 2.
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thank Prof. Helmut Koch for the invitation to HU zu Berlin in 1999 that made it
possible for me to stay here for a long time. I would also like to thank my wife Olga
for her help in preparing the final version of this thesis and her love, and I thank
Graduiertenkolleg ”Geometry und Nichtlineare Analisys”, which provided the doctoral
stipend that allowed me to complete this work.
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Chapter 0

The structure of two-dimensional
local skew fields.

0.1 General.

Definition 0.1 Let K and k be arbitrary skew fields. A skew field K is called a com-
plete discrete valuation skew field if K is complete with respect to a discrete valua-
tion. A skew field K is called an n-dimensional local skew field if there are skew fields
K = Kn, Kn−1, . . . K0 = k such that each Ki for i > 0 is a complete discrete valuation
skew field with residue skew field Ki−1.

The following properties are well known from the valuation theory of division alge-
bras (see for ex. [31]).

Lemma 0.2 Let K be a complete diskrete valuation skew field. Then the following
properties hold:
i) The valuation ring O is a topological group and a metric space under the natural
topology;

ii) The ring O is a local ring and a principal ideal domain.

For every two-dimensional local skew field we have

K ⊃ O → K̄ ⊃ Ō → k

where Ō is a valuation ring in K̄. There are two filtrations

K ⊃ O ⊃ ℘ ⊃ ℘2 ⊃ . . .

K̄ ⊃ Ō ⊃ ℘̄ ⊃ ℘̄2 ⊃ . . .

where ℘̄ is a maximal ideal in Ō, ν̄ is a discrete valuation on K̄.
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Definition 0.3 Two two-dimensional local skew fields K and K ′ are isomorphic if
there is an isomorphism which preserves the filtrations above, i.e. it maps OK onto
OK′, ℘ onto .℘′ and OK̄ onto OK̄′, ℘K̄ onto ℘K̄′.

Definition 0.4 A two-dimensional skew field K is said to split if there is a section of
the homomorphism OK → K̄.

Elements z ∈ O, ν(z) = 1 and u ∈ Ō ⊂ K̄, ν̄(u) = 1 are called local parameters
(or variables) in K.

Proposition 0.5 Suppose K splits. Fix some local parameters z and u. Then K is
isomorphic to a two-dimensional local skew field K̄((z)) where

za = aαz + aδ1z2 + aδ2z3 + . . .

where a ∈ K̄, α is an automorphism, δi : K̄ → K̄ are linear maps.

Proof. Suppose a ∈ K, ν(a) = j. Then we have ν(az−j) = 0 and az−j :=
az−j mod ℘ ∈ K̄. We will assume that the last element lies in O, since there is
a section. Then we have ν(az−j − az−j) ≥ 1. Continuing this line of reasonings, we get
a =

∑∞
i=j aiz

i, ai ∈ K̄.

Now define aα = zaz−1 mod ℘, where a ∈ K̄. It’s clear that α is an automor-
phism. Since ν(zaz−1) = 0, the element zaz−1 can be written as a series

∑∞
i=0 aiz

i,
where ai ∈ K̄. Here we have a0 = aα. Now put aδi := ai for i ≥ 1. It is easy to see that
δi are linear maps.
�

In fact, the maps δi satisfy some identities. To write them we need extra notation.
Consider the ring Z < α, δ > of noncommutative polynomials in two variables.

Define the map
σ : Z < α, σ >→ Z < α, δ, δi; i ≥ 1 >,

σ(αa1δb1 . . . αanδbn) = αa1δb1 . . . δbn−1α
an−1δbn ,

where a1, bn ≥ 0, ai, bj ≥ 1, i > 1, j < n for every word in Z < α, δ >.
For example

σ(αk) = αk

σ(αkδlαi) = αkδlα
i−1

where k, l, i are natural numbers, i, l ≥ 1.
Let Sk

i ∈ Z < α, δ >, i ≥ k, i ≥ 1 be polynomials given by the following formula:

Sk
i =

∑
τ∈Si/G

τ(α . . . α︸ ︷︷ ︸
i−k

δ . . . δ︸ ︷︷ ︸
k

),

where Si is a permutation group and G is an isotropy subgroup.
Immediately from the definition we get the following lemma

7



Lemma 0.6 The polynomials Sk
i satisfy the following property:-

Si
i = δi, S0

i = αi, Sk+1
i+1 = αSk+1

i + δSk
i

Now we can define the identities for the maps δi:

Proposition 0.7 Every map δi, i ≥ 1 satisfy the identity

δi(ab) =
i∑

k=0

σ(δi−kα)(a)σ(Sk
i α)(b), a, b ∈ K̄

Proof. For any a, b ∈ K̄. We have

(∗) (ab)αz + (ab)δ1z2 + . . . = z(ab) = (aαz + aδ1z2 + . . .)b

If we represent the right-hand side of (∗) as a series with coefficients shifted to the
left and then compare the corresponding coefficients on the left-hand side and right-
hand side, we get some formulas for δi(ab). We have to prove that these formulas are
the same as in our proposition.

Let
zi+1−kb = αi+1−k(b)zi+1−k + . . . + xkz

i+1 + . . .

and
(α(a)z + δ1(a)z2 + δ2(a)z3 + . . .)b = α(ab)z + y2z

2 + y3z
3 + . . .

Then we have

yi+1 = α(a)xi +
i−1∑
k=0

δi−k(a)xk =
i∑

k=0

σ(δi−kα)(a)xk

Note that xk are polynomials which consist of monomials of the type

αa1δb1 . . . αanδbnαan+1(b), ak, bk ∈ Z, ak, bk ≥ 0

(we put δ0 to be equal to 1). It is easy to see that these polynomials have integral
positive coefficients.

We claim that xk = σ(Sk
i α)(b).

To prove this fact it suffice to show that xk contains every monomial from
σ(Sk

i α)(b) and the sum of coefficients in xk is equal to the sum of coefficients in
σ(Sk

i α)(b).
By definition every coefficient of σ(Sk

i α)(b) is equal to 1. It is easy to see that the
sum of coefficients is equal to Ck

i = i!/(i − k)!k!.
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Let us show that xk contains every monomial from σ(Sk
i α)(b). By definition,

σ(Sk
i α)(b) consists of monomials σ(τ(α . . . α︸ ︷︷ ︸

i−k

δ . . . δ︸ ︷︷ ︸
k

)α)(b), where τ ∈ Si, i.e. it con-

sists of monomials αa1δb1 . . . αanδbnαan+1(b), where aj ≥ 0, bj ≥ 1,
∑n

j=1 bj = k,∑n+1
j=1 aj = i − k + 1 − n. We have

zi+1−kb = zi+1−k−an+1αan+1(b)zan+1 + other terms,

zi+1−k−an+1αan+1(b)zan+1 = zi+1−k−an+1−1[αan+1+1(b)z+. . .+δbnαan+1(b)zbn+1+. . .]zan+1 =

zi+1−k−an+1−1αan+1+1(b)zan+1+1 + zi+1−k−an+1−1δbnαan+1(b)zbn+1+an+1 + . . .

Now put d1 = δbnαan+1(b). Then we have

zi+1−k−an+1−1d1z
bn+1+an+1 = . . . + zi+1−k−an+1−1−an−1d2z

bn+1+an+1+an+bn−1+1 + . . . ,

where d2 = δbn−1α
anδbnαan+1(b). By induction we get

zi+1−k−∑
aj−nαa1δb1 . . . αanδbnαan+1(b)z

∑
bj+n+

∑
aj = αa1δb1 . . . αanδbnαan+1(b)zi+1 + . . . ,

that is xk contains any given monomial from σ(Sk
i α)(b).

Let us show that the sum of coefficients of xk is equal to Ck
i .

Denote by sl
n the sum of coefficients in yl, where

znaz−n =
∞∑

k=0

ykz
k, a ∈ K̄

Then the sum of coefficients of xk is equal to sk
i+1−k. We claim that the following

relation holds

sd
n =

d∑
l=0

sl
n−1

The proof is by induction on n. For n = 1 we have sd
1 = 1 for all d ≥ 0, sl

0 = 0 for
l > 0 and s0

0 = 1.
For arbitrary n put

zn−1az−n+1 = y0 + y1z + . . . ,

where y0 ∈ K̄. Then we have

znaz−n = zy0z
−1 + zy1z

−1z + . . . = [yα
0 + yδ1

0 z + . . .] + [yα
1 + yδ1

1 z + . . .]z + . . .

Put

znaz−n =
∞∑

k=0

wkz
k.
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Then we have

wd =
d∑

j=1

δj(yd−j) + α(yd)

Since the sum of coefficients of yj is equal to sj
n−1, we get

sd
n =

d∑
j=0

sj
n−1

Now let us show that sk
i+1−k = Ck

i if k < i + 1. The proof is by induction on i. For
i = 0 we have s0

1 = 1 = C0
i . For arbitrary i we have

sk
i+1−k =

k∑
l=0

sl
i−k = Ck

i + Ck−1
i−1 + . . . + C0

i−k =

(. . . (((C0
i−k + C1

i−k+1) + C2
i−k+2) + C3

i−k+3) + . . . + Ck
i ) =

(. . . (((C1
i−k+2) + C2

i−k+2) + C3
i−k+3) + . . . + Ck

i ) = Ck
i+1

This completes the proof.
�

Corollary 1 Suppose α = Id. Then the following formula holds

δi(ab) = δi(a)b +
i∑

k=1

δi−k(a)
∑

(j1,...,jl)

C l
i−k+1δj1 . . . δjl

(b)

where δ0 = α and the second sum is taken over all the vectors (j1, . . . , jl) such that
0 < l ≤ min{i − k + 1, k}, jm ≥ 1,

∑
jm = k.

In the sequel we will need the following definition.

Definition 0.8 Let (α, β) be endomorphisms of a skew field L. A map δ : L → L′,
where L ⊂ L′ is a subalgebra, is called a (α, β)-derivation if it is linear and satisfy the
following identity

δ(ab) = δ(a)bα + aβδ(b)

where a, b ∈ L.
We will say that (α, 1)-derivation is an α-derivation.

For example δ1 is an (α2, α)-derivation.
If α = Id, then δ1 is an usual derivation; δ2 = δ2

1 + δ, where δ is a derivation.
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Corollary 2 If δ1 = . . . = δk−1 = 0, then δk is an (αk+1, α)-derivation.

The following corollary will be used in §3 of this chapter.

Corollary 3 Let K̄ be a field, K̄ = k((u)), k ⊂ Z(K) and the maps δi, i ≥ 1 be
continuous if chark = 0. Then

δi(
∞∑

j=N

xju
j) =

∞∑
j=N

xjδi(u
j), xj ∈ k

So, for every i the map δi is completely defined by elements δi(u) and δj(u) for j < i.

Proof. If chark = p �= 0 and α = id the maps δi, i ≥ 1 are continuous, since
δi(a

pi
) = 0 for any a ∈ K̄. Since a topology on a 1-dimensional local field is uniquely

defined by its local structure, the continuity does not depend on the choice of local pa-
rameters (for more information about a relation between a topology and a parametri-
sation see [35]). If α �= id one can use lemma 1.29 to reduce this case to the previous
one.

Let us show that α is a continuous map. In our case it suffice to show that α
preserves the valuation. Our proof will not depend on a characteristic.

It suffice to show that ν̄(α(u′)) = 1 for any u′, ν̄(u′) = 1. Consider the automorphism
α′:

α′(a) := z−1az

where a ∈ K̄ (we use the notation from proposition 1.7). It’s clear that α′ = α−1.
Let u′ be an arbitrary parameter. Put κ = ν̄(α(u′)). We claim that |κ| ≤ 1 or

|κ| = pq, q ∈ N. Assume the converse. Then κ = mpq, (m, p) = 1, |m| �= 1 and there
exist c ∈ k, a ∈ K̄ such that α(u′) = cam. Therefore, we get

u′ = α−1(α(u′)) = c(α−1(a))m,

i.e.
ν̄(u′) = 1 = ν̄(c(α−1(a))m) = mν̄(α−1(a)),

a contradiction.
Let us show that κ ≥ 0. Assume the converse. Consider the element u′+u′2 (u′+u′3

if chark = 2). Then ν̄(α(u′ + u′2)) = 2κ < −1. If chark �= 2 we get a contradiction
with the assertion |ν̄(α(u′))| = pq or |ν̄(α(u′))| ≤ 1 for any parameter u′. If chark = 2
one can apply the same arguments to the element u′ + u′3.

Similarly, for κ′ := ν̄(α−1(u′)) the property 0 ≤ κ′ ≤ 1 or κ′ = pl holds.
Let us show that κ �= pq. Assume the converse. Consider the following two cases:
1) Suppose κ′ ≤ 1. There exist r ∈ k, a1 ∈ k((u)) such that α(u′) = c2u

′2apq−2
1 .

Therefore,
1 = 2ν̄(α−1(u′)) + (pq − 2)ν̄(α−1(a1)),
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i.e. (pq − 2)|1. It is possible only if p = 3, q = 1. In this case one can use the same
arguments with α(u′) = c3u

′5a−2
1 . Then we get ν̄(α−1(a1)) = 2, a contradiction (since

0 ≤ κ′ ≤ 1 or κ′ = pl).
2) Suppose κ′ = pl. Let α(u′) = cu′apq−1 for some c ∈ k, a ∈ k((u)), ν̄(a) = 1. Then

we have
ν̄(u′) = 1 = ν̄(α−1(u′)) + (pq − 1)ν̄.

But this contradicts with ν̄(α−1(a)) ≥ 0.
So, κ = 0 or κ = 1, i.e. for any parameter u′ we have ν̄(α(u′)) = 0 or ν̄(α(u′)) = 1.

Suppose κ = 0. Consider the element x = u′ + c1u
′2 + c2(u

′3 + c1u
′4)), where c1 = −w−1

0

if α(u′) = w0 + . . . and c2 is an element such that ν̄(α(x)) > 1 (it always exists since
ν̄(α(u′ + c1u

′2)) > 0). But this contradicts with ν̄(x) = 1. Therefore, κ = 1 and α is a
continuous map.

To complete the proof it suffice to show that the series
∑∞

j=N xjδi(u
j) converges,

because the topology on k((u)) is complete and separate. The proof is by induction
on i. For i = 0 we have ν̄(α(uj)) = j and the series converges. For i = 1 we have
ν̄(δ1(u

j)) = (j − 1)ν̄(δ1(u)) and again the series converges.
At last, by proposition 0.7 for j > 1 we have δi(u

j) = δi(u
j−1)y0+

∑i−1
k=0 δk(u

j−1)yi−k,
where ν̄(yk) does not depend on j.
By induction we have min{ν̄(δ0(u

j−1)yi), . . . , ν̄(δi−1(u
j−1)y1)} >

min{ν̄(δ0(u
j−2)yi), . . . , ν̄(δi−1(u

j−2)y1)} and ν̄(y0) = 1. So,
min{ν̄(δi(u

j−1)y0), ν̄(δ0(u
j−1)yi), . . . , ν̄(δi−1(u

j−1)y1)} >
min{ν̄(δi(u

j−2)y0), ν̄(δ0(u
j−2)yi), . . . , ν̄(δi−1(u

j−2)y1)}.
Therefore, the series converges.
�

0.2 Splittable skew fields.

In this section we will assume that K̄ is a field.
For such a skew field one can define a notion of a canonical automorphism α.
By definition there exist the following exact sequences:

1 → O∗ → K∗ ν−→ Z → 1

where O is a valuation ring;

1 → 1 + ℘ → O∗ → K̄∗ → 1

where ℘ is a maximal ideal.
Consider the map

φ : K∗ → Int(K), φ(x) = ad(x), ad(x)(y) = x−1yx
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where Int(K) is the group of inner automorphisms of the skew field K. Since inner
automorphisms preserve the valuation, this group acts on the ring O. Moreover, it
preserve the ideal ℘. Therefore, there exists a map φ : K∗ → Aut(O/℘) = Aut(K̄). Let
us show that the action of φ(O∗) is trivial on K̄. To show it we use the second exact
sequence. Since (1 + ℘)−1x(1 + ℘) = x mod ℘ for any x ∈ O, the action of φ(1 + ℘)
on K̄ is trivial. Therefore, there exists an action of K̄ on K̄. Namely, an element ā ∈ K̄
acts on x̄ ∈ K̄ as a−1xa mod ℘, where a, x are any lifts of ā, x̄ in O. Since K̄ is a
commutative field, this action is trivial.

Definition 0.9 An automorphism α of the field K̄ defined by the formula

α = φ(z)

where z ∈ K∗ and ν(z) = 1, is called a canonical automorphism.

It does not depend on the choice of z.

We want to classify all splittable two-dimensional local skew fields which have iso-
morphic last residue fields up to isomorphism. Let K and K ′ be two splittable skew
fields, K ∼= K̄((z)), K ′ ∼= K̄ ′((z′)). If K ∼= K ′, then one can represent an isomor-
phism ϕ : K → K ′ as a compositum of an isomorphism φ : K −→ K ′ such that
φ(u) = u′, φ(z) = z′, and of an automorphism ψ of the skew field K. Since every iso-
morphism in our paper preserve the local structure, every automorphism of a splittable
two-dimensional local skew field is defined by change of parameters

(z) u 
→ u′ = c0 + c1z + c2z
2 + . . . , ν̄(c0) = 1

z 
→ z′ = a0z + a1z
2 + . . . , a0 �= 0

where ai, ci ∈ K̄.
It is easy to see that every change of parameters looks like above and can be

decomposed into a sequence of changes u 
→ u′, z 
→ z; u′ 
→ u′, z 
→ z′ = a′
0z+a′

1z
2+. . .

(or in a backward order). Also u 
→ u′ can be decomposed into a sequence of changes
u 
→ u′

1 = c0, u′
1 
→ u′

2 = u′
1 + c′1z, . . . , u

′
i 
→ u′

i+1 = u′
i + c′iz

i, . . . and z 
→ z′ can be
decomposed into a sequence of changes z 
→ z′1 = a0z, z′1 
→ z′2 = z′1 + a′

1z
2, . . . , z′i 
→

z′i+1 = z′i + a′
iz

i+1, . . ..
Remark. We must note that any change of parameters (z) defines a map f : K →

K which is not always an automorphism. Indeed, assume the converse. Consider a map
which is given by f(z) = z′, f(u) = u, where z′ is another parameter. Then we must
have

f(zu) = f(z)f(u) = z′u = uα′
z′ + uδ′1z′2 + . . .

f(zu) = f(uαz + uδ1z2 + . . .) = uαz′ + uδ1z′2 + . . .

13



Hence, α = α′; δ1 = δ′1 and so on, i.e. δ′i = δi ∀i.
Consider the skew field ”((u))((z)) with the relation zu = (u + u2)z and consider a
change of parameters z 
→ z′ = z + z2. Then

z′u = (z + z2)u = (u + u2)z + z(u + u2)z = (u + u2)z + [(u + u2)z + (u + u2)2z]z =

(u + u2)z′ + [u + 2u2 + 2u3 + u4 − u − u2]z2 = (u + u2)z′ + [u2 + 2u3 + u4]z′2 + . . .

So, δ1 �= δ′1, a contradiction.

Proposition 0.10 Let K be a splittable two-dimensional local skew field. Suppose the
canonical automorphism α has infinite order.

Then there exists a parameter z′ such that z′a = aαz′ for any a ∈ K̄.

Proof. We will show that there exists a sequence of parameters {zk} such that the
equality zkaz−1

k = aα mod ℘k holds and the sequence {zk} converges in K.
We need some additional lemmas.

Lemma 0.11 Suppose the following relation holds:=

zaz−1 = aα + aδjzj + aδj+1zj+1 + . . . , a ∈ K̄

where δ1 = . . . = δj−1 = 0, δj �= 0. Then
(i) for z′ = z + bzq+1 we have

z′az′−1 = aα + . . . + aδq−1z′q−1 + (aδq + baαq+1 − aαb)z′q + . . .

i.e. aδ′q = aδq + baαq+1 − aαb.
(ii) Suppose αn = id, n ≥ 1. Then for z′ = z + bzq+1, n|q we have

z′az′−1 = aα + . . . + aδq+j−1z′q+j−1+

(aδq+j + b(aδj)αq − aδjbαj

+ b

q∑
k=1

((aαk

)δj)αq−k − aδj

j−1∑
k=0

bαk

)z′q+j + . . .

(iii) for z′ = bz, b ∈ K̄, b �= 0 we have

z′az′−1 = aα + aδj(b−1)α . . . (b−1)αj

z′j + . . .

Corollary 4 If α = Id, then

z′az′−1 = a + . . . + aδq+j−1z′q+j−1 + (aδq+j + (q − j)aδjb)z′q+j + . . .

14



Proof of lemma.
(i) We have

z′az′−1 = (1 + bzq)zaz−1(1 + bzq)−1 = (zaz−1 + bzqzaz−1)(1 − bzq + bzqbzq − . . .) =

(zaz−1 − zaz−1bzq + . . . + bzqzaz−1 − . . .) =

(zaz−1 − [aα + aδjzj + . . .]bzq + bzq[aα + aδjzj + . . .] + . . .) =

(zaz−1 − [aαb + aδjbαj

zj + . . .]zq + baαq+1

zq + . . .) =

(zaz−1 + (−aαb + baαq+1

)zq + . . .) = aα + . . . + aδq−1z′q−1 + (aδq + baαq+1 − aαb)z′q + . . .

(ii) We have

z′az′−1 = (1 + bzq)zaz−1(1 + bzq)−1 = (zaz−1 + bzqzaz−1)(1 + bzq)−1 =

(aα + aδjzj + . . . + aδq+jzq+j + . . . + bzq(aα + aδjzj + . . .))(1 + bzq)−1 =

(aα+baαq+1

zq+aδjzj+. . .+aδq+jzq+j+. . .+b

q∑
k=1

((aαk

)δj)αq−k

zq+j+b(aδj)αq

zq+j+. . .)(1+bzq)−1 =

aα+(aδjzj+. . .+aδq+jzq+j+. . .+b

q∑
k=1

((aαk

)δj)αq−k

zq+j+b(aδj)αq

zq+j+. . .)(1−bzq+bzqbzq−. . .) =

aα+aδjzj+. . .+aδq+jzq+j+. . .+b

q∑
k=1

((aαk

)δj)αq−k

zq+j+b(aδj)αq

zq+j+. . .−aδjbαj

zq+j+. . . =

aα + . . .+aδq+j−1z′q+j−1 +(aδq+j +b(aδj)αq −aδjbαj

+b

q∑
k=1

((aαk

)δj)αq−k −aδj

j−1∑
k=0

bαk

)z′q+j,

because z′j = zj +
∑j−1

k=0 bαk
zq+j + . . ..

(iii) We have

z′az′−1 = bzaz−1b−1 = aα + baδj(b−1)αj

zj + . . . = aα + aδj(b−1)α . . . (b−1)αj

z′j + . . .

�

Lemma 0.12 Let δ be an (α, β)-derivation of a field K̄ and α �= β.
Then δ is an inner derivation, i.e. there exists d ∈ K̄ such that

δ(a) = daα − aβd

for all a ∈ K̄.
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Proof. Put d = δ(a)/(aα − aβ), where a is any element such that aα �= aβ. Put
δin(x) = dxα − xβd. We claim that δ = δin. Indeed, consider the map δ̄ = δ − δin. It is
an (α, β)-derivation. Take arbitrary b ∈ K̄. Then δ̄(ab) = δ̄(ba). But we have

δ̄(ab) = δ̄(a)bα + aβ δ̄(b) = aβ δ̄(b),

and
δ̄(ba) = δ̄(b)aα + bβ δ̄(a) = aαδ̄(b)

Therefore, δ̄(b) = 0 for any b.
�

Proof of proposition.
Let

zaz−1 = aα + aδ1z + aδ2z2 + . . .

By proposition 1.7 and corollary 1, δ1 is an (α2, α)-derivation. Since α2 �= α, by lemma
0.12 it is an inner derivation, say δ1(a) = d1a

α2 − aαd1. By lemma 0.11, (i) for a
parameter z2 = z − d1z

2 we have

z2az−1
2 = aα + aδ′2z2

2 + . . . .

Note that δ′1 = 0. By corollary 1, δ′2 is an (α3, α)-derivation. Since α3 �= α, by lemma
0.12 it is an inner derivation. By lemma 0.11, (i) there exists a parameter z3 = z2−d2z

3
2

such that z3az−1
3 = aα mod ℘3.

By induction for arbitrary k ∈ N we have

zkaz−1
k = aα + aδ′kzk

k + . . .

and δ′j = 0 for j < k. By corollary 1, δ′k is an (αk+1, α)-derivation. Since αk+1 �= α, it

is an inner derivation. By lemma 0.11, (i) there exists a parameter zk+1 = zk − dkz
k+1
k

such that zk+1az−1
k+1 = aα mod ℘k+1.

It is clear that the sequence {zn}: zn+1 = zn − dnz
n+1
n converges in K. Since K is a

complete and separate field, there exists a unique limit z. It is clear that zaz−1 = aα.
The proposition is proved.
�

Theorem 0.13 Let K be a two-dimensional local skew field. If αn �= id for all n ∈ N

then
(i) charK = charK̄
(ii) K splits.
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Proof.
If charK �= charK̄ then charK̄ = p > 0. Hence ν(p) = r > 0. Then for any element

t ∈ K with ν(t) = 0 we have ptp−1 = αr(t̄) mod ℘ where t̄ is the image of t in K̄.
But on the other hand, pt = tp, a contradiction.

The proof of (ii) we will divide in three steps.
Step 1. Let π be the prime field in K. Since charK = charK̄ the field π is a

subring of O.

Lemma 0.14 There exists an element c ∈ K̄ such that cαk �= c for all k ∈ N.

Proof. We claim that there exists a sequence {cji
}, ji, i ∈ N, cji

∈ Ō such that

(i) ν̄(cji
) > ν̄(cji−1

) ∀i
(ii) if k = 0 mod j2 . . . jl and k �= 0 mod j2 . . . jl+1, then αk(cj1) =
cj1 , . . . , α

k(cjl−1
) = cjl−1

, αk(cjl
) �= cjl

and

ν̄[(αk − Id)(cjl
)] < ν̄(cjl+1

)

Let us construct it. Take an element cj1 such that α(cj1) �= cj1 , and ν̄(cj1) ≥ 1. Such
an element always exists. Indeed, consider an element u with ν̄(u) = 1. If α(u) �= u, then
one can put cj1 = u. If α(u) = u, then take any element c̃j1 such that α(c̃j1) �= c̃j1 . If
ν̄(c̃j1) = 0, then put cj1 = c̃j1u. Then we have ν̄(cj1) = 1 and α(c̃j1u) = α(c̃j1)u �= c̃j1u.
Put j1 = 1.

Let j2 be a minimal positive integer such that (αj1)j2(cj1) = cj1 , and let k1 =
max{ν̄[(αj1)m(cj1) − cj1 ],m ∈ {1, . . . , j2 − 1}}.
Take any c̃j2 such that (αj1)j2(c̃j2) �= c̃j2 . Put cj2 = c̃j2c

k1+1
j1

. Then (αj1)j2(cj2) �= cj2 and
ν̄[(αj1)m(cj1) − cj1 ] < ν̄(cj2) ∀m < j2.
By induction we get a sequence which satisfy (i) and (ii).

Now put c =
∑∞

i=1 cji
. Then for all k we have αk(c) �= c. Indeed, let k =

0 mod j2 . . . jl and k �= 0 mod j2 . . . jl+1. By (ii), αk(c) − c = αk(cjl
) − cjl

+
αk(

∑∞
i=l+1 cjl

) − ∑∞
i=l+1 cjl

. But ν̄(αk(cjl
) − cjl

) < ν̄(cjl+1
) ≤ ν̄(αk(

∑∞
i=l+1 cjl

) −∑∞
i=l+1 cjl

). Therefore, αk(c) − c �= 0.
�

Consider the field F̄ = π(c) ⊂ K. Let us show that this field can be embedded in
O.

Take any lift c′ ∈ O of the element c: c′ mod ℘ = c. It is clear that c′ commute
with any element from π. It is easy to see that c is a transcendental element over π.
Indeed, assume the converse. Then its equation modulo ℘ must have infinite number
of solutions, because cαk �= c ∀k, a contradiction. Therefore, π[c′]

⋂
℘ = 0. So, the field

of fractions F̄ can be embedded in O.
Let L̄ be a maximal field extension of F̄ which can be embedded in O. Denote by

L its image in O. Take ā ∈ K̄, ā /∈ L̄. We claim that there exists a lifting a ∈ O of ā
such that a commutes with every element in L.
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Step 2. Take any lifting a in O of ā. For every element x ∈ L we have
axa−1 mod ℘ = x. If z is a parameter of K we can write

axa−1 = x + xδ′1z,

where xδ′1 ∈ O. The map δ̄′1 : x ∈ L → δ1(x) ∈ K̄ is an α-derivation. Indeed,

a(x1 + x2)a
−1 = (x1 + x2) + (x1 + x2)

δ′1z

a(x1 + x2)a
−1 = ax1a

−1 + ax2a
−1 = x1 + x

δ′1
1 z + x2 + x

δ′1
2 z = (x1 + x2) + (x

δ′1
1 + x

δ′1
2 )z

Therefore, (x1 + x2)
δ′1 = x

δ′1
1 +

¯
x

δ′1
2 . Then, we have

a(x1x2)a
−1 = (ax1a

−1)(ax2a
−1)

Hence

x1x2 + (x1x2)
δ′1z = (x1 + x

δ′1
1 z)(x2 + x

δ′1
2 z) = x1x2 + x1x

δ′1
2 z + x

δ′1
1 zx2 + x

δ′1
1 zx

δ′1
2 z

≡ x1x2 + x1x
δ′1
2 z + x

δ′1
1 xα

2 z mod ℘2 = x1x2 + (x
δ′1
1 xα

2 + x1x
δ′1
2 )z mod ℘2

Therefore,

(x1x2)
δ′1 = x

δ′1
1 xα

2 + x1x
δ′1
2 = x

δ′1
1 xα

2 + x1x
δ′1
2

By lemma 0.12, δ̄′1 is an inner α-derivation, say δ̄′1(x) = d(xα − x). Put ã1 :=
(1+a1z)a, where a1 mod ℘ = −d. Using the same calculations as in lemma 0.11 we
have

(1 + a1z)axa−1(1 + a1z)−1 = x + (xδ′1 + a1x
α − xa1)z mod ℘2

Since xδ′1 + a1x
α − xa1 = 0 mod ℘, we get ã1xã1

−1 = x + xδ′2z2. Using the same
arguments as above one can check that δ̄′2 : L → K̄ is an α2-derivation. By induction
we can find an an element ãi = (1 + aiz

i) . . . (1 + a1z)a such that

ãixãi
−1 = x + xδ′i+1zi+1,

and ¯δ′i+1 : L → K̄ is an αi+1-derivation. By lemma 0.12, ¯δ′i+1 is an inner αi+1-derivation.
So there exists an element ˜ai+1 = (1 + ai+1z

i+1)ãi such that

˜ai+1x ˜ai+1
−1 = x + xδ′i+2zi+2

for any x ∈ L. It is clear that the sequence {ãi} converges in K. Since ãi mod ℘ = ā,
the limit of this sequence is a needed lifting.

Step 3. Now suppose ā is a transcendental over K̄. Then by step 2 there exists a
lifting a ∈ O such that a commutes with every element in L. Then L[a]

⋂
℘ = 0 and

the field of fractions L(a) can be embedded in O, which contradicts the maximality
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of L. So we can assume that K̄ is algebraic over L. Suppose ā is an algebraic and
separable element over L̄. Using a generalisation of Hensel’s lemma (see below) we can
find a lifting a′ of a such that a′ commutes with elements of L and a′ is algebraic over
L, which again leads to a contradiction.

Finally, let ā be purely inseparable over L̄, āpk
= x̄, x ∈ L. Let a′ be its lifting which

commutes with every element of L. Then a′pk − x commutes with every element of L.

If ν(a′pk − x) = r �= ∞ then similarly to the beginning of this proof we deduce that

the image of (a′pk − x)c(a′pk − x)−1 in K̄ is equal to αr(c), where c is an element from

lemma 0.14. Since αr(c) �= c, we get a contradiction. Therefore, a′pk

= x and the field
L(a′) can be embedded in O, which contradicts the maximality of L. Thus, L̄ = K̄.
The theorem is proved.
�

Proposition 0.15 (Hensel’s lemma) 1 Let O be a complete valuation ring in K, I
be the valuation ideal,

⋂
In = 0, and let F be a subfield in O. Let A ∈ O be such that

∀l ∈ F Al = lA. Let f(X) ∈ F [X], f ′(A) /∈ I and f(A) ∈ I.
Then there exists an element Â ∈ O such that

a) Â commutes with A,
b) Â − A ∈ I,
c) f(Â) = 0
d) Âl = lÂ ∀l ∈ F

Proof. If Ã commutes with A, then

f(A + Ã) = f(A) + f ′(A)Ã + PÃ2

where P ∈ F [A, Ã]. We use Teilor’s formula here. Put Ã = −(f ′(A))−1f(A). It’s clear
that Ã ∈ I and Ã commutes with A. Moreover, Ã commutes with every element in F .
Thus, f(A + Ã) = PÃ2 ∈ I2 and f ′(A + Ã) = f ′(A) + XÃ /∈ I, where X ∈ F [A, Ã].
Similarly we can find the element Ã2 = −(f ′(A+Ã))−1f(A+Ã) ∈ I2, which commutes
with A, Ã and with every element in F and such that

f(A + Ã + Ã2) ∈ I4

Continuing this line of reason we can find the element Â = A + Ã + Ã2 + . . .. The sum
is converge because of completeness of O.
�

Remark. If αn = Id, then the theorem is not true (see an example in §3).

1the idea of the proof of this lemma was offered by N.I.Dubrovin
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Corollary 5 Proposition 0.10 is true for any two-dimensional local skew field with
αn �= id for all n ∈ N.

Theorem 0.16 Let K,K ′ be two-dimensional local skew fields such that αn �= Id,
α′n �= Id for all n ∈ N, K̄, K̄ ′ are commutative fields. Then

(i) K is isomorphic to a two-dimensional local skew field K̄((z)) where za = aαz,
a ∈ K̄.

(ii) K is isomorphic to K ′ iff k ∼= k′ and there is an isomorphism f : K̄ 
→ K̄ ′ such
that α = f−1α′f .

Proof. The proof follows from corollary 5 and from the known classification of one-
dimensional local fields (see for example [30]).
�

Definition 0.17 Let K̄ be a one-dimensional local field with residue field k, charK̄ =
chark, let α be an automorphism of the field K̄. Put a1 = α(u)u−1 mod ℘ ∈ k.
Define iα ∈ N

⋃∞ as follows:
iα = 1 if a1 is not a root of unity in k else
iα = ν̄((αn − Id)(u)), where n ≥ 1: an

1 = 1, am
1 �= 1 ∀m < n.

Lemma 0.18 Let k be a field of characteristic 0. Any k-automorphism α of a field
k((u)) with α(u) = ξu+a2u

2 + . . ., where ξn = 1, n ≥ 1, ξm �= 1 if m < n, is conjugate
with an automorphism β: β(u) = ξu + xuiα + yu2iα−1, where x ∈ k∗, y ∈ k, x and y
depend on α.

Moreover, iα = iβ.

Proof. First we prove that α = fβ′f−1 where

β′(u) = ξu + xuin+1 + yu2in+1

for some natural i. Then we prove that iα = iβ′ .
Consider a set {αi : i ∈ N} where αi = fiαi−1f

−1
i , fi(u) = u + xiu

i for some xi ∈ k,
α1 = α. Write

αi(u) = ξu + a2,iu
2 + a3,iu

3 + . . .

One can check that a2,2 = x2(ξ
2 − ξ) + a2,1 and hence there exists an element x2 ∈ k

such that a2,2 = 0. Since aj,j+1 = aj,i, we have a2,j = 0 for all j ≥ 2. Further, a3,3 =
x3(ξ

3 − ξ) + a3,2 and hence there exists an element x3 ∈ k such that a3,3 = 0. Then
a3,j = 0 for all j ≥ 3. Thus, any element ak,k can be made equal to zero if n � |(k − 1)
and so α = fα̃f−1 where

α̃(u) = ξu + ãin+1u
in+1 + ãin+n+1u

in+n+1 + . . .
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for some i, ãj ∈ k. Notice that ãin+1 does not depend on xi. Put x = x(α) = ãin+1.
Now we replace α by α̃. One can check that if n|(k − 1) then

aj,k = aj,k−1 for 2 ≤ j < k + in

and

ak+in,k = xkx(k − in − 1) + ak+in + some polynomial which does not depend on xk

From this fact it immediately follows that a2in+1,in+1 does not depend on xi and for all
k �= in + 1 ak+in,k can be made equal to zero. Then y = y(α) = a2in+1,in+1.

Now we prove that iα = iβ′ . Using the formula

β′n(u) = u + nx(α)ξ−1uin+1 + . . .

we get iβ′ = in+1. Since f−1αf = β′, f−1(αn−Id)f = β′n−Id. Therefore, ν̄(f−1(αn−
Id)f(u)) = ν̄((β′n − Id)(u)) = iβ′ . Suppose f(u) = u′ = f1u + f2u

2 + . . ., f1 �= 0. Let
us show that ν̄f−1(αn − Id)(u′) = iα. It suffice to check that ν̄(αn − Id)(u′) = iα. We
have

(αn − Id)(u′) = [f1(u + āiαuiα + . . .) + f2(u + āiαuiα + . . .)2 + . . .]− [f1u + f2u
2 + . . .] =

[(f1u + f1āiαuiα + . u>iα) + (f2u
2 + . u>iα) + (f3u

3 + . u>iα) + . . .]

−[f1u + f2u
2 + . . .] = f1āiαuiα + . u>iα

The lemma is proved.
�

Proposition 0.19 Let barK be a one-dimensional local field with the residue field k
and charK̄ = chark. Suppose k is algebraically closed and chark = 0. Let α, β be
automorphisms of the field K̄.

Then K̄ = k((u)) and α = f−1βf (where f is an automorphism of K̄) iff
(a1, iα, y(α)) = (b1, iβ, y(β)).

Proof. The ”only if” part is clear. We prove the ”if” part.
It is easy to see that a1 = b1 if α = f−1βf .
If ξ is not a root of unity, then by lemma 0.18 α is conjugate with β: β(u) = ξu.

Therefore, the ”if” part is proved for the case iα = iβ = 1.
Suppose now iα = iβ �= 1 and a1 = b1 are roots of unity.

Lemma 0.20 Let β, β′ be k-automorphisms of the field k((u)): β(u) = ξu + xuin+1 +
yu2in+1, β′(u) = ξu + x̄uin+1 + ȳu2in+1, where x̄/x ∈ (k∗)in, ȳ = (x̄/x)2y.

Then β and β′ are conjugate.
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Proof. Put x0 = (x̄/x)(in)−1
. Let f be an automorphism such that f(u) = x0u.

Then we have

fβ(u) = ξx0u + x(x0u)in+1 + y(x0u)2in+1 = x0ξu + x0x̄uin+1 + x0ȳu2in+1 = β′f(u)

�

From this and previous lemmas we get the proof of the proposition.
�

Corollary 6 In the conditions of the proposition suppose k is not algebraically closed
field. Suppose αn = Id. Then there exists a parameter u′ in k((u)) such that α(u′) =
a1u

′.

Proof. The proof follows from lemma 0.18.

From the proposition we get also the following result:

Theorem 0.21 Let K,K ′ be two-dimensional local skew fields with the last residue
fields k and k′ and with canonical automorphisms α, α′. Suppose charK = chark,
charK ′ = chark′, αn �= Id, α′n �= Id for all n ∈ N, the fields k, k′ are algebraically
closed of characteristic 0.

K is isomorphic to K ′ iff k ∼= k′ and (a1, iα, y(α)) = (a′
1, iα′ , y(α′)).

Now let us study skew fields with canonical automorphisms of finite order.

0.3 Classification of two-dimensional local split-

table skew fields of characteristic 0.

In this part we assume that
a two-dimensional local skew field K splits,
k ⊂ K, k ⊂ K̄, k ⊂ Z(K),
char(K) = char(k) = 0,
αn = id for some n ≥ 1,
for any convergent sequence (aj) in K̄ the sequence (zajz

−1) converges in K (i.e. the
maps δi, i ≥ 1 are continuous, see corollary 3).

We note that the continuity of the maps δi, i ≥ 1 does not depend on the choice of
parameters, as it follows from lemma 0.11 and corollary 3.
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0.3.1 The case α = Id.

Definition 0.22 Define

i = ν((φz − 1)(u)) ∈ N

⋃
∞

r = ν̄[((φz − 1)(u))z−i mod ℘] mod i ∈ Z/iZ

where u, z are arbitrary local parameters of K, φz : K → K, φz(a) = ad(z)(a).

Proposition 0.23 i and r do not depend on the choice of parameters u and z.

Proof. We fix some parameters u, z: K ∼= k((u))((z)). Let u′, z′ be other parameters.
Then

u′ = (x0u + x1u
2 + . . .) + c1z + c2z

2 + . . . where xi ∈ k, ci ∈ k((u)), , x0 �= 0;

z′ = a0z + a1z
2 + . . . , ai ∈ k((u)), a0 �= 0

Put z′′ = a−1
0 z′. It’s clear that ν((φz′′ − 1)(u)) = ν((φz′ − 1)(u)). From the other hand

by corollary 4, ν((φz′ − 1)(u)) = ν((φz − 1)(u)). So, i does not depend on the choice of
parameter z.

Now we prove that ν((φz − 1)(u′)) = ν((φz − 1)(u)). One can obtain this property
from the following lemma.

Lemma 0.24 Suppose the following relation in K holds:

zuz−1 = uα + uδjzj + . . . ,

where δ1 = . . . = δj−1 = 0, δj �= 0. Then
(i) for u′ = u + bzq we have

zu′z−1 = u′α + u′δ1z + . . . u′δq−1zq−1 + u′δqzq + . . . ,

where u′δq = uδq + bα − ∂/∂u(uα)b.

(ii) Suppose α(u) = ξu, ξ ∈ k, ξn = 1 for some natural n. Then for u′ = u + bzq,
n|q we have

zu′z−1 = ξu′ + . . . + (uδq + bα − ξb)zq + . . . + u′δq+j−1zq+j−1 + u′δq+jzq+j + . . . ,

where u′δq+j = uδq+j + bδj − ∂/∂u(uδj)b
(iii) If α = id, then for u′ = x0u + x1u

2 + . . ., where xq ∈ k, x0 �= 0, we have

zu′z−1 = u′ + (uδj
∂

∂u
u′)zj + . . .
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Proof. (i) We have

zu′z−1 = z(u + bzq)z−1 = uα + uδ1z + . . . + (bα + bδ1z + . . .)zq =

uα + uδ1z + . . . + (uδq + bα)zq + . . . = u′α + u′δ1 + . . . + (uδq + bα − ∂/∂u(uα)b)zq + . . . ,

because u′δ1 = (u + bzq)δ1 = x0(u + bzq) + x1(u + bzq)2 + . . . = uδ1 + ∂/∂u(uδ1)bzq + . . .
if uδ1 = x0u + x1u

2 + . . ..
(ii) We have

zu′z−1 = z(u + bzq)z−1 = ξu + uδjzj + . . . + (bα + bδjzj + . . .)zq =

ξu+uδjzj + . . .+(uδq + bα)zq +uδq+1zq+1 + . . .+uδq+j−1zq+j−1 +(uδq+j + bδj)zq+j + . . . =

ξu′+ . . .+(uδq +bα−ξb)zq +u′δq+1zq+1+ . . .+u′δq+j−1zq+j−1+(uδq+j +bδj − ∂

∂u
(uδj)b)zq+j

(iii) We have

zu′z−1 = x0(u + uδjzj + . . .) + x1(u + uδjzj + . . .)2 + . . . = u′ + (uδj
∂

∂u
u′)zj + . . .

�

Remark. Note that this lemma works also in characteristic p > 0.

So, i does not depend on the choice of parameters u and z.
Now we prove it for r. Recall that in our proposition α = id (because i and r were

defined only for α = id). By lemma 0.24 for any parameter u′ we have

zu′z−1 = u′ + (uδi
∂

∂u
u′)zi + . . .

Therefore, ν̄[((φz − 1)(u′))z−i] = ν̄(uδi) = ν̄[((φz − 1)(u′))z−i]
If we change z by z′ we get

z′uz′−1 = zuz−1 mod ℘i

Hence

ν̄[((φz′ − 1)(u))z′−i mod ℘] = ν̄[((φz − 1)(u))z′−i mod ℘] =

ν̄[((φz − 1)(u))z−i mod ℘] + ν̄(a−i
0 ) = ν̄[((φz − 1)(u))z−i mod ℘] mod i

�

Definition 0.25 Define

a = resu

{
uδ2i− i+1

2
δ2
i

(uδi)2
du

}
∈ k
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Proposition 0.26 a = a(uδi+1 , . . . , uδ2i−1), i.e. a depends only on the maps
uδi+1 , . . . , uδ2i−1.

Proof. We comment on the statement first. The maps δj are uniquely defined by
parameters u, z and they depend on the choice of these parameters. So it suffice to show
that a does not depend on the on the choice of parameters which preserve the maps
δi+1, . . . , δ2i−1. We can assume that δi+1 = 0, . . . , δ2i−1 = 0, because we can change the
parameters to make this maps to be equal to zero (see lemma 0.11).

First we show that any change of the type u 
→ u′ = u+c1z+ . . .+ciz
i is equivalent

to a change of parameters as follows: z 
→ z′ = z + a1z
2 + . . ., u 
→ u′ = u + c′iz

i + . . .,
i.e. we get the same maps δj in both cases. The proof is by induction.

One can decompose the change u 
→ u′ = u + c1z + . . . + ciz
i in a finite number of

changes u 
→ u1 = u + ciz
i, u1 
→ u2 = u1 + ci−1z

i−1, . . . , ui−1 
→ ui = ui−1 + c1z. So it
suffice to prove our assertion for any change of the type uj 
→ uj+1 = uj + ci−jz

i−j.
For j = 1 the assertion is trivial. Consider an arbitrary case. By lemma 0.24, δ2i−j is

the first map which is not invariant under this change. By lemma 0.11,(ii) there exists
a parameter z′ = z +ai−jz

i−j+1 such that the compositum of uj 
→ uj+1 = uj + ci−jz
i−j

and z 
→ z′ = z +ai−jz
i−j+1 does not change this map. To use the induction hypothesis

and complete the proof we have to show that there exists a parameter u′ = u + bzi

such that the compositum of uj 
→ uj+1 = uj + ci−jz
i−j, z 
→ z′ = z + ai−jz

i−j+1 and
u 
→ u′ = u + bzi does not change the map δ2i. Denote by δ′′2i the map which is given
by the compositum uj 
→ uj+1 = uj + ci−jz

i−j, z 
→ z′ = z + ai−jz
i−j+1. By lemma 0.24

there exists such a parameter u′ iff

resuj+1

(δ′′2i − δ2i)(uj+1)

(uδi
j+1)

2
duj+1 = 0.

We have uj+1 = ci−jz
i−j + . . . + ciz

i. One can decompose the change u 
→ uj+1 in
two changes: u 
→ u′ = u + ci−jz

i−j and u′ 
→ u′′ = u′ + ci−j+1z
i−j+1 + . . . + ciz

i. The
second change does not change the map δ2i−j, so by the induction hypothesis it suffice
to prove that the residue is equal to zero for the compositum of u 
→ u′ = u + ci−jz

i−j

and z 
→ z′ = z + ai−jz
i−j+1.

Using lemma 0.24, we can calculate ai−j: ai−j = ∂
∂u

((juδi)−1ci−j)u
δi . Note that if

ν̄(ci−j) = r is big enough then the residue is equal to zero. One can show it with help
of lemmas 0.11 and 0.24. We denote by r the minimal positive integer which satisfy
this property.

Let ci−j =
∑r

h=N xhu
h +

∑∞
h=r+1 xhu

h. Then we can decompose the change u 
→
u′ = u + ci−jz

i−j in finite number of changes u 
→ u′
1 = u + xNuNzi−j, . . . , u′

r−N−1 
→
u′

r−N = u′
r−N−1 +

∑∞
h=r+1 xhu

hzi−j. It is clear that it suffice to prove our assertion for
each change. So we have to prove it for an arbitrary change u 
→ u + xuhzj, x ∈ k.
We have to check that the compositum of u 
→ u + xuhzj and z 
→ z − (j − i)−1(h −
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r)xuh−1zj+1 does not change the map δ2i, i.e. the residue above is equal to zero. Put
−(j − i)−1(h − r)xuh−1 = b, xuh = b′.

Let us show that such a compositum change only the maps δi+qj, q ∈ N. Moreover,
we claim that δi+qj(u) = const · ur+q(h−1). Indeed, if u′ = u + b′zj we have

zu′z−1 = u + uδizi + uδ2iz2i + . . . + (b′ + b′δi + b′δ2iz2i + . . .)zj =

u′ + uδizi + b′δizi+j + uδ2iz2i + . . . =

u′ + u′δizi + (
∂

∂u
(b′)uδi − ∂

∂u
(uδi)b′)zi+j − 1

2!

∂2

∂u2
(uδi)b′2zi+2j − 1

3!

∂3

∂u3
(uδi)b′3zi+3j − . . .

+(uδ2i − 1

e!

∂e

∂ue
(uδi)b′e)z2i

where ej = i if j|i. If j � | i, uδ2i does not change.
Therefore,

u′δi+j =
∂

∂u
(b′)uδi − ∂

∂u
(uδi)b′,

and ν̄(u′δi+j) = r + (h − 1).
Then

u′δi+2j = − ∂

∂u
(u′δi+j)b′ − 1

2!

∂2

∂u2
(uδi)b′2

and ν̄(u′δi+2j) = r + 2(h − 1),

u′δi+qj = − ∂

∂u
(u′δi+(q−1)j)b′ − 1

2!

∂2

∂u2
(u′δi+(q−2)j)b′2 − . . . − 1

q!

∂q

∂uq
(u′δi)b′q

and ν̄(u′δi+qj) = r + q(h − 1).

If z 
→ z′ = z + bzj+1 we have

z′u = (z + bzj+1)u = uz + uδizi+1 + uδi+jzi+j+1 + . . .

+uδ2iz2i+1 + . . . + buzj+1 + (j + 1)buδizi+j+1 + . . . + (j + 1)buδ2i−j+1 + m. withz>2i+1 =

uz′ + uδiz′i+1 + uδ′i+jz′i+j+1 + . . . + uδ′2iz′2i+1 + . . . =

u(z + bzj+1) + uδi(z + bzj+1)i+1 + uδ′i+j(z + bzj+1)i+j+1 + . . . + uδ′2i(z + bzj+1)2i+1 + . . .

Hence,
uδ′i+j = uδi+j + b(j − i)uδi

and ν̄(uδ′i+j) = r + (h − 1),

uδ′i+2j = uδi+2j − C2
i+1b

2uδi − C1
i+j+1bu

δ′i+j + (j + 1)buδi+j
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and ν̄(uδ′i+2j) = r + 2(h − 1),

uδ′i+qj = uδi+qj −Cq
i+1b

quδi−Cq−1
i+j+1b

q−1uδ′i+j −. . .−C1
i+(q−1)j+1bu

δ′
i+(q−1)j +(j+1)buδi+(q−1)j

and ν̄(uδ′i+qj) = r + q(h − 1).

So if j � | i, uδ2i does not change. If j|i but e(h − 1) − r �= −1, then the residue is
equal to zero ( note that e(h−1)−r �= −1 if (r−1, i) = 1). At last, if e(h−1)−r = −1,
then one can check the assertion by direct calculations.

So we have shown that the change u 
→ u′ = u + c1z + . . . + ciz
i is equivalent to

the change z 
→ z′ = z + a1z
2 + . . ., u 
→ u′ = u + c′iz

i + . . .. By lemma 0.24 the
change u 
→ u′ = u + c′iz

i + . . . does not change a. By lemma 0.11 the change z 
→ z′ =
z +a1z

2 + . . . does not change δi+1, . . . , δ2i−1 only if a1 = a2 = . . . = ai−1 = 0. But then
it does not change also a. Therefore, any change of the type z 
→ z′ = z + a1z

2 + . . .,
u 
→ u′ = u + c1z + . . ., which does not change δi+1, . . . , δ2i−1, does not change also a.

To complete the proof we only have to show that changes of the type u 
→ u′ =
x0u + x1u

2 + . . ., xj ∈ k and z 
→ z′ = a0z, a0 �= 0 ∈ k((u)) don’t change a. It is clear
for the first change. For the second change we have

uδ′2i = a−2i
0 [uδ2i + ia0(a

−1
0 )δiuδi − a−i

0 (ai−1
0 aδi

0 + . . . + a0(a
i−1
0 )δi)] =

a−2i
0 [uδ2i + i(i + 1)/2a−1

0 aδi
0 uδi ]

u(δ′i)
2

= a−2i
0 uδ2

i − ia−2i−1
0 aδi

0 uδi

Therefore,
uδ′2i − (i + 1)/2u(δ′i)

2

(uδ′i)2
=

uδ2i − (i + 1)/2uδ2
i

(uδi)2
= a

The proposition is proved.
�

Remark. If a two-dimensional skew field K does not split, then the numbers i, r, a
can not be defined as the following example shows (cf. also the remark after theorem
0.13).

Example.2 Let ”((u)) < x1, x2 > be a free associative algebra over ”((u)) with
generators x1, x2. Let I =< [[x1, x2], x1], [[x1, x2], x2] >. It is easy to see that the quo-
tient

S = ”((u)) < x1, x2 > /I

is a ”-algebra which has no non-trivial zero divisors, and in which z = [x1, x2] + I is a
central element. The elements z, ui = xi + I (i = 1, 2) are algebraically independent.
Any element of S can be uniquely represented in the form

f0 + f1z + f2z
2 + . . . + fmzm

2I thank N.I. Dubrovin for showing me this example
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where f0, . . . fm are polynomials in the variables u1, u2:

a + bu1 + cu2 + d1u
2
1 + d2u1u2 + d3u

2
2 + . . .

S is an Ore domain (see [4]), and the quotient skew field K has a discrete valuation ν
such that ν(ui) = 0, ν(”((u))) = 0, ν(z) = 1. The completion of K with respect to ν is
a two-dimensional local skew field which does not split as the following lemma shows.

Lemma 0.27 Suppose there exist elements u1, u2 in the valuation ring O of a two-
dimensional local skew field K such that the element z = u1u2 − u2u1 is a parameter
and for any m ∈ zO \ z2O the elements [ui,m] = uim − mui (i = 1, 2) belong to z2O.

Then K does not split.

Proof. Assume the converse. Let π : K̄ 
→ K be an embedding. Consider elements
f ∈ π(u1), g ∈ π(u2). Then m1 = f − u1, m2 = g − u2 ∈ zO and

0 = [u1 + m1, u2 + m2] = [u1, u2] + [m1, u2] + [u1,m2] + [m1,m2] =

z + [m1, u2] + [u1,m2] + [m1,m2]

Note that the second and the third summands belong to z2O and [m1,m2] ∈ z2O,
because m1m2,m2m1 ∈ z2O. But then

∞ = ν(0) = ν(z + [m1, u2] + [u1,m2] + [m1,m2]) = ν(z) = 1,

a contradiction.
�

In this skew field we have i = ∞, and r, a are not defined. From the other hand, if
we consider the change z 
→ u1z, then i become equal to 1, r = 0, a = 0.

So these numbers depend on the choice of parameters in this unsplittable skew field.

Proposition 0.28 Let K be a skew field which satisfy the conditions in the beginning
of this paragraph. Let char k = 0, α = 1 and i ≥ 1. Then K is isomorphic to a skew
field k((u))((z)) with zuz−1 = u+uδ′izi +uδ′2iz2i, where δ′i(u) = cur, c ∈ k∗/(k∗)e, where
e = (r − 1, i); δ′2i(u) = (a(0, . . . , 0) + r(i + 1)/2)u−1(δ′i(u))2 and δ′j(u) = 0 for j �= i, 2i.

Proof. Consider the change z 
→ z′ = a0z. By lemma 0.11, (iii) we have uδ′i = a−i
0 uδi .

So, uδ′i can be made to be equal to

uδ′i = c0u
ν̄(uδi ) mod i,

where c0 ∈ k∗/(k∗)i. By lemmas 0.24 and 0.11, c0 depend only on changes of the type
z 
→ z′ = a0z, u 
→ u′ = x0u, where a0, x0 ∈ k. So, c0 can be made to be equal to
c = c0a

−i
0 x−r+1

0 . Therefore, c ∈ k∗/(k∗)e, where e = (r − 1, i).
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Let us show that there exists a change z 
→ z′ = z + a1z
2 + . . . such that δ′j(u) = 0

for 2i > j > i. Indeed, it can be done by a sequence of changes of the type z 
→ z′ =
z + bzj+1. By corollary 4, for any such j there exists b such that δ′j(u) = 0.

Let us show that there exists a change such that it changes the map δ2i as follows:
δ′2i(u

′) = (a + r(i + 1)/2)u′−1(u′δi)2. To show it we use lemma 0.24, (ii). By this lemma
it suffice to show that there exists an element b such that

uδ2i − (a + r(i + 1)/2)u−1(uδi)2 + bδi − (uδi)′b = 0

, where the prime ’ denote the derivation by u. By corollary 2, δi is a derivation.
Therefore, we can rewrite the equation above as follows

uδ2i − (a + r(i + 1)/2)u−1(uδi)2 + b′uδi − (uδi)′b = 0

One can find a solution of this equation in the form b = uδj b̃. The equation has a
solution if b̃′ + uδ2i(uδi)−2 − (a + r(i + 1)/2)u−1 = 0. The last equation holds, because

resu
δ2
i (u)

(δi(u))2
du = r.

Using now the same arguments as in the previous paragraph, we can complete the
proof.
�

0.3.2 The general case.

Consider now the case αn = Id for some natural n > 1.

Lemma 0.29 Suppose the canonical automorphism α of a local skew field K satisfy the
property αn = 1 for some natural n > 1. Then there exists a parameter z′ = z+a1z

2+. . .
such that

z′uz′−1 = uα + uδ′nz′n + uδ′2nz′2n + . . .

Here δ′j = 0 if n � |j.
Proof. Let

zuz−1 = uα + uδ1z + uδ2z2 + . . .

By corollary 2, δ1 is a (α2, α)-derivation.
Since n > 1, α2 �= α. Therefore, by lemma 0.12, δ1 is an inner derivation and

δ1(u) = duα2 − uαd. Put z′ = z − dz2. By lemma 0.11, (i) we have

z′uz′−1 = uα + uδ′2z′2 + . . .

By corollary 2, δ′2 is a (α3, α)-derivation. If n �= 2 then it is inner and we can apply
lemma 0.11. By induction we get that there exists a parameter z′ such that

z′uz′−1 = uα + uδ′nz′n + uδ′n+1z′n+1 + . . .
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where δ′n is a (αn+1, α) = (α, α)-derivation, i.e. δ′nα
−1 is a derivation.

Note that δ′n+1 is a (α2, α)-derivation. Indeed, by proposition 0.7 we have

δ′n+1(ab) =
n+1∑
k=0

δ′n+1−k(a)σ(Sk
n+1α)(b), a, b ∈ K̄

But δ′j = 0 if j < n. Therefore,

δ′n+1(ab) = δ′n+1(a)αn+2(b)+δ′n(a)(
n∑

k=0

αkδ′1α
n−k)(b)+α(a)δ′n+1(b) = δ′n+1(a)α2(b)+α(a)δ′n+1(b)

and by lemma 0.12, δ′n+1 is an inner derivation. Using lemma 0.11 with z′ 
→ z′′ =
z′ + bz′n+2 for an appropriate b, we have

z′′uz′′−1 = uα + uδ′nz′′n + uδ′n+2z′′n+2 + . . .

with δ′n+1 = 0. By induction we can assume that there exists a parameter z′ such that

z′uz′−1 = uα + uδ′nz′n + uδ′2nz′2n + . . . + uδ′k+1z′k+1 + . . .

Then if n � |k + 1, δ′k+1 is a (αk+2, α)-derivation. Indeed,

δ′k+1(ab) =
k+1∑
l=0

σ(δ′k+1−lα)(a)σ(Sl
k+1α)(b) =

δ′k+1(a)αk+2(b) +
x∑

m=1

δ′mn(a)σ(Sk+1−mn
k+1 α)(b) + α(a)δ′k+1(b)

where x ∈ N : xn ≤ k + 1, (x + 1)n > k + 1, because δ′j = 0 if j < k + 1 and n � |j.
Every monomial σ(Sk+1−mn

k+1 α) contain an element δ′j with j < k + 1 and n � | j.
It follows from the definition of Sl

k+1 together with n � |k + 1 − mn. Therefore,
σ(Sk+1−mn

k+1 α)(b) = 0 ∀m and δ′k+1 is a (αk+2, α)-derivation.
If n|k + 1, we can apply the same arguments and conclude that δ′k+2 is a (αk+2, α)-

derivation. Therefore, by lemma 0.11 there exists a parameter z′′ = z′+bz′k+2 (z′+bz′k+3

if n|k + 1) such that

z′′uz′′−1 = uα + uδ′nz′′n + uδ′2nz′′2n + . . . + uδ′k+2z′′k+2 + . . .

(or uδ′k+1z′′k+1 + uδ′k+3z′′k+3 + . . . if n|k + 1)

Since zl+1 = (1+zl
l)zl, the sequence {zl}∞l=1 converges in K. Therefore, we get the proof

of the lemma.
�
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Lemma 0.30 There exists a parameter u ∈ K such that α(u) = ξu, where ξn = 1,
and for all j δ′jn(u) = u(

∑
k yjku

nk) ∈ uk((un)), where yjk ∈ k, and for k not divisible
by n δ′k = 0.

Proof We can assume that the relation from lemma 0.29 holds. We will do changes
of the form u 
→ u′ = u + bjnz

jn. We have seen in the proof of lemma 0.24 that the
maps δk, n � | k don’t change under such substitutions. By lemma 0.24, (i) we can see
that u′δ′jn = uδ′jn + bα − ∂/∂u(uα)b. By corollary 6 we can assume α(u) = ξu, where
ξn = 1. Therefore, u′δ′jn = uδ′jn + bα − ξb and we can find an element b to satisfy the
conditions of the lemma.
�

As in the case α = Id we can define in, rn and an.

Definition 0.31 Put
in = ν((φzn − 1)(u)) ∈ N

⋃
∞

rn = ν̄[((φzn − 1)(u))z−in mod ℘] mod in ∈ Z/inZ

an = resu

{
uδ2in− in+1

2
δ2
in

(uδin )2
du

}
∈ k

where u, z are arbitrary local parameters in K, φz : K → K, φz(a) = ad(z)(a).

From the previous two lemmas we can derive that if z is a local parameter from
lemma 0.29 then in ∈ nN and rn = 1 mod n. It is easy to see that the number in
is the number of the first non-zero map δin in lemma 0.30. In the same way as in the
proof of proposition 0.26 we can get the following result:

Proposition 0.32 We have in = in(uδj , j /∈ nN), rn = rn(in), an =
an(uδin+1 , . . . , uδ2in−1).

Proposition 0.33 Let K be a two-dimensional local skew field which satisfy the con-
ditions in the beginning of this paragraph.

Let chark = 0 and αn = Id for some natural n.
Then K is isomorphic to a skew field k((u))((z)) with the relation

zuz−1 = ξu + uδ′inzin + uδ′2in z2in ,

where ξn = 1, in = in(0, . . . , 0),
δ′in(u) = curn, c ∈ k∗/(k∗)e, e = (rn − 1, i),
δ′2in(u) = (an(0, . . . , 0) + rn(in + 1)/2)u−1(δ′in(u))2.
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Proof. We can assume that the conditions of lemma 0.30 hold. Then, because of
special choice of the element uδ′jn it suffice to repeat the proof of proposition 0.28.
�

Combining all these results we get:

Theorem 0.34 Let K and K ′ be local skew fields of characteristic zero. Suppose they
satisfy the conditions in the beginning of this chapter. Then K is isomorphic K ′ iff
k ∼= k′ and the sets (n, ξ, in, rn, c, an), (n′, ξ′, i′n, r′n, c′, a′

n) coinside.

Remark. If n = 1 and in = ∞, then K is a commutative two-dimensional local
field k((u))((z)).

Let us now summarise all the classification results we have got above.

Theorem 0.35 (I) Let K be a two-dimensional local skew field with a commutative
residue skew field.

It splits if the canonical automorphism α satisfy the condition αn �= Id for all n. If
this condition does not hold, there are examples of non-splittable skew fields.

(II) Let K,K ′ be skew fields as in (I). Assume αn �= Id, α′n �= Id for all n. Then
(a) K is isomorphic to a two-dimensional local skew field K̄((z)) where za = aαz,

a ∈ K̄ and K̄ is a one-dimensional local field with the residue field k.

(b) K and K ′ are isomorphic iff k ∼= k′ and there exists an isomorphism
f : K̄ 
→ K̄ ′ such that α = f−1α′f .

(c) If charK = chark, charK ′ = chark′ and k, k′ are algebraically
closed fields of characteristic 0, then K is isomorphic to K ′ iff k ∼= k′ and
(a1, iα, y(α)) = (a′

1, iα′ , y(α′)).

(III) Let K,K ′ be two-dimensional splittable local skew fields of characteristic 0,
k ⊂ Z(K), k′ ⊂ Z(K ′), and αn = Id, α′n′

= Id for some natural n, n′ ≥ 1. Then (a)
K is isomorphic to a two-dimensional local skew field k((u))((z)) where

zuz−1 = ξu + uδ′inzin + uδ′2in z2in ,

where ξn = 1, in = in(0, . . . , 0),
δ′in(u) = curn, c ∈ k∗/(k∗)e, e = (rn − 1, i),
δ′2in(u) = (an(0, . . . , 0) + rn(in + 1)/2)u−1(δ′in(u))2

(in, rn, an were defined in 0.31).
If n = 1, in = ∞, then K is commutative.

(b) K is isomorphic to K ′ iff k ∼= k′ and the sets
(n, ξ, in, rn, c, an), (n′, ξ′, i′n, r

′
n, c′, a′

n) coinside.
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Corollary 7 Every two-dimensional local skew field K with the ordered set

(n, ξ, in, rn, c, an)

is a finite-dimensional extension of a skew field with the ordered set (1, 1, 1, 0, 1, a) if
in < ∞.

Remark. It’s easy to see from the corollary that skew fields in the theorem above
are almost always infinite dimensional over the centre. Namely, the only finite dimen-
sional skew fields are the skew fields with in = ∞. In the case of skew fields of positive
characteristic the situation is much more complicated.

0.4 Splittable skew fields of characteristic p > 0.

It is difficult to classify all splittable two-dimensional skew fields with the canonical
automorphism of finite order in positive characteristic even if we consider only skew
fields with α = id, at least because there are infinitely many maps δj which can not
be removed by any change of parameters. Nevertheless, our methods give some useful
tools for studying splittable skew fields finite dimensional over their centre.

For splittable skew fields in positive characteristic one can define an invariant which
is in some sense a replacement of the invariant an for skew fields of characteristic 0.
Certainly, there are infinitely many of other invariants.

Namely, if K is a splittable two-dimensional local skew field of positive characteristic
with K̄ commutative, k = ¯̄K ⊂ K, k ⊂ K̄, k ⊂ Z(K), α of finite order we define

dK = max
u,z

ν(zuz−1 − α(u) − δ
(z)
in

(u)zin),

where δ
(z)
in

is a map defined by a parameter z, and in is a number defined in 0.31.
In the case of a skew field of characteristic 0 we have dK = 2in(0, . . . , 0) or dK = ∞,

that is why it is in some sense a replacement of an: in characteristic 0 it reflects the
property of an to be zero or not.

In this section we will prove the following theorem:

Theorem 0.36 Suppose that a two-dimensional local skew field K splits, K̄ is a field,
k = ¯̄K ⊂ Z(K), char(K) = char( ¯̄K) = p > 2, α = id, and dK ≤ 2i = 2i1 or dK = ∞.

Then K is a finite dimensional vector space over its centre if and only if K is
isomorphic to a two-dimensional local skew field k((u))((z)), where

z−1uz = u + xzi

with x ∈ K̄p, (i, p) = 1.
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To prove this theorem we prove more general result about finite dimensional
algebras, which generalises some known results of Jacob and Wadsworth in [9] and
Saltman [28]. As a corollary we get the positive answer on the conjecture about
exponent and index of a finite dimensional division algebra over a C2-field for some
types of C2-fields. These results will be proved in the subsection below. Now we prove
only the ”if” part. Indeed, since x ∈ K̄p, we have δ2

i (u) = 0. Hence, by corollary 1 we

have δj = cδ
j/i
i , c ∈ k if i|j, and δj = 0 if i � |j. But then zapz−1 = ap for any a ∈ K̄, so

K is a finite dimensional skew field over its centre and the index indK = p.

To prove the ”only if” part we need results from the following subsection:

0.4.1 Wild division algebras over Laurent series fields

In this subsection we prove a decomposition theorem for some class of wild division
algebras over a Laurent series field with arbitrary residue field of characteristic greater
than two. Namely, we prove this theorem for wild division algebras which satisfy the fol-
lowing condition: there exists a section D̄ ↪→ D of the residue homomorphism D → D̄,
where D is a central division algebra. This theorem is a generalisation of the decom-
position theorems for tame division algebras given by Jacob and Wadsworth in [9]. An
extensive analysis of the wild division algebras of degree p over a field F with complete
discrete rank 1 valuation with char(F̄ ) = p was given by Saltman in [28] ( Tignol in
[32] analysed more general case of the defectless division algebras of degree p over a
field F with Henselian valuation).

The main result of this subsection is Theorem 0.55; it is a corollary of Theorem 0.43
and propositions 0.51-0.54. Theorem 0.43 is a key tool in the proof of Theorem 0.55.
As a corollary we get the positive answer on the following conjecture: the exponent of
A is equal to its index for any division algebra A over a C2-field F = F1((t2)) (corollary
8) (see also [37], corollary 4, §8.3.2.), where F1 is a C1-field. We note that the proof of
the conjecture does not depend on the statement of theorem 0.55, but uses only several
lemmas from it’s proof. In fact, these lemmas are most important technical statements
about the maps δm and their generalisations.

We change the notation in this subsection and use the notation of [9], because it is
more convenient for applications in the valuation theory. We always denote here by D a
division algebra finite dimensional over its centre F = Z(D). Recall that any Henselian
valuation on F has a unique extension to a valuation on D.

Given a valuation v on D, we denote by ΓD its value group, by VD its valuation
ring, by MD its maximal ideal and by D̄ = VD/MD its residue division ring.

By [31], p.21 one has the fundamental inequality

[D : F ] ≥ |ΓD : ΓE| · [D̄ : F̄ ].
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D is called defectless over F if equality holds and defective otherwise. It is known that
D is defectless if it has a discrete valuation of rank 1.

Jacob and Wadsworth in [9] introduced the basic homomorphism

θD : ΓD/ΓF → Gal(Z(D̄)/F̄ )

induced by conjugation by elements of D. They showed that θD is surjective and Z(D̄)
is the compositum of an Abelian Galois and a purely inseparable extension of F̄ .

We say D is tame division algebra if char(F̄ ) = 0 or char(F̄ ) = q �= 0, D is defectless
over F , Z(D̄) is separable over F̄ , and q � ||ker(θD)|. We say D is wild division algebra
if it is non tame.

We call a division algebra D inertially split if Z(D̄) is separable over F̄ , the map
θD is an isomorphism, and D is defectless over F .

0.4.2 Cohen’s theorem

There is a natural question if there exists a generalisation of Cohen’s theorem, i.e. is
any central division algebra splittable or not. It is not true if a division algebra is not
finite dimensional over its centre, as Dubrovin’s example shows. It is not true also for
finite dimensional division algebras, as we will see in Wadsworth’s example below. But
it is true for tame division algebras over complete discrete valued fields. This easily
follows from results of Jacob and Wadsworth [9].

Theorem 0.37 Let (F, v) be a valued field which is complete with respect to a discrete
rank 1 valuation v. Suppose charF = charF̄ . Let D be a tame division algebra with
Z(D) = F and [D : F ] < ∞.

Then there exists a section D̄ ↪→ D of the residue homomorphism D → D̄.

Proof. Since F is a complete field, F is a Henselian field and v extends uniquely to
a valuation w on D. Since D is tame, Z(D̄)/Z(D) is a cyclic Galois extension. There
exists an inertial lift Z of Z(D̄) over F , Z is Galois over F , and by classical Cohen’s
theorem there exists a section Z̃(D̄) ↪→ Z.

Consider the centraliser C = CD(Z) of Z in D. Then we have C̄ = D̄.
Indeed, by Double Centraliser Theorem we have [D : F ] = [C : F ][Z : F ]

and [Z : F ] = |Gal(Z(D̄)/F̄ )|. By [9], prop.1.7 a homomorphism θD : ΓD/ΓF →
Gal(Z(D̄)/F̄ ) is surjective, so for any parameter z we have θD(w(z)) = σ, where
< σ >= Gal(Z(D̄)/F̄ ). It is clear that z /∈ C. Now let u1, . . . , u[C:F ] be a F -basis of
C. It is easy to see that the elements uj, zuj, . . . , z

n−1uj, j = 1, . . . , [C : F ], where
n = ord(σ), the order of σ, are linearly independent, so form a basis for D over F .
Since

w(F < zuj, . . . , z
n−1uj, j = 1, . . . , [C : F ] >) ∩ ΓC = 0,
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where F < zuj, . . . , z
n−1uj, j = 1, . . . , [C : F ] > denote a vector space in D over F

generated by elements ujz
i, this implies that for any element x ∈ D with w(x) = 0 we

can find elements r1, . . . r[C:F ] ∈ F such that x = r1u1 + . . . + r[C:F ]u[C:F ] mod MD.
Hence C̄ = D̄.

Fix an embedding F̄ ↪→ F and consider the algebra A = C̄ ⊗F Z(C). It is easy to
see that A is an unramified division algebra with Ā = C̄ = D̄. Therefore by [2], Th.31,
A ∼= C; so there exists a section D̄ ↪→ C.

The theorem is proved.
�

Example (Wadsworth). Let p be any prime number, let k = Z/pZ, the field with
p elements, and let r, s be independent indeterminates over k. Let F = k(r, s)((t)), the
formal Laurent series field in t over the rational function field k(r, s). F has its complete
discrete t-adic valuation with residue field F̄ = k(r, s). Let f = xp + tx − r in F [x].
The derivative test shows that f has no repeated roots. Let θ be a root of f , and let
K = F (θ), which is separable over F .

Let M be the separable closure of K over F . So, the Galois group Gal(M/F ) is
isomorphic to a subgroup of the symmetric group Sp. Let L be the fixed field of a
p-Sylow subgroup of Gal(M/F ), and let σ be a generator of Gal(M/L), a cyclic group
of order p. The valuation on F extends uniquely to complete discrete valuations on L
and on M . Note that L̄ doesn’t contain r1/p, since [L̄ : F̄ ] divides [L : F ], which is
prime to p. (For the same reason, L̄ doesn’t contain a p-th root of s.) But M̄ contains θ̄
, which is a p-th root of r. So, [M̄ : L̄] = [M : L] = p, and M̄ = L̄(r1/p), which is purely
inseparable over L̄. Since σ acts trivially on M̄ , the norm map from M to L induces
the p-th power map from M̄ to L̄. So, s is not in the image of the norm from M to L.
Therefore, the cyclic algebra D = (M/L, σ, s) is nonsplit of degree p, so it is a division
algebra. With respect to the unique extension of the valuation on L to D, we have D̄
contains a pth root of r and also of s, so p2 = [D : L] ≥ [D̄ : L̄] ≥ [L̄(r1/p, s1/p)] = p2.

This shows that D̄ is the field L̄(r1/p, s1/p), which is purely inseparable over L̄.
Hence also, the ramification index of D over L must be 1.

0.4.3 Decomposition theorem

In this part we prove a generalisation of Jacob-Wadsworth’s decomposition theorem
([9], Th.6.3., lemma 6.2) for finite dimensional splittable division algebras over a Lau-
rent series field k((t)), chark > 2.
So, in this section we consider only splittable division algebras. Moreover, we will need
more strong condition:

Definition 0.38 A division algebra D is called good splittable if there exists a section
D̄ ↪→ D compatible with an embedding Z(D) ↪→ Z(D), i.e. Z(D) ⊃ Z(D) ⊂ D̄.
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It’s easy to see that all tame division algebras are good splittable, because by
Cohen’s theorem any embedding Z(D) ↪→ Z(D) can be uniquely extended to any
separable extension of Z(D).

We note that the skew field K from theorem 0.36 is good splittable if K is a finite
dimensional division algebra over its center. Indeed, because of the condition of the
theorem, we can assume k is an algebraically closed field. Then the center of K is a
C2-field by Tsen’s theorem (see the definition and the properties of C2-fields below,
at the end of this subsection). Then it will be shown in corollary 8 that all division
algebras over C2-fields are good splittable.

For division algebras of index p over a Laurent series field the condition to be split-
table is equivalent to the condition to be good splittable, see the end of this subsection.

Let D be a finite dimensional division algebra over a complete valued field F =
k((t)). Let w be a unique extension of the valuation v to D. We will denote by z any
parameter of D, i.e. any element with < w(z) >= ΓD.

Proposition 0.39 D is isomorphic to a local skew-field D̄((z)), where

zaz−1 = α(a) + δ1(a)z + δ2(a)z2 + . . . , a ∈ D̄;

here α : D̄ → D̄ is an automorphism and δi : D̄ → D̄ are linear maps such that the
map δi satisfy the identity

δi(ab) =
i∑

k=0

σ(δi−kα)(a)σ(Sk
i α)(b), a, b ∈ D̄

The proof is an easy combination of the proofs of propositions in section 1 and
Cohen’s theorem 0.37.

Definition 0.40 Let us define maps mδi : D̄ → D̄, m ∈ Z, i ∈ N as follows.

zmaz−m = αm(a) + mδ1(a)z + mδ2(a)z2 + . . . , a ∈ D̄.

If m = 0, put mδi = 0.

Note that if α = id, then mδi = 0 for m = pk, where k is sufficiently large, k
depends on i. Moreover, mδi = m+pkδi for k sufficiently large. We will use also the
following notation:

mδ̃i = −mδi.

Proposition 0.41 (i) The maps mδi satisfy the following identities:

mδi(ab) = mδi(a)αi+m(b) + αm(a)mδi(b) +
i−1∑
k=1

mδi−k(a)i−k+mδk(b)
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(ii) Suppose α = id. Then the maps mδi satisfy the following identities:

mδi(ab) = mδi(a)b + amδi(b) +
i−1∑
k=1

mδi−k(a)
∑

(j1,...,jl)

C l
i−k+mδj1 . . . δjl

(b)

where the second sum is taken over all the vectors (j1, . . . , jl) such that 0 < l ≤ min{i−
k + m, k}, jm ≥ 1,

∑
jm = k; Ck

j = 0 if j = 0, and Ck
j = Ck

j+pq for q >> 0 if j ≤ 0.

Proof. For any a, b ∈ D̄ we have

αm(ab)zm + mδ1(ab)zm+1 + mδ2(ab)zm+2 + . . . = zm(ab) =

(∗) (αm(a)zm + mδ1(a)zm+1 + mδ2(a)zm+2 + . . .)b

If we represent the right-hand side of (∗) as a series with coefficients shifted to the left
and then compare the corresponding coefficients on the left-hand side and right-hand
side, we get some formulas for mδi(ab). We have to prove that these formulas are the
same as in our proposition.

Let
zi+m−kb = αi+m−k(b)zi+m−k + . . . + x′

kz
i+m + . . .

and

(αm(a)zm +mδ1(a)zm+1 +mδ2(a)zm+2 + . . .)b = αm(ab)zm +ym+1z
m+1 +ym+2z

m+2 + . . .

Then we have

yi+m = αm(a)x′
i +

i−1∑
k=0

mδi−k(a)x′
k

In the proof of prop. 0.7 we have shown that

zi+1−kb = αi+1−k(b)zi+1−k + . . . + σ(Sk
i α)(b)zi+1 + . . .

Hence x′
k = σ(Sk

i+m−1α)(b) for k < i. It is easy to see that x′
i = mδi(b), x′

0 = αi+m(b)
and σ(Sk

i+m−1α) = i+m−kδk, which proves (i).
For α = id, by corollary 1,

σ(Sk
i+m−1α)(b) =

∑
(j1,...,jl)

C l
i−k+mδj1 . . . δjl

(b),

where l, j1, . . . , jl were defined in our proposition. This proves (ii).
The proposition is proved.
�
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Definition 0.42 Let D be a splittable division algebra. For any element a ∈ D̄ define
the numbers

i(a) = max
j(a),z

w(zaz−1 − α(a)) ∈ N ∪∞,

where j : D̄ ↪→ D, z — parameter in D;

dD(a) = max
j(a),z

w(zaz−1 − α(a) − δ
(z)
ij(a)z

ij(a)) ∈ N ∪∞,

where ij(a) = w(zaz−1 − α(a)) for a given embedding j. It does not depend on the
choice of z as lemma 0.11 shows.

The following theorem is a main technical result of this subsection.

Theorem 0.43 Let D be a good splittable division algebra. Let u ∈ Z(D̄) be a purely
inseparable element over Z(D) and charF > 2. Then dD(u) = 2i(u)+np, where n > 0,
and up ∈ F̄ only if dD(u) = ∞.

Proof. By proposition 0.39 we can assume that u ∈ D̄ ⊂ D. Without loss of
generality we can assume that Z(D̄)/F̄ is a purely inseparable extension. Moreover, it
can be assumed that Z(D̄) = F̄ (u). Then by Scolem-Noether theorem we can choose
a parameter z such that α = id. Suppose

zuz−1 = u + δi(u)zi + . . . ,

i.e. δ1|F (u) = . . . = δi−1|F (u) = 0, δi(u) �= 0. Suppose upk ∈ F .
Without loss of generality it can be assumed that the following property holds:
ψ) let δj, j > i be the first map such that δj �= 0 if j is not divisible by i and

δj �= cj/iδ
j/i
i for some cj/i ∈ D̄ otherwise; then j = 2i mod p.

Indeed, let δj be the first map such that δj �= 0 and i � |j, j �= 2i mod p. Then by
lemma 0.11, (ii) there exists a parameter z′ such that δ′j(u) = 0. Therefore by corollary
1, δ′j|F (u) = 0. By Scolem-Noether theorem, δ′j is an inner derivation. Therefore by
lemma 0.11 (ii) there exists a parameter z such that δj = 0.

If δj is the first map such that i|j, δj|F (u) �= cj/iδ
j/i
i |F (u) and j �= 2i mod p, then by

lemma 0.11, (ii) there exists a parameter z′ such that δ′j(u) = cj/iδ
′
i
j/i(u) = cj/iδ

j/i
i (u),

where

cj/i =
(i + 1) . . . (i(j/i − 1) + 1)

(j/i)!
(1)

One can easily show that δ′j|F (u) = cj/iδi
j/i|F (u). By Scolem-Noether theorem, (δ′j −

cj/iδ
j/i
j ) is an inner derivation. Therefore by lemma 0.11 (ii) there exists a parameter z

such that δj = cj/iδ
j/i
i .

Let’s divide our proof in two steps.
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Step 1. First we prove that (i, p) = 1.
In this Step we don’t use the condition D is a good splittable algebra. We use only

a condition that D is splittable.

Lemma 0.44 Let j be the minimal positive integer such that δj|F (upl
)
�= 0, l ≥ 0. Then

the maps nδm, kj ≤ m < (k + 1)j, k ∈ {1, . . . , p − 1} satisfy the following properties:
i) there exist elements cm,k ∈ D̄ such that

(nδm − cm,1δ − . . . − cm,kδ
k)|

F (upl
)
= 0,

where δ : D̄ → D̄ is any F -linear map such that δ|
F (upl

)
is a derivation, δ(uj) = 0 for

j /∈ pl
N, δ(upl

) = 1, ckj,k = c(δj(u
pl
))k, c ∈ Fp.

ii) ckj,k �= 0 iff n, n + j, . . . , n + (k − 1)j �= 0 mod p.

Proof. i) The proof is by induction on k. Let a, b ∈ F (upl
). Put t = upl

. For k = 1,
by proposition 0.41, (ii) we have

nδm(ab) = nδm(a)b + anδm(b)

because all the maps δq, q < j are equal to zero on F (upl
). Hence, nδm is a derivation

on F (upl
) and cj,1 = nδj(t) = nδj(t).

For arbitrary k, by proposition 0.41, (i) and by the induction hypothesis we have
(∗∗)

nδm(tq) = qnδm(t)tq−1+nδj(t)(

q−2∑
l=0

(c1δ+. . .+ck−1δ
k−1)(tq−1−l)tl)+. . .+nδs(t)(

q−2∑
l=0

(g1δ)(t
q−1−l)tl),

where cj, gj ∈ D̄, s > m − 2j. Therefore, nδm(tp) = 0, because k ≤ p − 1 and∑p−2
l=0 cjδ

j(tp−1−l)tl = 0 for j ≤ p − 2. Hence, nδm|F (t) = cm,1δ + . . . + cm,p−1δ
p−1

and we only have to show that cm,q = 0 for q > k.
Using (**) we can calculate cm,j. We have

cm,1 = nδm(t);

cm,2 =
1

2!
nδm(t2) − 2cm,1t =

1

2
nδj(t)(c1δ(t)) + . . . + nδs(t)(g1δ(t))

. . .

cm,q =
1

q!
(nδj(t)(

q−2∑
l=0

cq−1δ
q−1(tq−1−l)tl) + . . . + nδm−q+1(t)(

q−2∑
l=0

gq−1δ
q−1(tq−1−l)tl))

=
1

q
(nδj(t)cq−1 + . . . + nδm−q+1(t)gq−1)
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Hence, cm,k+1 = . . . = cm,p−1 = 0 and ckj,k = cδj(t)ck−1 = c̃(δj(t))
k, c, c̃ ∈ Fp. Note that

c(p−1)j,p = (jδj(t))
p−1.

ii) Suppose n = 0 mod p. For k = 1 we have nδj|F (t) = nδj|F (t) = 0. For arbitrary
k we have

nδkj(t
q) = qnδkj(t)t

q−1+nδj(t)

q−2∑
r=0

n+jδ(k−1)j(t
q−1−r)tr+. . .+

kj−1∑
l=j+1

nδl(t)

q−2∑
r=0

n+lδkj−l(t
q−1−r)tr

Since nδj(t) = 0 and m1δh|F (t) = c1δ + . . . + ck−2δ
k−2 for h < (k − 1)j, the same

arguments as in i) show that ckj,k = 0.
Suppose n+rj �= 0 mod p, r < k−1. The same arguments as above show that in

this case ckj,k(nδkj) = 0 iff c(k−1)j,k−1(n+jδ(k−1)j) = 0. So, by induction, ckj,k(nδkj) = 0
iff c(k−r)j,k−r(n+rjδ(k−r)j) = 0, which proves ii).

The lemma is proved.
�

Lemma 0.45 If p|i, then there exists a map δj such that δj(u
pk

) �= 0.

Proof. We claim that δpqi is the first map such that δpqi|F (upq
) �= 0. The proof is by

induction on q. For q = 0, there is nothing to prove. For arbitrary q, put t = upq−1
. By

proposition 0.41 we have

δpqi(t
p) = δpq−1i(t)

p−2∑
r=0

1+pq−1iδpq−1i(p−1)(t
p−1−r)tr +

pqi−1∑
l=pq−1i+1

δl(t)

p−2∑
r=0

1+lδpqi−l(t
p−1−r)tr

By induction and lemma 0.44, 1+lδpqi−l|F (t) = c1δ + . . . + cp−2δ
p−2 for l > pq−1i.

Therefore,
∑p−2

r=0 1+lδpqi−l(t
p−1−r)tr = 0. By lemma 0.44, (ii), 1+pq−1iδpq−1i(p−1)|F (t) =

c1δ + . . . + cp−1δ
p−1 with cp−1 �= 0. Hence, δpqi(t

p) = −cp−1δpq−1i(t) �= 0.
The same arguments show that δj(t

p) = 0 for j < pqi. So, δpqi is the first non-zero
map on F (upq

).
�

Step 2.
From now on (i, p) = 1. Note that δi(u) ∈ Z(D̄). Indeed, for any a ∈ D̄ we have

δi(au) = δi(a)u + aδi(u) = δi(ua) = uδi(a) + δi(u)a

Therefore, aδi(u) = δi(u)a. Since (i, p) = 1, there exists k1 ∈ N such that pk divides
1 + k1i. Therefore by lemma 0.11 (iii) there exists a parameter z′ such that δ′i(u) =
(δi(u))1+k1i ∈ Z(D̄).

So we can assume that δi(u) ∈ Z(D̄) and ψ) holds.
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Assume that dD(u) ≤ 2i(u).
Then to prove our theorem it is sufficient to show that there exists a parameter z

such that the maps δj satisfy the following property:
(∗) If j is not divisible by i, then δj|F (u) = 0. If j is divisible by i, then δj|F (u) =

cj/iδ
j/i
i |F (u) with some cj/i ∈ D̄.

To show it we prove that if property (∗) does not hold, then there exists a map δj

such that δj(u
pk

) �= 0.
Suppose (∗) does not hold and δ2i+mp is the first map which does not satisfy (∗). So,

δ2i+mp(u) �= 0. Note that δq(u) = 0 for i < q < 2i + mp.
Note that δ2i+mp(u), δ̃2i+mp(u) ∈ Z(D̄). Indeed, by proposition 0.41, iδ̃2i+mp|F (u) is a

derivation. Therefore, iδ̃2i+mp(u) ∈ Z(D̄). Since δi(u) ∈ Z(D) and δq(u) = 0 for i < q <
2i + mp, iδ̃2i+mp(u) = iδ̃2i+mp(u) and δ̃2i+mp(u) ∈ Z(D̄). Therefore, δ2i+mp(u) ∈ Z(D̄).

First we prove that there exists a parameter z̄ such that δ̄q = δq for q ≤ 2i + mp

and 2i+mp+(p−1)i
˜̄δq(u) = 0 for q �= 2i mod p, q > 2i + mp; here δ̄q are maps given by

the parameter z̄. Put j(1) = 2i + mp + (p − 1)i.
Suppose j(1)δ̃q(u) �= 0, q > 2i + mp and q �= 2i mod p. By definition,

j(1)δ̃q(u) = −j(1)δq(u) +
∑

δk1 . . . δkl
(u),

where ki < q. By lemma 0.11, (ii) for any a ∈ D̄ there exists a parameter z̄q such that

z̄quz̄−1
q = u + δi(u)z̄i

q + . . . + δq−1(u)z̄q−1
q + az̄q

q + . . .

Therefore, there exists an element a ∈ D̄ such that j(1)
˜̄δq(u) = 0. It is easy to see that

the sequence {z̄q} converges in D. So, z̄ = limz̄q.

Lemma 0.46 Put κ = j(1) = 2i + mp + (p − 1)i. Then there exists a parameter z
such that the following properties hold:

(i) κδ̃2i+mp+(p−1)i is the first map such that κδ̃2i+mp+(p−1)i|F (up) �= 0.

(ii) κδ̃2i+mp+(p−1)i+i+mp(u
p) �= 0 and κδ̃r|F (up) = 0 for j(1) < r < j(1) + i + mp.

(iii) κδ̃2i+mp+(p−1)i(u
p) ∈ Z(D̄), κδ̃2i+mp+(p−1)i+i+mp(u

p) ∈ Z(D̄).

Proof.
i) Put w := 2i + mp + (p − 1)i. By proposition 0.41 we have

κδ̃w(up) = κδ̃i(u)

p−2∑
q=0

i−κδw−i(u
p−1−q)uq + κδ̃2i+mp(u)

p−2∑
q=0

2i+mp−κδ(p−1)i(u
p−1−q)uq+
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w−1∑
k=2i+mp+1

κδ̃k(u)

p−2∑
q=0

k−κδw−k(u
p−1−q)uq

By lemma 0.44, k−κδw−k|F (up) = c1δ + . . . + cp−2δ
p−2 for w − k < (p − 1)i and

2i+mp−κδ(p−1)i|F (up) = c1δ + . . . + cp−1δ
p−1 with cp−1 = (iδi(u))p−1 �= 0.

By proposition 0.41 we have

i−κδw−i(u
q) = qi−κδw−i(u)uq−1 + i−κδi(u)

q−2∑
r=0

m1δw−2i(u
q−1−r)ur+

w−i−1∑
s=2i+mp

i−κδs(u)

q−2∑
r=0

s+i−κδw−i−s(u
q−1−r)ur

By lemma 0.44, s+i−κδw−i−s|F (u) = c1δ+. . .+cp−3δ
p−3 for w−i−s < (p−2)i. Since i−κ =

0 mod p, i−κδi(u) = 0 and i−κδ2i+mp(u) = 0. So, i−κδw−i|F (u) = c1δ + . . . + cp−2δ
p−2.

Hence,

κδ̃w(up) = −κδ̃2i+mp(u)(iδi(u))p−1 = −iδ̃2i+mp(u)(iδi(u))p−1 �= 0

and κδ̃w(up) ∈ Z(D̄).
The same arguments show that κδ̃w is the first map such that κδ̃w|F (up) �= 0.
ii) For j(1) < w ≤ 2i + mp + (p − 1)i + i + mp, by proposition 0.41 we have

κδ̃w(up) = κδ̃i(u)

p−2∑
q=0

i−κδw−i(u
p−1−q)uq+κδ̃2i+mp(u)

p−2∑
q=0

2i+mp−κδw−2i−mp(u
p−1−q)uq+. . . +

κδ̃w−(p−1)i(u)

p−2∑
q=0

w−(p−1)i−κδ(p−1)i(u
p−1−q)uq +

w−1∑
k=w−(p−1)i+1

κδ̃k(u)

p−2∑
q=0

k−κδw−k(u
p−1−q)uq

By lemma 0.44, k−κδw−k|F (u) = c1δ + . . . + cp−2δ
p−2 for w − k < (p − 1)i.

Let us prove that 2i+mp−κδζ |F (u) = c1δ + . . . + cp−2δ
p−2 for (p− 1)i < ζ < (p− 1)i +

i + mp.
If (p − 1)i < ζ < 2i + mp, then it is clear that 2i+mp−κδζ |F (u) = 0. By proposition

0.41, for ζ ≥ 2i + mp and q < p we have

2i+mp−κδζ(u
q) = q2i+mp−κδζ(u)uq−1+

2i+mp−κδi(u)

q−2∑
r=0

mδζ−i(u
q−1−r)ur + 2i+mp−κδ2i+mp(u)

q−2∑
r=0

m1δζ−2i−mp(u
q−1−r)ur + . . .

Since ζ − 2i − mp < (p − 2)i, m1δs|F (u) = c1δ + . . . + cp−3δ
p−3 for s ≤ ζ − 2i − mp.
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To show that mδζ−i|F (u) = c1δ+ . . .+cp−3δ
p−3 we use induction on r, where i+mp ≤

ζ − (p − 2 − r)i < 2i + mp + ri. For arbitrary r we can use the same calculations, so
we only have to prove that mδζ−(p−2−r)i|F (u) = 0 for some r ≥ 0.

There exists r ≥ 0 such that i+mp ≤ ζ−(p−2−r)i < 2i+mp. If 2i+mp > 2i, then

mδζ−(p−2−r)i = cδk
i , k > p if i|ζ and mδζ−(p−2−r)i = 0 otherwise. So, mδζ−(p−2−r)i|F (u) = 0.

If 2i+mp ≤ 2i, then (p−1)i < ζ < pi. So, i < ζ−(p−2)i < 2i+mp and mδζ−(p−2)i = 0.
Let us prove that 2i+mp−κδ(p−2)i+2i+mp|F (u) = c1δ+. . .+cp−1δ

p−1 with cp−1 �= 0. Note

that 2i+mp−κδ̃2i+mp+ri|F (u) = c1δ + . . . + cr+1δ
r+1 with cr+1 �= 0 for any 0 ≤ r ≤ p − 2.

Indeed, by proposition 0.41 we have

2i+mp−κδ̃2i+mp+ri(u
q) = q2i+mp−κδ̃2i+mp+ri(u)uq−1 + 2i+mp−κδ̃i(u)

q−2∑
t=0

∑
(j1,...,jl),l≥p

C l
κ−i−mpδj1 . . . δjl

(uq−1−t)ut + 2i+mp−κδ̃2i+mp(u)

q−2∑
t=0

κδri(u
q−1−t)ut + . . .

By lemma 0.44, κδri|F (u) = c1δ+. . .+crδ
r with cr �= 0 and mδs|F (u) = c1δ+. . .+cr−1δ

r−1

for s < ri.
If there exists jk ≥ 2i+mp, then j1+. . .+ ĵk +. . .+jl ≤ ri; so there exists jt < i and

δj1 . . . δjl
= 0. If there are no jk ≥ 2i + mp, then δjk

= cδk
i , c ∈ ” and δj1 . . . δjl

|F (u) = 0,
because l ≥ p.

Hence by lemma 0.44, 2i+mp−κδ̃2i+mp+ri|F (u) = c1δ + . . . + cr+1δ
r+1 with cr+1 =

1
r+12i+mp−κδ̃2i+mp(u)(iδi(u))r = 1

r+1 iδ̃2i+mp(u)(iδi(u))r �= 0.
We have

2i+mp−κδ(p−2)i+2i+mp + 2i+mp−κδ̃(p−2)i+2i+mp + 2i+mp−κδi · 2i+mp−κδ̃(p−3)i+2i+mp + . . . +

2i+mp−κδ(p−2)i · 2i+mp−κδ̃2i+mp + 2i+mp−κδ(p−3)i+2i+mp · 2i+mp−κδ̃i = 0

We have 2i+mp−κδri · 2i+mp−κδ̃(p−2−r)i+2i+mp|F (u) = c1δ + . . . + cp−1δ
p−1 with cp−1 =

1
p−1−r iδ̃2i+mp(u)(iδi(u))p−2.

Since (2i+mp−κδ̃i)
p|F (u) = 0, and using induction, we get 2i+mp−κδ(p−2)i+2i+mp|F (u) =

c1δ + . . . + cp−1δ
p−1 with

cp−1 = −(1 + . . . +
1

p − 1
)iδ̃2i+mp(u)(iδi(u))p−2−

(1+. . .+
1

p − 2
)iδ̃2i+mp(u)(iδi(u))p−2−. . .−iδ̃2i+mp(u)(iδi(u))p−2 = −iδ̃2i+mp(u)(iδi(u))p−2 �= 0

Note that κδ̃w−(p−1)i(u)
∑p−2

q=0 w−(p−1)i−κδ(p−1)i(u
p−1−q)uq �= 0 only if w = i mod p.

Indeed, suppose w − (p − 1)i − κ �= i mod p. Therefore by lemma 0.44, (ii),

w−(p−1)i−κδ(p−1)i|F (u) = c1δ + . . . + cp−2δ
p−2.
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Let us prove that
∑p−2

q=0 i−κδw−i(u
p−1−q)uq = 0. By proposition 0.41 we have

i−κδw−i(u
q) = qi−κδw−i(u)uq−1 + i−κδi(u)

q−2∑
r=0

2i−κδw−2i(u
q−1−r)ur+

w−i−1∑
s=2i+mp

i−κδs(u)

q−2∑
r=0

s+i−κδw−i−s(u
q−1−r)ur

Since i−κ = 0 mod p, i−κδs(u) = 0 for s < 2i+mp+(p−1)i. For s ≥ 2i+mp+(p−1)i
we have w − i − s ≤ mp and s+i−κδw−i−s = cδk

i , c ∈ ”. But m ≤ 0 by our assumption
in the beginning of Step 2, so s+i−κδw−i−s = 0.

So, we have κδ̃w(up) �= 0 only if w = i mod p or w = 2i+mp+(p−1)i+i+mp. By
lemma 0.11, (ii),(see the same arguments before this lemma, for example) there exists a
parameter z such that the map κδ̃w(up) becomes equal to zero on up if w = i mod p.
Since 2i + mp + (p− 1)i + i + mp−w ≤ i by our assumption, the change from lemma
0.11 does not change the map κδ̃2i+mp+(p−1i+i+mp. So, we get the proof of (ii).

Now we have κδ̃2i+mp+(p−1i+i+mp(u
p) = −κδ̃2i+mp(u)(−iδ̃2i+mp(u)(iδi(u))p−2) ∈

Z(D̄), which proves (iii).
The lemma is proved.
�

Consider the following two cases.
Case 1. δi(δ̃2i+mp(u)) = 0 or i + mp < i. In this case we have shown that

δi(iδ̃j(1)(u
p)) = 0 and δi(iδ̃j(1)+i+mp(u

p)) = 0.

Lemma 0.47 Let δj(n+1) be the first map such that δj(n+1)|F (upn+1
) �= 0. Suppose the

following conditions hold:

i’) j(n)δ̃j(n+1)+i+mp(u
pn+1

)|F (upn+1
) �= 0 and j(n)δ̃r|F (upn+1

) = 0 for j(n + 1) < r <

j(n + 1) + i + mp;

ii’) δi(j(n)δ̃j(n+1)+i+mp(u
pn+1

)) = 0 and δi(j(n)δ̃j(n+1)(u
pn+1

)) = 0.

Then there exists a parameter z such that the following conditions hold:

i) j(n+1)δ̃j(n+1)+i+mp+(p−1)j(n+1) is the first map such that

j(n+1)δ̃j(n+1)+i+mp+(p−1)j(n+1)|F (upn+2
) �= 0;

ii) j(n+1)δ̃j(n+1)+i+mp+(p−1)j(n+1)+i+mp(u
pn+2

) �= 0 and j(n+1)δ̃r|F (upn+2
) = 0 for

j(n + 1) + i + mp + (p− 1)j(n + 1) < r < j(n + 1) + i + mp + (p− 1)j(n + 1) + i + mp;
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iii) δi(j(n+1)δ̃j(n+2)(u
pn+2

)) = 0 and δi(j(n+1)δ̃j(n+2)+i+mp(u
pn+2

)) = 0, where j(n +
2) = j(n + 1) + i + mp + (p − 1)j(n + 1).

Proof. First we prove that there exists a parameter z̄ such that δ̄q|F (upn+1
) =

δq|F (upn+1
) for q ≤ j(n + 1) + i + mp and j(n+1)

˜̄δq(u
pn+1

) �= 0 only if q = 2i mod p for

q > j(n + 1) + i + mp; here δ̄q are the maps given by the parameter z̄.

Suppose j(n+1)
˜̄δq(u

pn+1
) �= 0, q > j(n + 1) + i + mp and q �= 2i mod p. By

definition, j(n+1)δ̃q(u
pn+1

) = −j(n + 1)δq(u
pn+1

) +
∑

δk1 . . . δkl
(upn+1

), where ki < q. By
lemma 0.11, (ii), for any a ∈ D̄ there exists a parameter z̄q such that

z̄qu
pn+1

z̄−1
q = upn+1

+ δj(n+1)(u
pn+1

)z̄j(n+1)
q + . . . + δq−1(u

pn+1

)z̄q−1
q + az̄q

q + . . .

Therefore there exists an element a ∈ D̄ such that j(n+1)δ̃q(u
pn+1

) = 0. It is easy to see
that the sequence {z̄q} converges in D. So, z̄ = limz̄q.

Now we prove that j(n+1)δ̃j(n+1)+i+mp(u
pn+1

) �= 0 and j(n+1)δ̃r|F (upn+1
) = 0 for j(n +

1) < r < j(n + 1) + i + mp and δi(j(n+1)δ̃j(n+1)+i+mp(u
pn+1

)) = 0.
We have j(n + 1) = j(n) mod p. Therefore,

z−j(n+1)upn+1

zj(n+1) = z−pk(z−j(n)upn+1

zj(n))zpk = z−pk(upn+1

+j(n)δ̃j(n+1)(u
pn+1

)zj(n+1)+

j(n)δ̃j(n+1)+i+mp(u
pn+1

)zj(n+1)+i+mp + . . .)zpk =

z−pkupn+1

zpk+z−pk
j(n)δ̃j(n+1)(u

pn+1

)zpkzj(n+1)+j(n)δ̃j(n+1)+i+mp(u
pn+1

)zj(n+1)+i+mp+. . . =

upn+1

+ j(n)δ̃j(n+1)(u
pn+1

)zj(n+1) + j(n)δ̃j(n+1)+i+mp(u
pn+1

)zj(n+1)+i+mp + . . . ,

because ii’) provide δi(δr(u
pn+1

)) = 0 for j(n + 1) < r < j(n + 1) + i + mp. So,

z−pkupn+1
zpk = upn+1

mod M
j(n+1)+2i+mp
D .

i) Put w = j(n + 1) + i + mp + (p − 1)j(n + 1), t = upn+1
. By proposition 0.41 we

have

j(n+1)δ̃w(tp) = j(n+1)δ̃j(n+1)+i+mp(t)

p−2∑
q=0

i+mpδ(p−1)j(n+1)(t
p−1−q)tq+

w−1∑
k=j(n+1)+i+mp+1

j(n+1)δ̃k

p−2∑
q=0

k−j(n+1)δw−k(t
p−1−q)tq

By lemma 0.44, k−j(n+1)δw−k|F (t) = c1δ + . . . + cp−2δ
p−2 for w − k < (p − 1)j(n + 1)

and i+mpδ(p−1)j(n+1)|F (t) = c1δ + . . . + cp−1δ
p−1 with cp−1 �= 0. Therefore, j(n+1)δ̃w(tp) =

−j(n+1)δ̃j(n+1)+i+mp(t)cp−1 �= 0.

The same arguments show that j(n+1)δ̃w is the first map such that j(n+1)δ̃w(tp) �= 0.

ii) Put t = upn+1
. Using the same arguments as above, we can find a parameter z̄

such that δ̄q = δq for q ≤ j(n + 1) + i + mp + (p − 1)j(n + 1) and j(n+1)
˜̄δq(t

p) = 0
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for q > j(n + 1) + i + mp + (p − 1)j(n + 1), q �= 2i mod p. Since j(n+1)
˜̄δr|F (tp),

j(n+1)+ i+mp+(p−1)j(n+1) < r < j(n+1)+ i+mp+(p−1)j(n+1)+ i+mp are

derivations (see lemma 0.44), j(n+1)
˜̄δr|F (tp) = 0 for j(n+1)+ i+mp+(p−1)j(n+1) <

r < j(n + 1) + i + mp + (p − 1)j(n + 1) + i + mp.
For j(n+1)+i+mp+(p−1)j(n+1) < w ≤ j(n+1)+i+mp+(p−1)j(n+1)+i+mp,

w = 2i mod p, by proposition 0.41 we have

j(n+1)δ̃w(tp) = j(n+1)δ̃j(n+1)+i+mp(t)

p−2∑
q=0

i+mpδ(p−1)j(n+1)+i+mp(t
p−1−q)tq + . . . +

j(n+1)δ̃w−(p−1)j(n+1)(t)

p−2∑
q=0

w−(p−1)j(n+1)−j(n+1)δ(p−1)j(n+1)(t
p−1−q)tq+

w−1∑
k=w−(p−1)j(n+1)+1

j(n+1)δ̃k(t)

p−2∑
q=0

k−j(n+1)δw−k(t
p−1−q)tq

By lemma 0.44, k−j(n+1)δw−k|F (t) = c1δ + . . . + cp−2δ
p−2 if w − k < (p − 1)j(n + 1).

Therefore,
∑p−2

q=0 k−j(n+1)δw−k(t
p−1−q)tq = 0.

Note that j(n+1)δ̃w−(p−1)j(n+1)(t)
∑p−2

q=0 w−(p−1)j(n+1)−j(n+1)δ(p−1)j(n+1)(t
p−1−q)tq = 0.

Indeed, w− (p−1)j(n+1)− j(n+1) = 2i mod p. Therefore by lemma 0.44 (ii),

w−(p−1)j(n+1)−j(n+1)δ(p−1)j(n+1)|F (t) = c1δ + . . . + cp−2δ
p−2.

Let us prove that k−j(n+1)δζ |F (t) = c1δ + . . . + crδ
r for (r + 1)j(n + 1) < ζ <

(r + 1)j(n + 1) + i + mp, r ≤ p − 2.
The proof is by induction on r. By ii’) and i’), δs(t) = 0 for j(n + 1) < s <

j(n + 1) + i + mp. Therefore for r = 0, k−j(n+1)δζ |F (t) = 0.
For arbitrary r we have

k−j(n+1)δζ(t
q) = qk−j(n+1)δζ(t) + k−j(n+1)δj(n+1)(t)

q−2∑
r=0

kδζ−j(n+1)(t
q−1−r)tr+

ζ−1∑
s=j(n+1)+i+mp

k−j(n+1)δs(t)

q−2∑
r=0

s+(k−j(n+1))δζ−s(t
q−1−r)tr

By lemma 0.44, s+(k−j(n+1))δζ−s|F (t) = c1δ + . . . + cr−1δ
r−1 for ζ − s < rj(n + 1).

For any m mδζ−j(n+1)|F (t) = 0 if r = 1, and mδζ−j(n+1)|F (t) = c1δ + . . . + cr−1δ
r−1 by

induction and lemma 0.44, because

mδζ−j(n+1)(t
q) = qmδζ−j(n+1)(t)t

q−1 + mδj(n+1)(t)

q−2∑
l=0

m1δζ−2j(n+1)(t
q−1−l)tl+
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ζ−j(n+1)−1∑
s=j(n+1)+i+mp

mδs

q−2∑
l=0

msδζ−j(n+1)−s(t
q−1−l)tl,

and by lemma 0.44, msδζ−j(n+1)−s|F (t) = c1δ + . . . + cr−2δ
r−2 for s ≥ j(n + 1) + i + mp.

The same arguments show that k−j(n+1)δ̃ζ |F (t) = c1δ+ . . .+crδ
r for (r+1)j(n+1) <

ζ < (r + 1)j(n + 1) + i + mp.
Let us show that i+mpδ(p−1)j(n+1)+i+mp|F (t) = c1δ + . . . + cp−1δ

p−1, cp−1 �= 0. Put
ζ = (p − 1)j(n + 1) + i + mp. We have

i+mpδζ + i+mpδ̃ζ +
w−k−1∑

s=1

i+mpδζ−s · i+mpδ̃s = 0

First we prove that i+mpδ̃rj(n+1)+i+mp|F (t) = c1δ + . . . + crδ
r with

cr = 1
r i+mpδ̃j(n+1)+i+mp(t)(j(n+1)δj(n+1)(t))

r−1 �= 0. We use the same arguments as above.

The proof is by induction on r. For r = 0, since i + mp < j(n + 1), i+mpδ̃i+mp|F (t) = 0.
Put w = rj(n + 1) + i + mp. For arbitrary r we have

i+mpδ̃w(tq) = qi+mpδ̃w(t)tq−1 + i+mpδ̃j(n+1)(t)

q−2∑
r=0

j(n+1)−i−mpδw−j(n+1)(t
q−1−r)tr+

w−1∑
s=j(n+1)+i+mp

i+mpδ̃s(t)

q−2∑
r=0

s−i−mpδw−s(t
q−1−r)tr

By lemma 0.44, s−i−mpδw−s|F (t) = c1δ + . . . + cr−2δ
r−2 for w − s < (r − 1)j(n + 1) and

j(n+1)δ(r−1)j(n+1)|F (t) = c1δ + . . . + cr−1δ
r−1 with cr−1 = (j(n+1)δj(n+1)(t))

r−1 �= 0.
By proposition 0.41 we have

j(n+1)−i−mpδw−j(n+1)(t
q) = qj(n+1)−i−mpδw−j(n+1)(t)t

q−1+

j(n+1)−i−mpδj(n+1)(t)

q−2∑
r=0

m1δw−2j(n+1)(t
q−1−r)tr+

w−j(n+1)−1∑
s=j(n+1)+i+mp

j(n+1)−i−mpδs(t)

q−2∑
r=0

s+j(n+1)−i−mpδw−j(n+1)−s(t
q−1−r)tr

By lemma 0.44, s+j(n+1)−i−mpδw−j(n+1)−s|F (t) = c1δ+ . . .+cr−3δ
r−3 for w−j(n+1)−s <

(r − 2)j(n + 1). Since j(n + 1) − i − mp = 0 mod p, j(n+1)−i−mpδj(n+1)(t) = 0 and

j(n+1)−i−mpδj(n+1)+i+mp(t) = 0 (here we use also i’) and ii’)). Therefore,

j(n+1)−i−mpδw−j(n+1)|F (t) = c1δ + . . . + cr−2δ
r−2 and lemma 0.44 completes the proof.
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The same arguments show that i+mpδ̃rj(n+1)|F (t) = c1δ + . . . + cr−1δ
r−1. Therefore,

i+mpδζ−s · i+mpδ̃s|F (t) = c1δ + . . . + cp−1δ
p−1 only if s = j(n + 1) or s > j(n + 1)

and s = rj(n + 1) + i + mp. Note that cp−1 = 1
r iδ̃j(n+1)+i+mp(t)(iδj(n+1)(t))

p−2 if s =
rj(n + 1) + i + mp.

Using the same arguments for the maps i+mpδζ−rj(n+1), we get i+mpδζ |F (t) = c1δ +
. . . + cp−1δ

p−1, where

cp−1 = −(1 +
1

2
+ . . . +

1

p − 1
)iδ̃j(n+1)+i+mp(t)(iδj(n+1)(t))

p−2−

(1 + . . . +
1

p − 2
)iδ̃j(n+1)+i+mp(t)(iδj(n+1)(t))

p−2 − . . .− iδ̃j(n+1)+i+mp(t)(iδj(n+1)(t))
p−2 =

−iδ̃j(n+1)+i+mp(t)(iδj(n+1)(t))
p−2 �= 0.

This completes the proof of ii) and iii).
The lemma is proved.
�

Case 2. δi(δ̃2i+mp(u)) �= 0.

Lemma 0.48 Suppose i + mp ≥ i. Put t = up. Then there exists a parameter z such
that the following properties hold:

i) j(1)δ̃j(1)+i+mp+(p−1)j(1) is the first map such that j(1)δ̃j(1)+i+mp+(p−1)j(1)|F (tp) �= 0.

ii) j(1)δ̃r|F (tp) = 0 for j(2) < r < j(2) + i and j(1)δ̃j(2)+i(t
p) �= 0, where

j(2) = j(1) + i + mp + (p − 1)j(1).

iii) j(1)δ̃j(2)+i(t
p) ∈ Z(D̄), j(1)δ̃j(2)(t

p) ∈ Z(D̄).

Proof. To prove i) one can repeat the proof of i) in lemma 0.47. Note that

j(1)δ̃j(2)(t
p) = −j(1)δ̃j(1)+i(iδj(1)(t))

p−2 ∈ Z(D̄).
ii) As in the case 1 we can find a parameter z̄ such that δ̄q|F (t) = δq|F (t) for q ≤

j(1) + i + mp, ˜̄δq(t
p) = 0 for q �= 2i mod p, q > j(2).

For r = 2i mod p, by proposition 0.41 we have

j(1)δ̃r(t
p) = j(1)δ̃j(1)+i+mp(t)

p−2∑
q=0

i+mpδr−j(1)−i−mp(t
p−1−q)tq+

r−1∑
k=j(1)+i+mp+1

j(1)δ̃k(t)

p−2∑
q=0

k−j(1)δr−k(t
p−1−q)tq
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By lemma 0.44, k−j(1)δr−k|F (t) = c1δ + . . . + cp−2δ
p−2 if r − k < (p − 1)j(1).

Note that j(1)δ̃r−(p−1)j(1)(t)
∑p−2

q=0 r−pj(1)δ(p−1)j(1)(t
p−1−q)tq = 0.

Indeed, r−pj(1) = 2i mod p. Therefore by lemma 0.44 (ii), r−pj(1)δ(p−1)j(1)|F (t) =
c1δ + . . . + cp−2δ

p−2.
The same arguments as in lemma 0.47 (ii) show that mδs|F (t) = c1δ + . . . + cp−2δ

p−2

for (p − 1)j(1) < s < (p − 1)j(1) + i.
Let us prove that i+mpδ(p−1)j(1)+i|F (t) = c1δ + . . . + cp−1δ

p−1 with cp−1 �= 0.

First let us show that i+mpδ̃ζ |F (t) = c1δ + . . .+ crδ
r for ζ = (r +1)j(1)+ i, r ≤ p−2.

For r = 0, i+mpδ̃ζ |F (t) is a derivation. Since j(1)δ̃ζ(t) = 0 for ζ = j(1) + i and j(1) =

i + mp mod p and p > 2, we have i+mpδ̃ζ(t) = 0 and i+mpδ̃ζ |F (t) = 0.
For arbitrary r we have

i+mpδ̃ζ(t
q) = qi+mpδ̃ζ(t)t

q−1 + i+mpδ̃j(1)(t)

q−2∑
r=0

j(1)−i−mpδζ−j(1)(t
q−1−r)tr+

ζ−1∑
k=j(1)+i+1

i+mpδ̃k(t)

q−2∑
r=0

k−i−mpδζ−k(t
q−1−r)tr

By lemma 0.44, k−i−mpδζ−k|F (t) = c1δ + . . . + cr−1δ
r−1 for ζ − k < rj(1), i.e. k ≥

j(1) + i + 1.
By definition,

j(1)−i−mpδζ−j(1) =
∑

(j1,...,jl),l≥p

C l
j(1)−i−mpδj1 . . . δjl

,

because j(1)− i−mp = 0 mod p. Since l ≥ p, there exist jk, jk1 such that jk < j(1)
and jk1 < j(1). Thus, j1 + . . . + ĵk + . . . + ĵk1 + . . . + jl < rj(1) and δj1 . . . δjl

|F (t) =

c1δ + . . . + cr−1δ
r−1. Hence by lemma 0.44, i+mpδ̃ζ |F (t) = c1δ + . . . + crδ

r.
Now we have

i+mpδ(p−1)j(1)+i + i+mpδ̃(p−1)j(1)+i +

(p−1)j(1)∑
k=i

i+mpδk · i+mpδ̃(p−1)j(1)+i−k = 0

with i+mpδk · i+mpδ̃(p−1)j(1)+i−k|F (t) = c1δ + . . . + cp−2δ
p−2 for k �= (p − 2)j(1) + i.

Therefore,

i+mpδ(p−1)j(1)+i|F (t) = c1δ + . . . + cp−2δ
p−2 − i+mpδ(p−2)j(1)+i · i+mpδ̃j(1)|F (t)

So by induction,

i+mpδ(p−1)j(1)+i|F (t) = c̃1δ+. . .+c̃p−2δ
p−2+i+mpδi(i+mpδj(1))

p−1|F (t) = c1δ+. . .+cp−2δ
p−2+
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i+mpδi((iδj(1)(t))
p−1)δp−1

Since iδj(1)(t) = −j(1)δ̃j(1)(t) = iδ̃2i+mp(u)(iδi(u))p−1, we have i+mpδi(iδj(1)(t)) �= 0,
which completes the proof of ii).

Finally, j(1)δ̃j(2)+i(t
p) = −j(1)δ̃j(1)+i+mp(t)i+mpδi(iδj(1)(t))(iδj(1)(t))

p−2 ∈ Z(D̄),
because i+mpδi is a derivation and iδj(1)(t) ∈ Z(D̄) . This proves iii).
�

The following lemma completes the proof of Case 2 and of Theorem.

Lemma 0.49 Suppose the following conditions hold:

i’) j(1)δ̃j(n)+i|F (upn
) �= 0 and j(1)δ̃r|F (upn

) = 0 for j(n) < r < j(n) + i, n ≥ 1;

ii’) j(1)δ̃j(n)(u
pn

), j(1)δ̃j(n)+i(u
pn

) ∈ Z(D̄).

Then there exists a parameter z such that

i) j(1)δ̃j(n)+i+(p−1)j(n) is the first map such that j(1)δ̃j(n)+i+(p−1)j(n)|F (upn+1
) �= 0;

ii) j(1)δ̃j(n+1)+i(u
pn+1

) �= 0 and j(1)δ̃r|F (upn+1
) = 0 for j(n + 1) < r < j(n + 1) + i,

where j(n + 1) = j(n) + i + (p − 1)j(n);

iii) j(1)δ̃j(n+1)(u
pn+1

), j(1)δ̃j(n+1)+i(u
pn+1

) ∈ Z(D̄).

Proof. By induction, j(n) = i mod p. Put a = j(1)δ̃j(n)(u
pn

). We have akj(n)+1 =

apl ∈ Z(D) for some k ∈ Z. Put z′ = (a−kj(1)zj(1))1/j(1). We claim that i’), ii’) hold for

j(1)δ̃′j(n)+i, i.e. j(1)δ̃′j(n)+i|F (upn
) �= 0, and j(1)δ̃′r|F (upn

) = 0 for j(n) < r < j(n) + i, and

j(1)δ̃′j(n)+i(u
pn

), j(1)δ̃′j(n)(u
pn

) ∈ Z(D̄). Moreover, j(1)δ̃′j(n)(u
pn

) ∈ Z(D).
Note that α′ = id, because a ∈ Z(D̄). We have

z′−j(1)
upn

z′j(1) = z−j(1)upn

zj(1) = upn

+ azj(n) + j(1)δ̃j(n)+i(u
pn

)zj(n)+i + . . .

Let us show that

z′j(n)
= a−kj(n)zj(n) mod ℘j(n)+i+1

We have
z′j(n)

= z′j(n)−j(1)
a−kj(1)zj(1).

It is easy to see that z′ = a−kz + xzi+1 + . . ., x ∈ D̄. Since j(n) − j(1) = 0 mod p,

z′j(n)−j(1) = (a−kz)j(n)−j(1) mod ℘j(n)−j(1)+i+1. Now we have

(a−kz)j(n)−j(1)a−kj(1) = a−kj(n)zj(n)−j(1) + xzj(n)−j(1)+i + . . . ,

51



where x = [−kj(1) − k(j(1) + 1) − . . . − k(j(n) − 1)]a−kj(n)−1δi(a) = 0. Therefore,

z′−j(1)
upn

z′j(1) = upn

+ apl

z′j(n)
+ j(1)δ̃j(n)+i(u

pn

)ak(j(n)+i)z′j(n)+i
+ . . .

and j(1)δ̃′j(n)+i(u
pn

) = j(1)δ̃j(n)+i(u
pn

)ak(j(n)+i) ∈ Z(D̄), j(1)δ̃′j(n)(u
pn

) = apl ∈ Z(D). So
i’), ii’) hold.

Now to prove i) one can repeat the proof of i) in lemma 0.47. Note that

j(1)δ̃j(n+1)(t
p) = −j(1)δ̃j(n)+i(iδj(n)(t))

p−2 ∈ Z(D̄).
ii) We use the same arguments as in ii) of lemma 0.48. Put t = upn

.
For r = 2i mod p, by proposition 0.41 we have

j(1)δ̃r(t
p) = j(1)δ̃j(n)(t)

p−2∑
q=0

j(n)−j(1)δr−j(n)(t
p−1−q)tq+j(1)δ̃j(n)+i(t)

p−2∑
q=0

j(n)−j(1)+iδr−j(n)−i(t
p−1−q)tq+

r−1∑
k=j(n)+i+1

j(1)δ̃k(t)

p−2∑
q=0

k−j(1)δr−k(t
p−1−q)tq

By lemma 0.44, k−j(1)δr−k|F (t) = c1δ + . . . + cp−2δ
p−2 if r − k < (p − 1)j(n).

Note that j(n)−j(1)δr−j(n)|F (t) = c1δ + . . . + cp−2δ
p−2. Indeed, by proposition 0.41 we

have

j(n)−j(1)δr−j(n)(t
q) = qj(n)−j(1)δr−j(n)(t)t

q−1+j(n)−j(1)δj(n)(t)

q−2∑
s=0

2j(n)−j(1)δr−2j(n)(t
q−1−s)ts+

j(n)−j(1)δj(n)+i(t)

q−2∑
s=0

2j(n)−j(1)+iδr−2j(n)−i(t
q−1−s)ts + . . . +

j(n)−j(1)δj(n)+2i(t)

q−2∑
s=0

2j(n)−j(1)+2iδr−2j(n)−2i(t
q−1−s)ts + . . .

Recall that r ≤ pj(n) + 2i. By lemma 0.44, mδs|F (t) = c1δ + . . . + cp−3δ
p−3 if

s < (p− 2)j(n). Since j(1)δ̃j(n)(t) ∈ Z(D), we have δj(n)(t) ∈ Z(D). Since j(n)− j(1) =
0 mod p and δj(n)(t) ∈ Z(D) and charF > 2, we have j(n)−j(1)δj(n)+ei(t) = 0 for
e ≤ p − 1, which completes the proof.

Note that j(1)δ̃r−(p−1)j(n)(t)
∑p−2

q=0 r−(p−1)j(n)−j(1)δ(p−1)j(n)(t
p−1−q)tq = 0.

Indeed, r − (p − 1)j(n) − j(1) = 2i mod p. Therefore by lemma 0.44 (ii),

r−(p−1)j(n)−j(1)δ(p−1)j(n)|F (t) = c1δ + . . . + cp−2δ
p−2.

The same arguments as in lemma 0.47 (ii) show that mδs|F (t) = c1δ + . . . + cp−2δ
p−2

for (p − 1)j(n) < s < (p − 1)j(n) + i.
Let us prove that j(n)−j(1)+iδ(p−1)j(n)+i|F (t) = c1δ + . . . + cp−1δ

p−1 with cp−1 �= 0.

Note that j(n)−j(1)+iδ̃rj(n)+i|F (t) = c1δ + . . . + crδ
r with cr �= 0 for any 1 ≤ r ≤ p− 1.
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Indeed, by proposition 0.41 we have

j(n)−j(1)+iδ̃rj(n)+i(t
q) = qj(n)−j(1)+iδ̃rj(n)+i(t)t

q−1 + j(n)−j(1)+iδ̃j(n)(t)

q−2∑
s=0

j(1)−iδ(r−1)j(n)+i(t
q−1−s)ts + j(n)−j(1)+iδ̃j(n)+i(t)

q−2∑
s=0

j(1)δ(r−1)j(n)(t
q−1−s)ts + . . .

By lemma 0.44, j(1)δ(r−1)j(n)|F (t) = c1δ + . . . + cr−1δ
r−1 with cr−1 �= 0 and mδs|F (t) =

c1δ + . . . + cr−2δ
r−2 for s < (r − 1)j(n).

Let us prove that j(1)−iδ(r−1)j(n)+i|F (t) = c1δ + . . . + cr−2δ
r−2. By proposition 0.41

we have

j(1)−iδ(r−1)j(n)+i(t
q) = qj(1)−iδ(r−1)j(n)+i(t)t

q−1+j(1)−iδj(n)(t)

q−2∑
s=0

j(n)+j(1)−iδ(r−2)j(n)+i(t
q−1−s)ts+

j(1)−iδj(n)+i(t)

q−2∑
s=0

j(n)+j(1)δ(r−2)j(n)(t
q−1−s)ts + . . .

Since j(1)δ̃j(n)(t) ∈ Z(D), we have δj(n)(t) ∈ Z(D). Since j(1) − i = 0 mod p,

j(1)−iδj(n)(t) = 0 and j(1)−iδj(n)+i(t) = 0. By lemma 0.44, mδs|F (t) = c1δ + . . . + cr−3δ
r−3

for s < (r − 2)j(n). So, j(1)−iδ(r−1)j(n)+i|F (t) = c1δ + . . . + cr−2δ
r−2.

Hence by lemma 0.44, j(n)−j(1)+iδ̃rj(n)+i|F (t) = c1δ + . . . + crδ
r with

cr = 1
r j(n)−j(1)+iδ̃j(n)+i(t)(iδj(n)(t))

r−1 = 1
r iδ̃j(n)+i(t)(iδj(n)(t))

r−1 �= 0.

The same arguments show that j(n)−j(1)+iδ̃ζ |F (t) = c1δ + . . . + cr−1δ
r−1 for ζ <

rj(n) + i.
Therefore we have

j(n)−j(1)+iδ(p−1)j(n)+i + j(n)−j(1)+iδ̃(p−1)j(n)+i+

(p−1)j(n)+i−1∑
w=1

j(n)−j(1)+iδw · j(n)−j(1)+iδ̃(p−1)j(n)+i−w = 0,

where j(n)−j(1)+iδw · j(n)−j(1)+iδ̃(p−1)j(n)+i−w|F (t) = c1δ + . . . + cp−1δ
p−1 only if w = rj(n).

In this case cp−1 = 1
p−1−r iδ̃j(n)+i(t)(iδj(n)(t))

p−2.

Since j(n)−j(1)+iδ̃j(n)(t) ∈ Z(D), we have j(n)−j(1)+iδi(j(n)−j(1)+iδ̃j(n))
p−1 = 0. So using

induction, we get j(n)−j(1)+iδ(p−1)j(n)+i|F (t) = c1δ + . . . + cp−1δ
p−1 with

cp−1 = −(1 + . . . +
1

p − 1
)iδ̃j(n)+i(t)(iδj(n)(t))

p−2−
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(1 + . . . +
1

p − 2
)iδ̃j(n)+i(t)(iδj(n)(t))

p−2 − . . . − iδ̃j(n)+i(t)(iδj(n)(t))
p−2 =

−iδ̃j(n)+i(t)(iδj(n)(t))
p−2 �= 0.

Therefore, j(1)δ̃j(n+1)+i(t
p) = −j(1)δ̃j(n)+i(t)cp−1 ∈ Z(D̄). This proves ii) and iii).

The lemma is proved.
�

The theorem is proved.
�

Lemma 0.50 Let D be a splittable division algebra. Let n = |Gal(Z(D̄)/F̄ )|.
There exists a parameter z such that

zaz−1 = α(a) + δn(a)zn + δ2n(a)z2n + . . . , a ∈ D̄

So, δj = 0 if n � |j.

One can repeat the proof of lemma 0.29 to prove the lemma.

Proposition 0.51 Let D be a good splittable division algebra. Suppose Z(D̄)/F̄ is not
a separable extension.

Then p does not divide |Gal(Z(D̄)/F̄ )|.

Proof. Suppose p divides |Gal(Z(D̄)/F̄ )|. By lemma 0.50 there exists a parameter
z such that

zaz−1 = α(a) + δn(a)zn + δ2n(a)z2n + . . . , a ∈ D̄,

where n = |Gal(Z(D̄)/F̄ )|.
Since Z(D̄)/F̄ is a compositum of a purely inseparable extension and Abelian Galois

extension, there exists an element u ∈ Z(D̄) such that α(u) = u, i.e. u is a purely
inseparable element; so by theorem 0.43 up ∈ Z(D).

In this case lemma 0.44 holds for l = 0 and we can repeat the arguments in the
proof of lemma 0.45 to show that δpi(u

p) �= 0, which is a contradiction.
�

Proposition 0.52 Let D be a good splittable division algebra. Then we have D ∼=
D1⊗F D2, where D1, D2 are division algebras such that D1 is an inertially split algebra,
Z(D̄2)/F̄ is a purely inseparable extension and D2 is a good splittable algebra (D1 or
D2 may be trivial).

So, D ∼ A⊗F B⊗F D2, where A is a cyclic division algebra and B is an unramified
division algebra.

54



Proof. By [25], p.261, D ∼= D1 ⊗F . . . ⊗F Dk, where [D : F ] = pr1
1 . . . prk

k and
[Di : F ] = pri

i . Let p2 = p. By proposition 0.51, Z(D̄2)/F̄ is a purely inseparable
extension. Since Di are defectless over F , D1, D3, . . . Dk are inertially split. Therefore,
by theorem 0.37 the algebra D1 ⊗ D3 ⊗ . . . ⊗ Dk is good splittable.

Let L be an inertial lift of a Galois part of the extension Z(D̄)/Z(D). Consider the
centraliser D′ = CD(L). It’s clear that D′ ∼= D2 ⊗L B, where B is a division algebra
similar to the algebra D1 ⊗ D3 ⊗ . . . ⊗ Dk ⊗ L. The algebra B is inertial, because
Z(B̄)/Z(B) is trivial and B is inertially split. Since D̄′ ∼= D̄2 ⊗ B̄ and D̄′ ↪→ D′ is a
good embedding, D̄′ contain a subalgebra B̄ ⊂ B̄ ⊗L L ∼= B ⊂ D′. Now the centraliser
CD′(B) ∼= D2 ⊗F L and it is good splittable, so D2 is good splittable.

Decomposition theorems [9], Thm. 5.6-5.15 complete the proof.
�

Proposition 0.53 Let D2 be a good splittable division algebra such that Z(D̄2)/Z(D2)
is a purely inseparable extension. Then D2

∼= D3 ⊗Z(D2) D4, where D3 is an unramified
division algebra and D4 is a good splittable division algebra such that D̄4 is a field,
D̄4/Z(D2) is a purely inseparable extension, [D̄4 : Z(D2)] = [ΓD4 : ΓZ(D2)].

Proof. For a good embedding there exists a subfield Z(D2) ⊂ K ⊂ Z(D̄2) such
that the extension Z(D̄2)/K has degree p. Then by theorem 0.37 and 0.43 there exists

a lift K̃ of K in D2, i.e. ¯̃K = K, ΓK̃ = ΓZ(D2), K ⊂ K̃.

Consider the centraliser C1 = CD2(K̃). We have C̄1 = D̄2, Z(C̄1)/Z(C1) is a purely
inseparable extension of degree p, say Z(C̄1) = Z(C1)(u). Using similar arguments as
in the proof of theorem 0.43 one can show that there exists a parameter z such that
C1

∼= C̄1((z)) as a vector space with the relation

zaz−1 = a + δi(a)zi + c2iδ
2
i (a)z2i + . . . , cki ∈ Fp

and zuz−1 = u + xzi, where x ∈ Z(C1). Therefore, δp
i is a derivation trivial on the

centre Z(C̄1), hence by Scolem-Noether theorem it is an inner derivation.
We claim that zp ∈ Z(C1). To prove it, consider a subalgebra W = C̄1((z

i)) ⊂ C1

(note that Z(W ) �= Z(C1)). It exists because of the type of the relation in C1.
We have

z−iazi = a − iδi(a)zi, a ∈ C̄1

in W . Therefore,
z−piazpi = a − ipδp

i (a)zpi, a ∈ C̄1

and
zpiaz−pi = a + δ′1(a)zpi + δ′1

2
(a)z2pi + . . . ,

where δ′1 = ipδp
i . So,

zpaz−p = a +
1

i
δ′1(a)zpi + c2

1

i2
δ′1

2
(a)z2pi + . . . ,
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where ck are given by (1) in theorem 0.43. So, zp ∈ Z(C1) iff δp
i = 0. Suppose δp

i �= 0.
Consider an element Y ∈ Z(C1), w(Y ) > 0. Let

Y = a1z
p + . . .

First note that
Y = a1z

p + a2z
2p + a3z

3p + . . . , ai ∈ C̄1

Indeed, Y must satisfy [Y, u] = 0. Since u ∈ Z(C̄1), we then have [zik , u] = 0 for every
k, where

Y =
∞∑

k=1

akz
ik

Therefore, p|ik.
Then, Y must satisfy Y a = aY for any a ∈ C̄1. Therefore, a1, . . . ai ∈ Z(C̄1) and

we must have
aai+1 − ai+1a = a1δ

′
1(a)/i

and
aa2i+1 − a2i+1a = aiδ

′
1(a) + a1c2δ

′
1
2
(a).

Since ∆(a) = aa2i+1 − a2i+1a is an inner derivation, we get δ′1
2 = δ, where δ is a

derivation, which is a contradiction. Therefore, δ′1
2 = δ = 0 and δ′1 = 0, and zp ∈ Z(C1).

Consider the centraliser C2 = CC1(K̃(z)). It’s clear that [C̄2 : Z(C̄2)] = [C̄2 :
Z(C2)] = indC̄1 and there exists a subalgebra C̄2 ⊂ C2, C̄2 ⊂ D̄2. Consider now
the centraliser C3 = CD2(Z(D2)(z)). We have C̄2 ⊂ C3, C̄3

∼= C̄2, because [Z(C̄3) :
Z(D2)] = [ΓC3 : ΓZ(D2)] = [Z(C̄2) : Z(D2)] = [K : Z(D2)]. By induction on dimension
of D̄2 we get the existence of a subalgebra C̄4 ⊂ D̄2 such that [C̄4 : Z(C̄4)] = [C̄2 :
Z(C̄2)], Z(C̄4) = Z(D2). Therefore there exists an unramified subalgebra C4 ⊂ D2 such
that [C4 : Z(D2)] = [C4 : Z(D2)] = [C4 : Z(C4)] = [D̄2 : Z(D̄2)]. By Double Centraliser
Theorem, D2

∼= C4 ⊗Z(D2) D4, where D4 is a division algebra with D̄4 = Z(D̄2). Since

D̄2 ↪→ D2 is a good embedding, [D̄4 : Z(D2)] must be equal to [ΓD4 : ΓZ(D2)]. It is easy
to see that D4 is also a good splittable division algebra.
The proposition is proved.
�

Proposition 0.54 Let D2 be a good splittable division algebra such that D̄2 is a field,
D̄2/Z(D2) is a purely inseparable extension and dD2(uk) ≤ 2i(uk) or dD2(uk) = ∞ for
all generators uk of the extension D̄2/Z(D2).

Then D2
∼= A1 ⊗Z(D2) . . .⊗Z(D2) Am, where Ai are cyclic division algebras of degree

p, [Āi : Z(D2)] = [ΓAi
: ΓZ(D2)].
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Proof. The proof immediately follows from theorem 0.43 and [26], Thm.3, §2.8.(
see [1] for the proof of this theorem).
�

So, we get the following decomposition theorem.

Theorem 0.55 Let D be a finite dimensional good splittable central division algebra
over a field F with a discrete complete rank 1 valuation, char(F ) = p > 2, such that
dD2(uk) ≤ 2i(uk) or dD2(uk) = ∞ for all generators uk of the extension Z(D̄)/Z(D).

Then D ∼= D1 ⊗F D2 ⊗F A1 ⊗F . . . ⊗F Am, where Ai are cyclic division algebras
of degree p, [Āi : Z(D)] = [ΓAi

: ΓZ(D)], D1 is an inertially split division algebra,
(ind(D2), p) = 1, D2 is an unramified division algebra (D1, D2, Ai may be trivial).

Recall that a field F is called a Ci-field if any homogeneous form f(x1, . . . , xn) of
degree d in n > di variables with coefficients in F has a non-trivial zero.

Corollary 8 The following conjecture: the exponent of A is equal to its index for any
division algebra A (here we don’t demand that A is splittable) over a C2-field F (see for
example [26], 3.4.5.) has the positive answer for F = F1((t)), where F1 is a C1-field.

Proof. 1) Let’s prove that A is splittable. Since F̄ is a C1-field, Ā is a field. We
can assume Ā/F̄ is a purely inseparable extension. We claim that Ā = F̄ (u) for some
u ∈ Ā, so by classical Cohen’s theorem, A is splittable.

Indeed, suppose Ā = F̄ (u1, . . . , ur). Consider the field K = F̄ (up
1, . . . , u

p
r). By Tsen’s

theorem, K and Ā are C1-fields. So, the form xp
1+xp

2u1+. . .+xp
pu

p−1
1 +xp

p+1u2 has a non-

trivial zero in Ā. But xp
i ∈ K and elements 1, u1, . . . , u

p−1
1 , u2 are linearly independent

over K, a contradiction.
2) Assume the corollary is known in the prime exponent case. We deduce the corol-

lary by ascending induction on e = expA. If e is not a prime number, then write e = lm.
By assumption A⊗m can be split by a field extension F ⊂ F ′ of degree l. This implies
that AF ′ has exponent dividing m. Note that F ′ is also a Laurent series field. By the
induction hypothesis applied to the pair (F ′, AF ′), there exists a field extension F ′ ⊂ L
of degree dividing m splitting AF ′ . Therefore A is split by the extension F ⊂ L of
degree dividing lm and we conclude the corollary.

3) So, let expA = l be a prime number. By the basic properties of the exponent
and the index (see, e.g. [26]) we have then indA = lk for some natural k.

Suppose (l, p = charF ) = 1.
It is known that the conjecture is true for all division algebras of index indA = 2a3b

(see, e.g. [26]), so we can assume charF �= 2, 3. Then we can assume F contains the
group µl of l-roots of unity, because [F (µl) : F ] < l and we can reduce the problem
to the algebra A ⊗F F (µl). Then by the Merkuriev-Suslin theorem A is similar to the
tensor product of symbol-algebras of index l.
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Every symbol-algebra of index l over F is good splittable and cyclic and its residue
field is a cyclic Kummer extension of F̄ . To conclude the statement of the corollary
it is sufficient to prove that every two symbol algebras A1, A2 contain F -isomorphic
maximal subfields.

Since Ai, i = 1, 2 is cyclic, it contains an element zi, zl
i ∈ F . Since Ai is a good

splittable algebra and by lemma 0.50 (which is true also if charF = 0), we can assume
v(zl

i) = 1 (v is the valuation on F ).
To prove it we show that A1 contains any l-root of elements u in F with v(u) �= 0.

Since for any element 1 + b, v(b) > 0 there exists an element (1 + b)1/l ∈ F , it is
sufficient to prove that A1 contains any l-root of elements ct, c ∈ F̄ , where we fix some
embedding i : F̄ ↪→ F .

Indeed, since A1 is a good splittable algebra and by lemma 0.50 (which is true also
if charF = 0) we can assume there exists an element z such that v(zl) = 1, zl = ct,
c ∈ F̄ , ad(z) acts on Ā1, where Ā1 is embedded in A1 by a good embedding with
respect to i. Note that for any element b ∈ Ā1 we have (bz)l = NĀ1/F̄ (b)zl. But the
norm map NĀ1/F̄ is surjective because F̄ is a C1-field (see, e.g. [26], 3.4.2), so for any
c there exists b such that (bz)l = ct.

4) Suppose now expA = p. Then indA = pk.

By Albert’s theorem (in [1]) there exists a field F ′ = F (u
1/p
1 , . . . , u

1/p
k ) which splits A.

Using the same arguments as in 1) one can show that every such a field has maximum

two generators, say F ′ = F (u
1/p
1 , u

1/p
2 ). Therefore, indA ≤ p2. If indA = p, there is

nothing to prove, so we assume indA = p2 and F ′ is a maximal subfield in A.
5) Suppose F1 is a perfect field.
By Albert’s theorem, A ∼= A1 ⊗F A2, where A1, A2 are cyclic algebras of degree

p, A1 = (L1/F, σ1, u1), A2 = (L2/F, σ2, u2). Since F1 is perfect, Ā1/F̄ , Ā2/F̄ are Ga-
lois extensions. So, A1, A2 are good splittable. Let us show that A1, A2 have common
splitting field of degree p over F . This leads to a contradiction.

By lemma 0.50 there exist parameters z1 ∈ A1, z2 ∈ A2 such that they act on Ā1,
Ā2 as Galois automorphisms. Note that then zp

1 , z
p
2 ∈ F . Let us show that F (z1) splits

A2.
Consider the centralizer D = CA(F (z1)). Consider the element t1 = z2z

−1
1 . We have

tp1 ∈ F , w(t1) = 0, where w denote the unique extension of the valuation v on F . Since
D̄/ ¯Z(D) is a Galois extension, there exists an element b1 ∈ F such that w(t1− b1) > 0.
Since (t1 − b1)

p ∈ F , there exists natural k1 such that w((t1 − b1)z
−k1
1 ) = 0. Denote

t2 = (t1 − b1)z
−k1
1 . We have again tp2 ∈ F . Repeating this arguments and using the

completeness of D ⊂ A we get
z2 = t1z1 = (t2z

k1
1 + b1)z1 = . . . = b1z1 + b2z

k1+1
1 + . . .,

so, z2 ∈ F (z1) = Z(D).
6) Suppose F1 is not perfect.
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Since F ′ is generated by two elements over F , it contains all p-roots of F . Then,
every two elements u, z ∈ F such that z1/p /∈ F (u1/p), where z1/p, u1/p ∈ F ′, also
generate F ′ over F . This follows from the same arguments as in 1), 4).

Now take u ∈ F1\F p
1 , z = u + t. It’s clear that p-roots of these elements generate

F ′ over F . Moreover, the fields F (u1/p), F (z1/p) are ”unramified” over F , i.e. [F (u1/p) :

F̄ ] = p = [F (u1/p) : F ], [F (z1/p) : F̄ ] = p. Denote u1 = u1/p, u2 = z1/p in F ′. Then
by Albert’s theorem, A ∼= A1 ⊗F A2, where A1, A2 are cyclic algebras of degree p,
A1 = (L1/F, σ1, u), A2 = (L2/F, σ2, z).

Since the fields F (u1/p) ⊂ A1, F (z1/p) ⊂ A2 are ”unramified” and purely inseparable
of degree p over F , the algebras A1, A2 are good splittable. Moreover, there exist
embeddings Ā1 ↪→ A1, Ā2 ↪→ A2 such that u1 ∈ Ā1, u2 ∈ Ā2. Then by theorem
0.43 there exist parameters z1 ∈ A1, z2 ∈ A2 such that zp

1 , z
p
2 ∈ F and

z2u2z
−1
2 = u2 + czi

2,

where c ∈ F , v(c) = 0. So, for the element u′
2 = c−1u2 we have

z2u
′
2z

−1
2 = u′

2 + zi
2,

and u′
2 /∈ F , u′p

2 ∈ F .
Since F̄ is a C1-field, we have Ā1 = Ā2 and therefore there exist an element b ∈

F (u1) ⊂ A1 ⊂ A such that w(u′
2 − b) > 0, where w is the unique extension of v on

A. Since b commutes with u′
2, we have (u′

2 − b)p ∈ F . Therefore w(u′
2 − b) ∈ 1/pZ (we

assume the value groups of w and v lie in a common divisible hull Γv ⊗Z ”). Hence

w((u′
2 − b)z

−pw(u′
2−b)

2 ) = 0. Put u3 = (u′
2 − b)z

−pw(u′
2−b)

2 .
Note that

z2(u
′
2 − b)z−1

2 = (u′
2 − b) + zi

2,

z2u3z
−1
2 = u3 + zi1

2 , i1 < i

So, the elements (u′
2 − b), z2 generate a division algebra C of degree p over F and

u3 ∈ C. Then, up
3 commutes with z2 if i1 > 0. Therefore, in this case up

3 ∈ F and C is a
good splittable division algebra. Note that u1 ∈ CA(C), so A ∼= A′

1 ⊗F C with u1 ∈ A′
1.

Using the same arguments we get that there exists an element u4 with w(u4) = 0 and

z2u4z
−1
2 = u4 + zi2

2 , i2 ≤ 0

So, i2 must be equal to 0 and therefore u4, z2 generate a division algebra C ′ of degree
p over F such that C̄ ′/F̄ is a Galois extension and u1 ∈ CA(C ′). So, A ∼= D⊗F C ′ with
u1 ∈ D.

Therefore, A contains the maximal subfield F (u1)F (u4), which is a compositum of
a purely inseparable and Galois extension. Moreover, this field is ”unramified” over
F , so it is good splittable field and A is a good splittable algebra with p dividing
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|Gal(Ā/F̄ )|. But this is a contradiction with proposition 0.51.

�

Corollary 9 Let A be a central division p-algebra over a C2-field F = F1((t)), F1 is
a C1-field. Then A contains a maximal purely inseparable over F subfield, i.e. A is a
cyclic algebra.

Moreover, A is a good splittable algebra.

Proof. The proof of the first statement is by induction on degree of A. If indA = p,
then by Tignol’s theorem in [32] A is cyclic, so it contains such a maximal subfield.

If indA = pk, k > 1, then by assumption a division algebra similar to A⊗p has the
exponent and index pk−1 and so can be split by a field extension F ⊂ F ′ of degree pk−1.
By corollary 8, the exponent and the index of AF ′ is p, so there exists an extension
L/F of degree pk such that L splits A.

To prove the second statement note that it is sufficient to prove it only for algebras
A with Ā/F̄ — purely inseparable. Now to prove the assertion we use lemma 0.24.
Note that, using a similar induction, it is sufficient to prove the statement for algebras
A of degree p.

Let z be a purely inseparable element in A, indA = p. If F (z) is an ”unramified”
over F , there is nothing to prove. So, we may assume F (z) is totally ramified over F
and z is a parameter of A.

Choose an element a ∈ A such that ā generates Ā over F̄ . Suppose a ∈ Ā for some
embedding Ā ↪→ A. Suppose

zaz−1 = a + δi(a)zi + δi+1(a)zi+1 + . . .

Then we have

zpaz−p = a +
∞∑

k=pi

∑
(i1,...ip)

δi1 . . . δip(a)zk = a, (2)

where
∑

ij = k and the second sum is taken over all such nonrepeating sets (i1, . . . , ip).
Therefore, δp

i (a) must be equal to zero. Since δi is a derivation, it is trivial on F̄ (ap).
Every element in F̄ (a) can be written as a polynomial c1 + c2a + . . . cpa

p−1, where
ci ∈ F̄ (ap). Therefore, we can write δi = δi(a)∂/∂(a). So, δp

i (a) = δi(a)∂/∂(a)(δp−1
i (a)).

Hence ∂/∂(a)(δp−1
i (a)) = 0 and δp−1

i (a) ∈ F̄ (ap).
If δp−1

i (a) = 0, then let j be the maximal natural such that δj
i (a) �= 0, δj

i (a) ∈
F̄ (ap). Now put a1 = δj−1

i (a)(δj
i (a))−1. Note that a1 generates Ā over F̄ Since δj

i (a) =
∂/∂(a)(δj−1

i (a))δi(a), we have δi(a1) = 1.
So we can put a := a1 and assume δi = ∂/∂(a). Now the proof is by induction on

k in the formula 2. For k = ip + 1 we have∑
(i1,...,ip)

δi1 . . . δip(a) = 0
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By lemma 0.44, δi+1 = δl
i + cδi, so δi1 . . . δip(a) = 0 if ip = i. Therefore, we have

δi . . . δiδi+1(a) = 0

Therefore, there exists an element b ∈ Ā such that δi(b) = δi+1(a) and by lemma 0.24
there exists an element a2 = a + b2z such that

za2z
−1 = a2 + zi + δ′i+2z

i+2 + . . .

Note that here the coeffitients on the right hand side belong to another embedding
of Ā given by element a2. Since Ā is a C1-field, Ā is generated by ā2 over F̄ . So, the
p-basis of Ā consists of 1 element. So, by classical Cohen’s theorem, any lifting of this
element gives an embedding of Ā. Now using induction and completeness of A we get
that there exists an element a3 such that

za3z
−1 = a3 + zi

and ā3 generates Ā over F̄ . Therefore, ap
3 commutes with z, from here follows that a3

is a purely inseparable element and F (a3) is an ”unramified” extension.
The corollary is proved.
�

This corollary concludes the proof of theorem 0.36.

0.5 Classes of conjugate elements

Let K be a splittable local skew field of characteristic 0 whose first residue skew field
is commutative and whose last residue skew field k is contained in its centre. We have
classified these skew fields in the preceding section. In this section we give necessary
and sufficient conditions for two elements of K to be conjugate.

We fix a representation of K in the form k((u))((z)).

Definition 0.56 Let α = Id. A residue resi,r on K is defined to be a map resi,r :
k((u))((z)) 
→ k

resi,r(X) = res
xi

uδi
du

where X =
∑

l xlz
l.

Proposition 0.57 Let α = Id. Let L,M ∈ K, ν(L) = ν(M) = −1,
M = b−1z

−1 + b0 + b1z + . . .,
L = a−1z

−1 + a0 + a1z + . . ..
The following assumptions are equivalent:
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(i) there is an S ∈ K, ν(S) = 0, such that M = S−1LS

(ii) a−1 = b−1, a0 = b0, . . . , ai−2 = bi−2;

res
ai−1 − bi−1

uδia−1

du ∈ Z and u
ai−1 − bi−1

uδia−1

∈ k[[u]]

resi,r(M
j) = resi,r(L

j
j) for all j ≥ 1, where Lj = S̃j

−1
Lj−1S̃j, L0 := L, S̃j =

S̃j(M,Lj−1).

Proof K has the form k((u))((z)) with the relation zuz−1 = u + uδizi + . . .. Thus
we have:

SM = s0b−1z
−1 + (s0b0 + s1b−1) + . . . + (

i−2∑
j=−1

bjsi−2−j)z
i−2 + (

i−1∑
j=−1

bjsi−1−j)z
i−1 + . . .

LS = s0a−1z
−1+(s0a0+s1a−1)+. . .+(

i−2∑
j=−1

ajsi−2−j)z
i−2+(−a−1s

δi
0 +

i−1∑
j=−1

ajsi−1−j)z
i−1+. . .

It follows that the condition a−1 = b−1, a0 = b0, . . . , ai−2 = bi−2 is necessary for M
and L to be conjugate. Another necessary condition is given by the following equation
for s0:

sδi
0

s0

=
ai−1 − bi−1

a−1

Since δi is a differentiation, we have

∂
∂u

s0

s0

=
ai−1 − bi−1

uδia−1

Thus we obtain the second necessary condition:

res
ai−1 − bi−1

uδia−1

du ∈ Z and u
ai−1 − bi−1

uδia−1

∈ k[[u]]

Conversely, if these two conditions hold, then there is an s0 ∈ k((u)) such that the
first i + 1 summands in L1 = s−1

0 Ls0 are the same as those in M . It is clear that L
and M are conjugate if and only if L1 and M are conjugate. The conjugating element
S̃ has the form 1+ · · · (S̃ can be written as (1+s1z)(1+s2z

2) . . ..) Note that for every
x−1z

−1 + x0 + x1z + . . . ∈ K holds:

(1+sjz
j)−1(x−1z

−1 +x0 +x1z+ . . .)(1+sjz
j) = x−1z

−1 +x0 +x1z+ . . .+xi+j−2z
i+j−2+

(xi+j−1 + jxδi
−1sj + x−1s

δi
j )zi+j−1 + . . .
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since the proof of lemma 0.11, (ii) implies that

(1 + sjz
j)−1(x−1 + x0z + x1z

2 + . . .)(1 + sjz
j) = x−1 + x0z + . . . + xi+j−2z

i+j−1+

(xi+j−1 + jxδi
−1sj)z

i+j + . . .),

and

(1+sjz
j)−1z−1(1+sjz

j) = (1+sjz
j)−1(z−1+sjz

j−1−sδi
j zi+j−1+. . .) = z−1−sδi

j zi+j−1+. . .

It follows that
(s1a−1)

δi = bi − ai (j = 1),

if M = S̃−1L1S̃, where ai is the coefficient of L1. This equation is soluble if and only if

res
bi − ai

uδi
du = 0,

that is, resi,r(M) = resi,r(L1).
Conversely, if the residues are equal then there is an s1 ∈ k((u)) such that the first

i + 2 summands in L2 = (1 + s1z)−1L1(1 + s1z) are the same as those in M .
Proceeding by induction, we obtain at the kth step that if M = S̄−1LkS̄, then

kska
δi
−1 + a−1s

δi
k = bi+k−1 − ai+k−1.

To solve this equation, we substitute sk = a−k
−1s into it and obtain the equation

s′ = ak−1
−1

bi+k−1 − ai+k−1

uδi
,

which is solvable if and only if res
ak−1
−1 ai+k−1

uδi
= res

u−rak−1
−1 bi+k−1

uδi
. On the other hand, the

coefficient of zi in Mk has the form

kak−1
−1 bi+k−1 + fM

where fM is a polynomial in bi+k−2, . . . , b−1 and the values of δj at these points. The
corresponding coefficient in Lk

k has the form

kak−1
−1 ai+k−1 + fLk

and fLk
= fM , since aj = bj for j ≤ i+ k− 2. It follows that resi,rL

k
k = resi,rM

k if and

only if res
ak−1
−1 ai+k−1

uδi
= res

ak−1
−1 bi+k−1

uδi
. which completes the proof of the proposition.

�
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Definition 0.58 Let α �= Id. We say that the residue resα ofX =
∑

l xlz
l is equal to

zero, if
x0 ∈ im(α − Id)

We say that two elements have the same residue if the residue of their difference is
equal to zero.

We define ϕ : k((u)) 
→ k((u)), ϕ(x) = xα−1
/x.

Proposition 0.59 Let α �= Id. Let L,M ∈ K, ν(L) = ν(M) = −1,
M = b−1z

−1 + b0 + b1z + . . .,
L = a−1z

−1 + a0 + a1z + . . ..
The following conditions are equivalent:

(i) there exists an S ∈ K, ν(S) = 0, such that M = S−1LS

(ii) b−1/a−1 ∈ imϕ;

resα(M j) = resα(Lj
j) for all j ≥ 1, where Lj = S̃j

−1
Lj−1S̃j, L0 := L, S̃j =

S̃j(M,Lj−1).

Proof is similar to that of the preceding proposition. We have

SM = s0b−1z
−1 + (s0b0 + s1b

α
−1) + . . .

LS = a−1s
α−1

0 z−1 + (a0s0 + a−1s
α−1

1 ) + . . .

Therefore, s0b−1 = a−1s
α−1

0 , that is b−1/a−1 ∈ imϕ. If this condition holds, then we put
L1 = s−1

0 Ls0. The first coefficients in L1 and M are equal.
Now we observe that

(1 + sj)
−1(x−1z

−1 + x0 + x1z + . . .)(1 + sjz
j) = x−1z

−1 + . . .

+xj−2z
j−2 + (xj−1 + sjx

αj

−1 − x−1s
α−1

j )zj−1 + . . .

for any x−1z
−1 + x0 + x1z + . . . ∈ K, which follows from the calculation in the proof of

Lemma 0.11, (i).
The arguments used in the proof of the preceding proposition yield at the first step

the following condition that is necessary for conjugacy:

s1a
α
−1 − a−1s

α−1

1 = α(sα−1

1 a−1) − (sα−1

1 a−1) = b0 − a0

This equation is soluble if and only if (b0 − a0) ∈ im(α − Id). which is equivalent to
the equality resαM = resαL1.
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At the jth step we have the condition

sja
αj

−1 − a−1s
α−1

j = aj−1 − bj−1

Hence,

(aα
−1a

α2

−1 . . . aαj−1

−1 )(aj−1 − bj−1) = (aα
−1a

α2

−1 . . . aαj

−1)sj − (a−1 . . . aαj−1

−1 )sα−1

j =

α((a−1 . . . aαj−1

−1 )sα−1

j ) − (a−1 . . . aαj−1

−1 )sα−1

j

This equation is soluble if and only if (a−1 . . . aαj−1

−1 )(aj−1 − bj−1) ∈ im(α − Id), which

is equivalent to the equality resα(M j) = resα(Lj
j), since the first (j − 1) coefficients

in Lj are equal to the corresponding coefficients in M , and the coefficient of the 0th
power of z in M j is

a−1 . . . aα−j+2

−1 bα−j+1

j−1 + bj−1a
α
−1 . . . aαj−1

−1 +

a sum of monomials with indices < j − 1

The corresponding coefficient in Lj
j is

a−1 . . . aα−j+2

−1 aα−j+1

j−1 + aj−1a
α
−1 . . . aαj−1

−1 +

a sum of monomials with indices < j − 1

Hence,

(a−1 . . . aα−j+2

−1 bα−j+1

j−1 − a−1 . . . aα−j+2

−1 aα−j+1

j−1 + bj−1a
α
−1 . . . aαj−1

−1 − aj−1a
α
−1 . . . aαj−1

−1 ) =

([a−1 . . . aα−j+2

−1 bα−j+1

j−1 − a−1 + . . . aα−j+2

−1 aα−j+1

j−1 ]−
α[. . .] + α[. . .] − α2[. . .] + α2[. . .] . . . + αj−1[. . .]+

bj−1a
α
−1 . . . aαj−1

−1 − aj−1a
α
−1 . . . aαj−1

−1 ) =

(2[aα
−1 . . . aαj−1

−1 (aj−1 − bj−1)])

�

Remark It was shown in [18], that for the residue res1,0 in the skew field of
pseudodifferential operators holds res1,0[X,Y ] = 0, where [X,Y ] is the commutator of
two pseudodifferential operators. The next statements provide other examples of skew
fields with this property.

Lemma 0.60 Let K be a skew field such that αn �= Id or αn = Id, in = ∞. Let
X,Y ∈ K. Then resα[X,Y ] = 0.
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Proof It is sufficient to prove the assertion for X = ulzk, Y = umzq.
If k + q �= 0, then resα(XY ) = resα(Y X) = 0. In the case k + q = 0 we have:

XY − Y X = ul(um)αk − um(ul)α−k

= αk(um(ul)α−k

) − um(ul)α−k ∈ im(α − Id)

�

In this case our propositions can be stated as follows:

Corollary 10 Let K be a skew field such that α = Id, i = 1, r = 0, a = 0 ((In
this case K is the ring k((u))((∂−1)) of pseudodifferential operators.) Let L,M ∈ K,
ν(L) = ν(M) = −1,
M = b−1z

−1 + b0 + b1z + . . .,
L = a−1z

−1 + a0 + a1z + . . ..
The following conditions are equivalent:

(i) there is an S ∈ K, ν(S) = 0, such that M = S−1LS

(ii) a−1 = b−1;

res
a0 − b0

a−1

du ∈ Z and
u(a0 − b0)

a−1

∈ k[[u]]

res1,0(M
j) = res1,0(L

j) for all j ≥ 1.

Corollary 11 Assume that αn �= Id for all n ∈ N. Let L,M ∈ K, ν(L) = ν(M) = −1,
M = b−1z

−1 + b0 + b1z + . . .,
L = a−1z

−1 + a0 + a1z + . . ..
The following conditions are equivalent:

(i) there is an S ∈ K, ν(S) = 0, such that M = S−1LS

(ii) b−1/a−1 ∈ imϕ;

resα(M j) = resα(Lj) for all j ≥ 1.

The following examples show that the identity res...([X,Y ]) = 0 does not hold in
other cases.

Example (i) Let K be a skew field with α = 1, a(0, . . . , 0) �= 0, r �= 1. We assume
that K has the form specified in Theorem 0.35. Let M = z−1, L = z−1 + zi ∈ k((z)) ⊂
K. If resi,r([X,Y ]) = 0 holds, then M and L are conjugate by Proposition 0.57. Let
S = 1 + s1z + . . .. We have

SM = z−1 + s1 + s2z + . . . = LS = (z−1 + zi)(1 + s1z + . . .) =
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(z−1+s1+s2z+. . .)+(zi−sδi
1 zi)+(s1z

i+1−sδi
2 zi+1)+. . .+(siz

2i+s
δ2
i −δ2i

1 z2i−sδi
i+1z

2i)+. . .

Hence, 1 − sδi
1 = 0. Since r �= 1, this equation is soluble, and s1 = (1 − r)−1c−1u1−r.

Solving the next equations, we obtain s2, s3, . . .. Each of these elements consists of a
single monomial whose valuation is different from r − 1.

Further, we have siz
2i +s

δ2
i −δ2i

1 z2i−sδi
i+1z

2i = 0. By Theorem 0.35, if a(0, . . . , 0) �= 0,

then s
δ2
i −δ2i

1 contains a monomial whose valuation is equal to r−1. Therefore, the equa-
tion is insoluble with respect to si+1, and M is not conjugate to L. This contradiction
completes the proof of the assertion.

(ii) Let K be a skew field with α = 1, a(0, . . . , 0) = 0. In this case i > 1, since r = 0
for i = 1, and we obtain the ring of pseudodifferential operators. We assume that K
has the form specified in Theorem 0.35. Then zuz−1 = u+ curzi + r(i+1)/2c2u2r−1z2i.
Therefore, δ2i = δ2

i . Then for any x ∈ k((u)) holds:

z−1xz = x − xδizi + . z>2i

We put X = u−r−1z−i, Y = u2. Then

XY = u1−rz−i + . . . + Cur−1zi + . . . , C ∈ ”, C �= 0

Hence resi,r([X,Y ]) �= 0.
An example with a(0, . . . , 0) �= 0, r = 1 can be obtained likewise. (iii) Let K be a

skew field with αn = 1, in �= ∞. We put X = u−rnz−in and Y = u. Then

XY = ξ−inu1−rnz−in + C + . . .

where C = −inξ
−in+1c �= 0. Hence, resα([X,Y ]) �= 0.

Remark These examples show that the Scolem-Noether theorem does not hold for
skew fields defined here.

Let K be the ring k((u))((∂−1
u )) of pseudodifferential operators. We have shown

that this is the only slew field such that res1,0([X,Y ]) = 0. Let us deduce a criterion
for two elements of this skew field to be conjugate.

Let n ∈ N be a certain number. Consider the skew field K ′ = k((t))((∂−1
t )), where

tn = u. Then ∂t = ntn−1∂u, and K ⊂ K ′.

Lemma 0.61 Let L = l−m∂m
t + . . . + l0 + l1∂

−1
t + . . . ∈ K ′ -be an arbitrary element

of K ′.
L ∈ K if and only if li ∈ tik((tn)).

Proof Assume that L ∈ K. Then L = b−m∂m
u + . . ., where bi ∈ k((u)) = k((tn)).

Let j ∈ N. We have:
∂j

u = (n−1t1−n∂t)
j, ∂−j

u = (∂−1
t ntn−1)j.
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We prove first the assertion of the lemma for l−i (i > 0). For i = 1 we have
∂i

u = n−1t1−n∂t and b−1∂u = l−1n
−1t1−n∂t. The assertion of the lemma holds, since

t1−n ∈ tk((tn)).
For an arbitrary i we have

∂i
u =

∂t

∂tt
(n−1t1−n)(n−1t1−n∂t)

i−1 + (n−1t1−n)2∂2
t (n

−1t1−n∂t)
i−2 =

(1 − n)(n−1t−n)(n−1t1−n∂t)
i−1 + (n−1t1−n)2∂2

t (n
−1t1−n∂t)

i−2

Since the coefficients in the expression for L in K belong to k((tn)), it is sufficient to
show that the lemma holds for ∂i

u.
We prove by induction that the assumption of the lemma holds for all the coefficients

in (n−1t1−n∂t)
i−1. The same is true for (n−1t1−n∂t)

i−2. Let (n−1t1−n∂t)
i−2 =

∑i−2
k=0 l̃k∂

k
t

(Let us note that there are no negative powers of ∂t in the expansion of ∂i
u, i > 0, and

the minimal power of∂t is equal to 1). We have:

(n−1t1−n)2∂2
t (

i−2∑
k=0

l̃k∂
k
t ) = (n−1t1−n)2(

i−2∑
k=0

l̃k∂
k+2
t +

i−2∑
k=0

l̃′k∂
k+1
t +

i−2∑
k=0

l̃′′k∂
k
t )

Therefore, (n−1t1−n)2l̃k ∈ tk+2k((tn)), (n−1t1−n)2l̃′k ∈ tk+1k((tn)), (n−1t1−n)2l̃′′k ∈
tkk((tn)).

For i = 0 we have l0 = b0 ∈ k((tn)).
Let us prove that the assertion of the lemma holds for ∂−i, i > 0. For i = 1 we

have:
∂−1

u = n
∑n−1

k=0(t
n−1)(k)∂−1−k

t C−1
k .

Assume that for k < i it is proved ∂−k
u =

∑∞
j=0 l̃j∂

−k−j
t , l̃j ∈ t−k−jk((tn)).

∂−i
u = (∂−1

t ntn−1)i = (n
n−1∑
k=0

C−1
k (tn−1)(k)∂−1−k

t )(∂−1
t ntn−1)i−1 =

(n
n−1∑
k=0

C−1
k (tn−1)(k)∂−1−k

t )(
∞∑

j=0

l̃j∂
−i+1−j
t )

For every k ∈ {0, . . . , n− 1} ∂−1−k
t l̃j =

∑∞
p=0 C−1−k

p l̃j
(p)

∂−1−k−p
t . This yields the follow-

ing conditions on the coefficients for fixed k and j:
at ∂−1−k−p−i+1−j

t , p ≥ 0, the coefficient belongs to t−1−k−i+1−j−pk((tn)).
Conversely, assume that the assumptions of the lemma on the coefficients hold. We

have obtained that
∂i

u =
∑

j≥0 cj∂
i−j
t , and cj ∈ ti−jk((tn)) for any i ∈ Z.
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Consider the highest monomial in L:

l−m∂m
t = l−mc−1

0 ∂m
u − l−m(

∑
j≥1

cjc
−1
0 ∂m−j

t )

We have l−mc−1
0 ∈ k((tn)), l−mcjc

−1
0 ∈ tm−jk((tn)). Hence, L = l−mc−1

0 ∂m
u + L1, where

ν(L1) > ν(L), and the the assumptions of the lemma hold for the coefficients in L1.
We complete the proof by induction.
�

Lemma 0.62 Let L,M ∈ K ⊂ K ′ and ν(L) = ν(M) = −n. Let M = SLS−1, where
S ∈ K ′. Then S ∈ K if and only if

res
lν(L)+1 − mν(M)+1

lν(L)

= 0 and t
lν(L)+1 − mν(M)+1

lν(L)

∈ k[[t]]

Proof is similar to that of Proposition 0.57.
�

Theorem 0.63 Let L,M ∈ K = k((u))((∂−1
u )), ν(L) = ν(M) < 0,

M = mν(M)∂
−ν(M)
t + . . .,

L = lν(L)∂
−ν(L)
t + . . ..

The following assumptions are equivalent:

(i) there is an S ∈ K, ν(S) = 0, such that M = S−1LS

(ii) ν(L) = ν(M), mν(M) = lν(L),

res
lν(L)+1 − mν(M)+1

lν(L)

= 0 and t
lν(L)+1 − mν(M)+1

lν(L)

∈ k[[t]]

res(M j/(−ν(M))) = res(Lj/(−ν(L))) for all j ≥ 1 in K ′.

Proof follows immediately from Corollary 10, Lemmas 0.61, 0.62 and the fact that
L (and M) has precisely one nth root in K ′.
�

Theorem 0.64 Assume that L,M ∈ K = k((u))((∂−1
u )) and ν(L) = ν(M) = 0. Then

(i) If l0 = m0 �= const and l1 = m1, then M = SLS−1.
(ii) If l0 = m0 = const, then M = SLS−1 if and only if (M −m0)

−1 = S(L− l0)
−1S−1

(see Theorem 0.63)

Proof is obvious.
�
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0.6 New equations of KP-type on skew fields

In this section we give an answer on a question given in [22]. Namely, the classical
KP-hierarchy is constructed by means of the ring of pseudo-differential operators P =
k((x))((∂−1)). This ring is a skew field. The point is to consider other skew fields instead
of this one. We will study if there exist some new non-trivial generalisations of the KP-
hierarchy for a list of two-dimensional skew fields. In particular, we give a number of
new partial differential equations of the KP-type.

For every two-dimensional skew field from the list of theorem 1.5 we can write down
a decomposition K = K+ +K−, where K− = {L ∈ K : ord(L) < 0} and K+ consists of
the operators containing only ≥ 0 powers of z, and a ”KP-hierarchy” in the Lax form:

∂L

∂tn
= [(Ln)+, L],

where L ∈ z−1 + K− ⊗ k[[. . . , tm, . . .]]. Let L = z−1 + u1z + u2z
2 + . . ., where um =

um(u, t1, t2, . . .). Further we will denote ∂/∂tn as ∂n.
One can check that if the canonical automorphism α in the classification theorem

1.5 is not trivial, then our ”KP-hierarchy” became trivial, i.e. it can be easily linearised
and solvable. We omit calculations here. So, it can be assumed that α = id. The same
is true if i > 1, because [(Ln)+, L] = −[(Ln)−, L] = 0 mod ℘i in this case, where ℘
is a maximal ideal of the first valuation in K. So, our ”KP-hierarchy” again is linear
and easily solvable in this case.

So, we assume i = 1, hence, r = 0 and c = 1, and there is only only one non-trivial
parameter a. If a = 0, K is isomorphic to the ring P of pseudo-differential operators.
Denote by u′, u′′, . . . the subsequent derivatives by x.

First for n = 1, we get
∂1u1 = u′

1

This means that we can take t1 = x for u1.
Now we write down the first two equations for n = 2 and the first equation for

n = 3.
∂2u1 = u′′

1 + 2u′
2 (3)

∂2u2 = 2u′
3 + 2u1u

′
1 + u′′

2 + 2ax−1u′
2 (4)

∂3u1 = u′′′
1 + 3u′′

2 + 3u′
3 + 6u1u

′
1 + 3a(x−1u′′

1 − x−2u′
1) (5)

Let us introduce the new notation: u = u1(x, y, t) with y = t2, t = t3. Also we use the
standart notation ut, uy, uyy, . . . for derivatives.

We can eliminate u′
3 from equations 4 and 5 and then we get

3u2y − 2ut = −6uu′ − 3u′′
2 − 2u′′′ + 6ax−1u′

2 − 6ax−1u′′ + 6ax−2u′ (6)
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From 3 we find
u′′′

2 = 1/2(u′′
y − u′′′), u′

2y = 1/2(uyy − u′′
y)

Differentiating equation 6 by x and inserting these expressions we finally get new KP-
equation

(4ut − u′′′ − 12uu′)′ = 3uyy + 6a(5x−2u′′ − x−2uy − 3x−1u′′′ + x−1u′
y − 4x−3u′)

One can see that if a = 0, we get the usual KP-equation (see also explicite calculations
in [21]).
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Chapter 1

Classification of automorphisms of
a two-dimensional local field.

1.1 Basic results.

In this chapter let K be a two-dimensional local field, K ∼= k((u))((z)); Autk(K)
be a group of continuous k-automorphisms of a field K with respect to the topology
given by fixed parametrisation, i.e. by the parameters u and z (see [35] concerning the
connection between a topology and a parametrisation).

Introduce the following notation. By Greece letters α, β, γ we will denote automor-
phisms of a field K. An overline will denote the residue homomorphism. As before,
ν denote a valuation on the field K, ν̄ denote a valuation on the field K̄, ℘, ℘̄ are
valuation ideals of the valuations ν, ν̄, µ(k) is the group of roots of the unity, Autk(K̄)
is a group of continuous k-automorphisms of the field K̄.

Recall some results from chapter 1, section 3.

Definition 1.1 Let K̄ be a one-dimensional local field with the residue field k,
charK̄ = chark, ᾱ ∈ Autk(K̄). Put
ξ(ᾱ) = ᾱ(u)u−1 mod ∈ k and define i(ᾱ) ∈ N ∪∞ by the following:
i(ᾱ) = 1 if ξ(ᾱ) /∈ µ(k), else
i(ᾱ) = ν̄((ᾱn−Id)(u)), where n ≥ 1, ξ(ᾱ) is a primitive root of degree n, ord(ξ(ᾱ)) = n.

Proposition 1.2 Let k be an arbitrary field, chark = 0. Any automorphism ᾱ ∈
Autk(k((u))) with ᾱ(u) = ξ(ᾱ)u + a2u

2 + . . . is conjugate with the automorphism β̄:
β̄(u) = ξ(ᾱ)u + xui(ᾱ) + x2yu2i(ᾱ)−1, where x ∈ k∗/k∗(i(ᾱ)−1), y ∈ k.

Two automorphisms β̄, β̄′ are conjugate iff
(ξ(β̄), i(β̄), x(β̄), y(β̄)) = (ξ(β̄′), i(β̄′), x(β̄′), y(β̄′)).

Corollary 12 1) i(ᾱ) = 1 iff ᾱ is an automorphism of infinite order and ξ(ᾱ) has
infinite order;
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2) 1 < i(ᾱ) < ∞ iff ᾱ has infinite order and ξ(ᾱ) has finite order;
3) i(ᾱ) = ∞ iff ᾱ has finite order.

Remark. i) In the notation of proposition we have n|(i(ᾱ) − 1).
ii) if k is a field of characteristic p > 0, then the following fact remains true: the
automorphism ᾱ ∈ Autk(k((u))) with ᾱ(u) = ξ(ᾱ)u + a2u

2 + . . . is conjugate with the
automorphism β̄: β̄(u) = ξ(ᾱ)u + xui(ᾱ) + . . ., where x ∈ k∗/k∗(i(ᾱ)−1).

Lemma 1.3 Let a0 ∈ K̄, ᾱ ∈ Autk(K̄). The linear map T = ᾱ − a0 : K̄ → K̄ has the
following property:

if ᾱn = Id for some n, then dim(kerT ) = dim(cokerT ) = d, where d = 0 or ∞;
if ᾱn �= Id and chark = 0, then dim(kerT ) = dim(cokerT ) = d, where d = 0 or 1;
if ᾱn �= Id and chark = p, then one of the following cases holds:
1) dim(kerT ) = dim(cokerT ) = 0 or
2) dim(kerT ) = 0, dim(cokerT ) = ∞ or
3) dim(kerT ) = 1, dim(cokerT ) = ∞.

Proof. By proposition 1.2 we can assume ᾱ(u) = ξu + xui(ᾱ) + . . ., where ξ is a
primitive n-th root of unity.

If ᾱ(u) = ξu, ξn = 1, then the first claim of lemma is clear, so from now on
ᾱ(u) �= ξu (note that we have proved the first claim in the case chark = 0, because,
by corollary 12, any automorphism of a finite order looks like this).

Suppose the element a0 satisfy one of the following properties:
ν̄(a0) �= 0 or
ν̄(a0) = 0 but a0 �= ξj for all j ∈ Z. Let’s study values of the valuation ν̄ on elements
T (ul) for different l. We have:

ᾱ(ul) − a0u
l = (ξu + xui(ᾱ) + . . .)l − a0u

l = ξlul(1 + ξ−1xui(ᾱ)−1 + . . .)l − a0u
l

Therefore:
ν̄(T (ul)) = l or l + ν̄(a0) if ν̄(a0) < 0.

So, we can solve any equation ᾱ(y) − a0y = Y , and the map T is surjective. It is
injective, because the values ν̄(T (ul)) are finite and ν̄(T (ul)) �= ν̄(T (ul1)) if l �= l1.

Suppose now a0 = ξj. Since the injectivity and the projectivity of the map ᾱ−a0 are
defined by the existence and the uniqueness of a solution of the equation ᾱ(y)−a0y = Y
for any Y ∈ K̄, we can replace y by yuj and assume that a0 = 1. Then a0 can be written
as the product a0 =

∏∞
j=1(1 + a0ju

j), a0j ∈ k.
Put q = ν̄(a0 − 1). There are two possible case: q < i(ᾱ) − 1 and q ≥ i(ᾱ) − 1.
Let q < i(ᾱ) − 1. Then we can assume n|q. To prove it we have to prove that a0

can be written as the product a1
0

ᾱ(x)
x

for some x, where ν̄(a1
0) = q1 > q, n|q1.

Note that ᾱ(1+cul)
1+cul = 1+cᾱ(ul)

1+cul = 1 + c(ᾱ(ul) − ul)(1 + cul)−1, where c is a constant.

ᾱ(ul) − ul = (ξu + xui(ᾱ) + . . .)l − ul = ξlul(1 + ξ−1xui(ᾱ)−1 + . . .)l − ul (1.1)
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From this formula we get the following property:

if n � |l, then ν̄(ᾱ(ul) − ul) = l and ᾱ(1+cul)
1+cul = 1 + (ξl − 1)cul + . . .. Hence, a0 can be

represented as the product above, because there exists a constant c such that the value

ν̄(a0
ᾱ(1+cul)

1+cul ) increases.
So, let we now have: q < i(ᾱ)− 1 and n|q. Let’s study values of the valuation ν̄ on

elements T (ul) for different l. By formula (1.1) we have:
ν̄(T (ul)) = l if n � |l
ν̄(T (ul)) = l + q if (l, n) �= 1.

Therefore, we can solve any equation ᾱ(y)− a0y = Y , and the map T is surjective.
It is injective, because all the values ν̄(T (ul)) are finite and ν̄(T (ul)) �= ν̄(T (ul1)) if
l �= l1.

Consider now the case q ≥ i(ᾱ) − 1. As in the first case we can assume that n|q.
We divide this case into three cases:
q = i(ᾱ) − 1,
q > i(ᾱ) − 1 and q is finite
q is infinite, i.e. a0 = 1.

Let q = i(ᾱ) − 1. Let a0 = 1 + wuq + . . .. Note that

ᾱ(culn)

culn
=

(ξu + xui(ᾱ) + . . .)ln

uln
= 1 + nlξ−1xui(ᾱ)−1 + . . .

Hence, if w �= nlξ−1x for all l, we can apply the same arguments as in the first case
and get that T is injective and surjective, i.e. d = 0. Otherwise, we can write a0 =
a1

0ᾱ(uln)/uln, where ν̄(a1
0 − 1) > q, and reduce this case to the case q > i(ᾱ) − 1.

Let chark = 0. We claim that the case q > i(ᾱ) − 1 can be reduced to the case

q = ∞. In this connection it is necessary to show that a0 = ᾱ(A)
A

. We know, that

ᾱ(1 + cul)

1 + cul
= 1 + c(ᾱ(ul) − ul)(1 + cul)−1

and ᾱ(ul) − ul has the valuation equal to l if (l, n) = 1, and to (i(ᾱ) − 1) + l if n|l,
(l, chark) = 1 and l �= 0.

From here we get the necessary result, because we can multiply a0 sequentially by
suitable elements of the form 1 + cuj + . . ., each of which can be got from a certain
element of the form 1 + cju

j or 1 + cju
j−(i(ᾱ)−1). It is clear that the product A =∏∞

j=q(1 + cju
j−(i(ᾱ)−1)) converges.

Let now chark = 0 and q = ∞, i.e. a0 = 1. Then we claim that d = 1. Let us first
find the dimension of the kernel of the map T . To do that we investigate the values of
the valuation ν̄ of the elements T (ul) by different l. We have:
ν̄(T (ul)) = l if n � |l
ν̄(T (ul)) = l + (i(ᾱ) − 1) if n|l and l �= 0
ν̄(T (1)) = ∞ if l = 0, i.e. T (1) = 0.
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From this follows that the kernel is one-dimensional and consists of the elements of
the field k, because all ν̄(T (ul)) are finite if l �= 0 and ν̄(T (ul)) �= ν̄(T (ul1)) if l �= l1.

On the other hand, we get also that the cokernel is one-dimensional, because we can
get an element with any value of valuation except an element with the value (i(ᾱ)−1),
and there exists a pullback of any convergent (to zero) sequence, which is also converge
to zero.

Now we must examine the cases, when chark = p. Let us first consider the case
chark = p and q = ∞.

We prove that ᾱn = 1 if and only if dimk(ker(ᾱ − 1)) = ∞.
Let ᾱn = 1, n = pkm, (p,m) = 1. It is obvious that if exists an element x ∈ K̄,

x /∈ k such that (ᾱ− 1)(x) = 0, then dimk(ker(ᾱ− 1)) = ∞. Suppose, that there is no
such an element. Therefore:
ᾱm(u) = u + a1, a1 ∈ K̄, ν̄(a1) > 1, a1 �= 0,
ᾱ2m(u) = u + 2a1 + a2, a2 ∈ K̄, ν̄(a2) > ν̄(a1), a2 �= 0,
. . .,
ᾱpkm(u) = u + . . . + apk , apk ∈ K̄, ν̄(apk) > ν̄(apk−1), apk �= 0,
and we get a contradiction.

Conversely, let dimk(ker(ᾱ−1)) = infty. Assume F = ker(ᾱm−1), m = ord(ξ(ᾱ)).
It’s clear that F is a field.
Let n ∈ N be a minimal positive value of the valuation ν̄ on this field.
Then n = pk, k ∈ Z. For, if n = pkl, (l, p) = 1, then there exists an element x ∈ F

with such a value and, moreover, x = dl, d ∈ K̄. But then d ∈ F , because ξ(ᾱm) = 1,
a contradiction.

So, K̄/F is a finite algebraic extension of degree pk, therefore ᾱm is an automorphism
of a finite order. It is easy to see that the order is equal to n, i.e. ᾱ is a generator of
the cyclic Galois group Gal(K̄/(kerT )).

Remark. In particular, we have got a description of a subgroup of elements of
finite order in the so-called ”Nottingham” group. See [3], [12], [5] for further details
about this group (i.e. the group Autk(K̄), charK̄ = p).

Let ᾱ be an automorphism of infinite order. Then kerT = k, dimk(kerT ) = 1. Let
(i(ᾱ) − 1, p) = 1. We claim that for any integer N > 0 there exist numbers h(N) ∈ N,
h(N) > h(N − 1) and x, h(N − 1) < x ≤ h(N) such that the maximal value of the
valuation on a preimage of arbitrary element with the value x less than −N (or the
preimage is empty). From this follows that one can construct infinitely many elements,
which are not in the image of the map T .

For N = 1 it’s clear — h(1) = x = i(ᾱ) − 1. For arbitrary N consider the vector
space < T (ul),−N ≤ l ≤ s(k) >, where s(k) = (i(ᾱ)−1)+p(i(ᾱ)−1)+. . .+pk(i(ᾱ)−1).
It’s clear that dimk < T (ul),−N ≤ l ≤ s(k) >≤ (s(k)+N). From the other hand side,
ν̄(T (upk(i(ᾱ)−1))) = 2pk(i(ᾱ) − 1) > s(k),
ν̄(T (upk(i(ᾱ)−1)+pk−1(i(ᾱ)−1))) = 2pk−1(i(ᾱ) − 1) + pk(i(ᾱ) − 1) > s(k),
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. . .
ν̄(T (upk(i(ᾱ)−1)+...+p(i(ᾱ)−1))) > s(k).

So, our property holds for k � N . Indeed, assume the converse. Then < ul, h(N −
1) ≤ l ≤ s(k) >⊂< T (ul),−N ≤ l ≤ s(k) > for all k, and s(k)−h(N−1) ≤ s(k)+N−k
for all k, a contradiction.

In the case (i(ᾱ) − 1, p) �= 1 we have: ν̄(T (ul)) �= ν̄(T (ul1)) if l �= l1. Therefore, the
cokernel of the map T has infinite dimension.

Let now chark = p, q > (i(ᾱ) − 1) and q is finite. Note that T is not injective if
and only if a0 = ᾱ(A)/A. Therefore, if T is not injective, this case is equivalent to the
case q = ∞.

Let T be injective.
Here two cases are possible:

1) there exists an integer i ≥ ν̄(a0 − 1) such that for some s1, s2 ∈ K̄ a0 = s2ᾱ(s1)/s1,
where ν̄(s2 − 1) = i and there are no elements s′1, s

′
2 such that a0 = s′2ᾱ(s′1)/s

′
1, where

ν̄(s′2 − 1) > i.
2) for any integer i such that i ≥ ν̄(a0 − 1) there exist s1, s2 ∈ K̄ such that a0 =
s2ᾱ(s1)/s1, where ν̄(s2 − 1) ≥ i.

For example, the first case takes the place when ν̄(T (a0 − 1)) < (i(ᾱ) − 1), the
second — when ν̄(T (a0 − 1)) > (i(ᾱ)− 1). If ν̄(T (a0 − 1)) = (i(ᾱ)− 1), then may take
place either the first or the second case.

Indeed, we have seen that

ᾱ(culn)

culn
= 1 + nlξ−1xui(ᾱ)−1 + . . . (1.2)

ᾱ(1 + cul)

1 + cul
= 1 + c(ᾱ(ul) − ul)(1 + cul)−1 (1.3)

Hence, if ν̄(T (a0−1)) < (i(ᾱ)−1) or ν̄(T (a0−1)) = (i(ᾱ)−1), but a0 = 1+wui(ᾱ)−1+. . .
and w �= nlξ−1x for all l, then 1) holds. If the rest inequalities hold, then one can see
that 2) may take place.

Let the case 1) holds. Let’s show that T is surjective.
Indeed, this case is equivalent to the property ν̄(ᾱ(y)−a0y) ≤ i+ ν̄(y), y ∈ K̄. But

this means that
< T (ul), N ≤ l ≤ N1 >⊂< ul, N + min{i(ᾱ)− 1, i} ≤ l ≤ N1 + max{i(ᾱ)− 1, i} > for
all integers N,N1, N < N1.

From this follows that the cokernel of the map T cannot have infinite dimension.
Suppose it has finite dimension, i.e. it is not equal to zero. Choose an element of the
minimal value κ of the valuation in the cokernel and choose a number N1: N1 + i < κ.
Complete a basis of the vector space < T (ul), N ≤ l ≤ N1 > with respect to the basis
of the vector space < ul, N + min{i(ᾱ) − 1, i} ≤ l ≤ N1 + max{i(ᾱ) − 1, i} >. Denote
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these elements by ej, j ∈ {1, . . . , |i− i(ᾱ) + 1|}. Then for any integer Ñ1 > N1 we will
have
< T (ul), ej, N ≤ l ≤ Ñ1, j ∈ {1, . . . , |i − i(ᾱ) + 1|} >=< ul, N + min{i(ᾱ) − 1, i} ≤
l ≤ Ñ1 + max{i(ᾱ) − 1, i} >, but this contradicts to the existence of elements of the
cokernel.

Let the case 2) holds. This case is a negation of the case 1); so, for any natural i
there exists N1 ∈ N such that < T (ul), N ≤ l ≤ N1 >�⊂< ul, N + min{i(ᾱ) − 1, i} ≤
l ≤ N1 + max{i(ᾱ) − 1, i} >. Repeating the arguments of the case a0 = 1 we get that
there exists a converge sequence in K̄ such that the maximal values of the valuation on
preimages of elements of this sequence tend to −∞. From this we get that the cokernel
has infinite dimension.

The lemma is proved.
�

Corollary 13 In the notation of lemma let chark = 0. Then d = 1 if and only if ᾱ
has infinite order and a0 = ᾱ(x)/x for some x ∈ K̄; d = ∞ iff ᾱ has finite order and
a0 = ξj, j ∈ Z; d = 0 in the rest cases.

Let α ∈ Autk(K). Then the automorphism ᾱ ∈ Autk(K̄) and its invariants ξ(ᾱ) ∈
k∗, i(ᾱ), x(ᾱ) ∈ k∗/(k∗)i(ᾱ)−1, y(ᾱ) ∈ k are defined (see def. and prop. 1.2 ). Put
a0 = α(z)z−1 ∈ k((u)). Note that the number ν̄(a0) does not depend on the choice of
the parameter z.

Theorem 1.4 (Theorem I) Let chark = 0. Let ν̄(a0) �= 0 or ν̄(a0) = 0, but ā0 /∈
{ξ(ᾱ)m,m ∈ Z}. Then
1) The automorphism α is conjugate with an automorphism β given by the formula

β(u) = ξu + xui(ᾱ) + x2yu2i(ᾱ)−1

β(z) = uν̄(a0)ā0(1 + anu
n + a2nu

2n + . . . ai(ᾱ)−1u
i(ᾱ)−1)z

where ξ = ξ(ᾱ), x = x(ᾱ), y = y(ᾱ), anq ∈ k, q ∈ {1, . . . , (i(ᾱ) − 1)/n}, ai(ᾱ)−1 /∈
nξ(ᾱ)−1x(ᾱ)Z′, Z

′ = Z\{0}, n = ord(ξ(ᾱ)).

2) ν̄(a0), ā0, a
(i(ᾱ)−1)
j /x(ᾱ)j, ξ(ᾱ), x(ᾱ), y(ᾱ), i(ᾱ) is the complete system of invariants

with respect to the conjugation.

Assume
α(u) = c0 + c1z + c2z

2 + . . . , ci ∈ k((u))

α(z) = a0z + a1z
2 + . . . , ai ∈ k((u))

Let us denote the additional notation:
i ∈ N∪{∞} — such a minimal positive integer that ai

0 = ᾱ(Y )/Y for some Y ∈ k((u)),
j = minq{iq : ciq �= 0}, q ≥ 0,
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i(α) = minq{iq + 1 : aiq �= 0},
ã0 = 1 + anu

n + a2nu2n + . . . + ai(ᾱ)−1u
i(ᾱ)−1,

f̄ ∈ Autk(K̄) — such an automorphism that f̄−1ᾱf̄(u) = ξ(ᾱ)u+xui(ᾱ) +yu2i(ᾱ)−1,

ỹ2 — such a solution of the equation ᾱ(Y )/Y = ξ(ᾱ)+i(ᾱ)xx
i(ᾱ)−1
0 +(2i(ᾱ)−1)yx

2i(ᾱ)−2
0 ,

x0 = f̄(u) that (ỹ2u−ν̄(ỹ2)) = 1,

ỹ1 — such a solution of the equation ᾱ(Y )/Y = ãi
0 that (ỹ1u−ν̄(ỹ1)) = 1,

B1 = ỹ
−(i(α)−1)/i
1 ã0,

B2 = ỹ
−2(i(α)−1)/i
1 ã0,

Aq = ỹ
−(j+q−1)/i
1 f̄−1(ᾱ(ỹ2)).

Note that B1, B2, Aq are defined uniquely.

Theorem 1.5 (Theorem II) Assume chark = 0 and let ν̄(a0) = 0 and ā0 ∈
{ξ(ᾱ)m,m ∈ Z} and ᾱ be of infinite order.

Then α is conjugate to β, that is defined according to the next four possible cases:
a) i(α) − 1 = j, i(α) < ∞, so

β(u) = ξ(ᾱ)u + xui(ᾱ) + x2yu2i(ᾱ)−1 + r1A1u
i(ᾱ)−1zj

β(z) = ã0z + s1B1u
i(ᾱ)−1zi(α) + s2B2u

i(ᾱ)−1z2i(α)−1

where r1 ∈ k∗/(k∗)j, s2 ∈ k, s
j(i(ᾱ)−1)
1 x(i(ᾱ)−2)(i(α)−1)/r

(i( barα)−1)(i(α)−1)
1 ∈ k.

b) i(α) − 1 < j, i(α) < ∞

β(u) = ξ(ᾱ)u + xui(ᾱ) + x2yu2i(ᾱ)−1

β(z) = ã0z + s1B1u
i(ᾱ)−1zi(α) + s2B2u

i(ᾱ)−1z2i(α)−1

where s1 ∈ k∗/k∗(i(α)−1,i(ᾱ)−1), s2 ∈ k.
c) i(α) − 1 > j, i(α) < ∞

β(u) = ξ(ᾱ)u+xui(ᾱ)+x2yu2i(ᾱ)−1+r1A1u
i(ᾱ)−1zj +. . .+ri(α)−1−jAi(α)−1−ju

i(ᾱ)−1zi(α)−1

β(z) = ã0z + s1B1u
i(ᾱ)−1zi(α) + s2B2u

i(ᾱ)−1z2i(α)−1

where r1 ∈ k∗/k∗j, s
j(i(ᾱ)−1)
1 x(i(ᾱ)−2)(i(α)−1)/r

(i(ᾱ)−1)(i(α)−1)
1 ∈ k, rq, s2 ∈ k, q �= 1.

d) i(α) = ∞ (j ≤ ∞ )

β(u) = ξ(ᾱ)u + xui(ᾱ) + x2yu2i(ᾱ)−1 + r1A1u
i(ᾱ)−1zj

β(z) = ã0z

where r1 ∈ k∗/k∗j.
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We denote j(α) := j in the cases a), c), d), and j(α) := ∞ in the case b). Then

ν̄(a0), a
(i(ᾱ)−1)/j
j /x(ᾱ), ξ(ᾱ), x(ᾱ), y(ᾱ), i(ᾱ), i(α), j(α), i, and the elements rq, s1, s2

with the relations defined in the items a)-d) are complete system of invariants with
respect to the conjugation.

Moreover, i|j(α), i|(i(α) − 1) (we accept that in the case i = ∞ i|j means, that
j = ∞, i(α) = ∞, i.e. there are no elements with zj, zi(α)). i �= ∞ if and only if
ã0 = 1 + ai(ᾱ)−1u

i(ᾱ)−1, where ai(ᾱ)−1 = qξ−1x, q ∈ ”.

Let us introduce the additional notation:
qa := −ν̄(cj) mod j, i.e. 0 ≥ qa > −j;
qb := qa + min{ν̄(aj) − qa;−1};
in the case of qb − qa = −1 we denote
cb/ca := {resu(cj/aj) if aj �= 0,
cb/ca := 1 otherwise };

in the case of cb/ca ∈ ” we denote
q1 := 1 if cb/ca ∈ Z,
q1 is a denominator of the fraction cb/ca = p1/q1, where (p1, q1) = 1, q1 > 0 otherwise;

in the last case let us denote by p1 ∈ Z
′ the numerator of this fraction;

in the case q1 < j(α), q1 � |j(α) we denote by
n1 ∈ N a number that satisfies the properties n1 < q1, q1|(j(α) − n1);
in the case, when the equation (x + 1)/j = p1/q1 is solvable, we denote by
ib ∈ N such a number that ib − qa + 1 is a solution of this equation.

Consider the equations

0 = −(1 + w)n2
1p1 + n1jw − (q − 1)(2 + w)q1n1 + q1(−2 + (1 + w)qa)+

q1[p1(j(q−1)(w+2)+j−(q−1)2q1+(q−1)q1+2q1)+2j(qa−1)+(q−1)q1((1+w)qa−2)]
(1.4)

(p2
1(−1+q−q1(−1+q−2q2+qq1))−qq2

1(qa−1)+p1q1(1−3q−(q−1)qq1+qqa)) = 0 (1.5)

Theorem 1.6 (Theorem III) Let chark = 0 and let ν̄(a0) = 0 and ā0 ∈ {ξ(ᾱ)m,m ∈
Z} and ᾱn = Id.

Then α is conjugate to β defined in one of the following ways, depending on the
possible cases:

O) i = ∞. Then
β(u) = ξu

β(z) = B0z
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where B0 ∈ k((un)), that is, β has a form of a canonical automorphism of one-
dimensional local field F ((z)), where F = k((un)) in the appropriate case.

O’) i < ∞. Then i = 1 and this case is divided into two ones:

I) j > i(α) − 1, i.e. j(α) = ∞

β(u) = ξu

β(z) = z + B1z
i(α) + B2

1B2z
2i(α)−1

where B1, B2 ∈ k((un)), B ∈ k((un))∗/k((un))∗(i(α)−1), i.e. β has the form of a
canonical automorphism of one-dimensional local field F ((z)), where F = k((un)).

II) j ≤ i(α) − 1 (and in this case j = i(α) − 1). This case has two subsections:

A) qb − qa < −1. Then
β(u) = ξu + ruqazj

β(z) = z + s1u
qbzj+1 + s2B2z

2j+1

where B2 = uqb−1 if qa �= 0, and 0 otherwise,
the numbers r = s1(cb/ca)

−1 ∈ k∗/(k∗)(j,qa), s2, s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

B) qb − qa = −1. This case has two possibilities:

1) cb/ca /∈ ”. Then
β(u) = ξu + ruqazj

β(z) = z + s1u
qa−1zj+1

where numbers r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

2) cb/ca ∈ ”. This case has three possibilities:

a) q1 = j. Then
β(u) = ξu + ruqazj

β(z) = z + s1B1z
j+1 + s2u

−p1−1+qaz2j+1 + s3u
−p1+2qa−2z3j+1

where B1 = uqa−1 if (x + 1 − qa)/j �= p1/q1 for all x ∈ N,
and B1 = uqa−1 + ribu

ib, ib > qa − 1 otherwise,

s2, s3, rib ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.
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b) q1 < j. Here we have two sub-cases:

i) q1|j. Then
β(u) = ξu + ruqazj

β(z) = z+s1B1z
j+1+(s2,1u

−p1q−1
1 (q1−j)+2qa−2+s2,2u

−p1−1+qa)zj+1+q1+s3u
−2p1−1+qazj+1+2q1+

sj/q1u
−p1q−1

1 ((j/q1+1)q1−j)+2qa−2zj+1+(1+j/q1)q1 + sq2Bq2z
j+1+q1(1+q2)

where B1 = uqa−1 if (x + 1 − qa)/j �= p1/q1 for all x ∈ N and
B1 = uqa−1 + ribu

ib, ib > qa − 1 otherwise,
Bq2 = u−p1(1+q2)−1+qa if −qa + 1 − (q2 − 1)p1 = 0, and 0 otherwise,

s2, s3, sj/q1 , sq2 ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

ii) q1 � |j. Then we again have two cases:

i’) n1|q1 and −q1n
−1
1 (p1q

−1
1 (n1 − j) + qa) = −p1 + 1. Then

β(u) = ξu + ruqazj

β(z) = z + s1u
qa−1zj+1 + s2u

−p1q−1
1 (n1−j)+2qa−2zj+1+n1 + sqBqz

j+1+lq1 ,

where Bq = u−p1q−1+qa if (1.4) is fulfilled and 0 otherwise,
l is a solution of an equation (1.4);

s2, sq ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

ii’) n1 � |q1 or −q1n
−1
1 (p1q

−1
1 (n1 − j) + qa) �= −p1 + 1. Then

β(u) = ξu + ruqazj

β(z) = z + s1u
qa−1zj+1 + s2u

−p1q−1
1 (n1−j)+2qa−2zj+1+n1 + s3u

−p1−1+qazj+1+q1+

s4u
−p1−1+qazj+1+2q1 + sqBqz

j+1+lq1

where Bq = u−p1q−1+qa if −qa + 1 − (q − 1)p1 = 0 and 0 otherwise,
l is a solution of the equation −qa + 1 − (q − 1)p1 = 0,

s2, sq, s3, s4 ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

c) q1 > j. There are two possibilities:

i) j � |q1. Then
β(u) = ξu + ruqazj

β(z) = z + s1u
qa−1zj+1 + s2u

−p1−1+qazj+1+q1 + s3u
−p1−2+2qaz2j+1+q1+

s4u
−2p1−1+qazj+1+2q1 + sqBqz

j+1+lq1
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where Bq = u−p1q−1+qa if −qa + 1 − (q − 1)p1 = 0, and 0 otherwise,
l is a solution of the equation −qa + 1 − (q − 1)p1 = 0,

s2, sq, s3, s4 ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

ii) j|q1. It also has two possible cases:

i’) −p1 + qa − 2 �= q1(qa − 1)/j. Then

β(u) = ξu + ruqazj

β(z) = z+s1u
qa−1zj+1+s2u

−p1−1+qazj+1+q1+s3u
−p1−2+2qaz2j+1+q1+s4u

−2p1−1+qazj+1+2q1+

sqBqz
j+1+lq1

where Bq = u−p1q−1+qa if −qa + 1 − (q − 1)p1 = 0, and 0 otherwise,
l is a solution of an equation −qa + 1 − (q − 1)p1 = 0,

s2, sq, s3, s4 ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

ii’) −p1 + qa − 2 = q1(qa − 1)/j. Then

β(u) = ξu + ruqazj

β(z) = z +s1u
qa−1zj+1 +s2u

−p1−1+qazj+1+q1 +sqn,1Bqn,1z
2j+1+l1q1 +sqn,2Bqn,2z

2j+1+l2q1+

sqm,1Bqm,1z
j+1+l′1q1 + . . . + sqm,wBqm,wzj+1+l′wq1

where Bqn,i = u−p1li−2+2qa if (1.5) is satisfied, and 0 otherwise,

Bqm,j = u−p1l′j−1+qa if l′q are defined, and 0 otherwise,
l1, l2 are the solutions of equation (1.5), l′1, . . . , l

′
w are solutions of some equation of

degree w = q1/j,

s2, sqn,i, sqm,j ∈ k, r ∈ k∗/(k∗)(j,qa), s
j(qa−1)
1 /r(i(α)−1)qb ∈ k.

ν̄(a0), ξ(ᾱ), i(ᾱ), i(α), j(α), i, qa, qb, q1, n1, ib, and those elements with relations
that were defined in all items are the complete system of invariants with respect to the
conjugation.
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Corollary 14 For given ν̄(a0), n, i(ᾱ), i(α), j(α), i, qa, qb, q1, n1, ib, the set of conju-
gacy classes of the automorphism α is parametrised by only finite number of parameters,
except the cases Th.III O), O’)(I), Th.I i(ᾱ) = ∞.

Proof of theorems (and of corollary) Recall that ᾱ is an automorphism on
the field K̄, ᾱ = α mod ℘.

It is clear that if two automorphisms α, β are conjugate, then the automorphisms
ᾱ, β̄ are conjugate in the group Autk(K̄). To prove the theorem we must prove the
existence of an automorphism f such that α = fβf−1 and β is an automorphism, as
defined in the formulation of the theorem. Thereto it would be also proved, that the
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automorphism β can be uniquely reconstructed by the automorphism α and any β-like
automorphism gives its own conjugacy class.

Assume
f(u) = x0 + x1z + x2z

2 + . . .

f(z) = y0z + y1z
2 + . . .

We choose the parameter x0 ∈ K̄ in such a way that ᾱ(x0) has a canonical form, that

is ᾱ(x0) = ξx0+xx
i(ᾱ)
0 +yx

2i(ᾱ)−1
0 . Recall that x is a representative of a class k∗/k∗(i(ᾱ)−1).

1.2 Proof of the theorems I and II

Let a0 fulfil the assumptions of the theorem. We prove, that there exists an auto-
morphism f such that αf(u) = fβ(u); αf(z) = fβ(z), where β is an automor-
phism, as defined in the theorem. To do that, we prove by induction that αf(u) =
fβ(u) mod ℘m and αf(z) = fβ(z) mod ℘m+1 for all m ∈ N.

From (1.2), (1.1), (1.3) (which remain true also in the case of finite order au-
tomorphism ᾱ ) follows, that the set of representatives of classes of the elements
f̄−1(a0ā0

−1ᾱ(y0)/y0) can be described as the set of the elements {uν̄(a0)(1 + anu
n +

a2nu
2n + . . . ai(ᾱ)−1u

i(ᾱ)−1), anq ∈ k, ai(ᾱ)−1 �= nlξ−1x, where ξ is a primitive root from
1 of a degree n, l ∈ Z\{0}}. From the definition of the element a0 follows that the
elements anq are uniquely defined by automorphism α, that is, they don’t depend on
the choice of parameter z, and ā0 is defined up to multiplication by an element ξm,
m ∈ Z.

Assume ˜̃a0 = ā0u
ν̄(a0)(1+anu

n+a2nu
2n+ . . . ai(ᾱ)−1u

i(ᾱ)−1). Then we have for m = 1
that

αf(u) = α(x0) = α(x0) = ξx0 + xx
i(ᾱ)
0 + . . . = fβ(u); αf(z) = α(y0)α(z) =

ᾱ(y0)a0z = f(˜̃a0)y0z = f(˜̃a0)f(z) = fβ(z) mod ℘2.
For an arbitrary m we replace α by f−1

m−2αfm−2 for a suitable automorphism fm−2

(that is, for any automorphism with suitable coefficients x0, . . . , xm−2, y0, . . . , ym−2),
and now can consider that c0 = ξu + xui(ᾱ) + . . ., c1 = . . . = cm−2 = 0, a0 = ˜̃a0,
a1 = . . . = am−2 = 0, x0 = u, x1 = . . . = xm−2 = 0, y0 = 1, y1 = . . . = ym−2 = 0. Then

αf(u) = α(u)+α(xm−1)α(zm−1) = ξu+xui(ᾱ)+. . .+cm−1z
m−1+ᾱ(xm−1)ã

m−1
0 zm−1 mod ℘m

fβ(u) = ξ(u+xm−1z
m−1)+x(u+xm−1z

m−1)i(ᾱ) + . . . = ξu+xi(ᾱ)u+ . . .+ξxm−1z
m−1+

i(ᾱ)xxm−1u
i(ᾱ)−1zm−1 + . . . =

ξu + xi(ᾱ)u + . . . + xm−1(
∂

∂(u)
(ᾱ(u)))zm−1 mod ℘m
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Hence,

ᾱ(xm−1)ã
m−1
0 + cm−1 = xm−1(

∂

∂(u)
(ᾱ(u))). (1.6)

And in the same way,

αf(z) = α(z)+α(ym−1)α(zm) = ã0z+am−1z
m+(ᾱ(ym−1)+. . .)(ã0z+. . .)m mod ℘m+1

fβ(z) = f(ã0)f(z) = (ã0 +
∂

∂(u)
(ã0)xm−1z

m−1)(z + ym−1z
m) =

ã0z +
∂

∂(u)
(ã0)xm−1z

m + ã0ym−1z
m mod ℘m+1

Hence,

ᾱ(ym−1)ã
m
0 + am−1 = ã0ym−1 +

∂

∂(u)
(ã0)xm−1. (1.7)

By Corollary 12, if the conditions of the theorem are fulfilled, the equations (1.6),
(1.7) have the unique solution with any cm−1, am−1 and with any m, whence follows
the proof of the case 1). By Proposition 1.2 the proof of the case 2) is evident.

Proof of the Theorem II
If i = ∞, we can apply entirely the same arguments as in the Theorem I, and

get that α is conjugate to the automorphism β, where β has the same form as in the
Theorem I (i.e. this case corresponds to the case d), when j = ∞). In order that these
arguments remain true, we must only show that the element a := ξ+ i(α)xx

iᾱ−1

0 + . . . in
(1.6) can be represented in the form ᾱ(y)/y. But it follows directly from the relations
(1.2), (1.3), (1.1).

Let i < ∞. We prove that there exists such an automorphism f that αf(u) = fβ(u),
αf(z) = fβ(z), where automorphism β is as defined in the theorem. The proof is the
same as in the Theorem I.

The case m = 1 coincides with the case m = 1 from the Theorem I. Applying the
same arguments as there, we get equations of the form (1.6) and (1.7). By Corollary
2, these equations are solvable if i � |(m− 1). They may be unsolvable if i|(m− 1). Since
chark = 0, the kernel and the cokernel of the maps

Tm−1,1 = ᾱ(xm−1)ã
m−1
0 − (ξ + xui(ᾱ)−1 + . . .)xm−1, Tm−1,2 = ᾱ(ym−1)ã

m
0 − ã0ym−1

are one-dimensional if i|(m − 1).

We put x′
k = ỹ

k/i
1 ỹ−1

2 xk, y′
k = ỹ

k/i
1 yk for k = iq, q ∈ N . Then

ᾱ(xk)ã
k
0−(ξ+xui(ᾱ)−1+. . .)xk = ᾱ(ỹ

−k/i
1 ỹ2x

′
k)

ᾱ(ỹ
k/i
1 )

ỹ
k/i
1

− ᾱ(ỹ2)

ỹ2

x′
kỹ

−k/i
1 = ᾱ(ỹ2)ỹ

−k/i
1 (ᾱ(x′

k)−x′
k),
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ᾱ(yk)ã
k+1
0 − ã0yk = ᾱ(ỹ

−k/i
1 y′

k)
ᾱ(ỹ

k/i
1 )

ỹ
k/i
1

ã0 − ã0y
′
kỹ

−k/i
1 = ã0ỹ

−k/i
1 (ᾱ(y′

k) − y′
k)

Now we can write down the kernel and cokernel of these maps in the explicit form.
For Tk,1 the kernel is ỹ

−k/i
1 ỹ2(x

′
k)0, where (x′

k)0 ∈ k, cokernel — cui(ᾱ)−1ỹ
−k/i
1 ᾱ(ỹ2),

c ∈ k; in the same way, for Tk,2 the kernel is ỹ
−k/i
1 (y′

k)0, where (y′
k)0 ∈ k, cokernel —

c1u
i(ᾱ)−1ỹ

−k/i
1 ã0ᾱ.

Step 1 We show that α is conjugate to an automorphism α′, which has all the
coefficients c′q and a′

q, q ≥ 1 , satisfying the property:

if i � |q, then a′
q = c′q = 0; if i|q, then ν̄(c′qỹ

q/i
1 ᾱ(ỹ−1

2 )) ≥ i(ᾱ) − 1, ν̄(a′
qỹ

q/i
1 ã−1

0 ) ≥ i(ᾱ) − 1
(1.8)

We even show that in (1.8) we have either equalities or cq = 0 (aq = 0).
In fact, let α′ be such an automorphism that c′0 = c0 = ξu + xui(ᾱ) + . . ., a′

0 = ã0.
Let us find the rest coefficients satisfying these properties. Applying induction on m,
we have for arbitrary m that

αf(u) = α(u) + α(xm−1)α(zm−1) =

ᾱ(u) + c′1z + . . . c′m−1z
m−2 + cm−1z

m−1 + (ᾱ(xm−1) + . . .)(ã0z + . . .)m−1 mod ℘m

fα′(u) = f(ᾱ(u)) + f(c′1)f(z) + . . . + f(c′m−2)f(zm−2) + f(c′m−1)f(zm−1) =

ᾱ(u) +
∂

∂u
(ᾱ(u))xm−1z

m−1 + c′1z + . . . + c′m−1z
m−1 mod ℘m

Hence,

ᾱ(xm−1)ã
m−1
0 + cm−1 = xm−1(

∂

∂u
(ᾱ(u))) + c′m−1 (1.9)

If i � |(m− 1), then c′m−1 = 0 and by Corollary 2 the solution of this equation exists
and is unique. If i|(m − 1), then for solvability of this equation it is enough to select

c′m−1 in the form cui(ᾱ)−1ỹ
−(m−1)/i
1 ᾱ(ỹ2), i.e. ν̄(c′m−1ỹ

(m−1)/i
1 ᾱ(ỹ−1

2 )) ≥ i(ᾱ) − 1.
Further,

αf(z) = α(z) + α(ym−1)α(zm) =

ã0z + a′
1z

2 + . . . + a′
m−2z

m−1 + am−1z
m + (ᾱ(ym−1) + . . .)(ãm

0 zm + . . .) mod ℘m+1

fα′(z) = f(ã0)f(z) + f(a′
1)f(z2) + . . . + f(a′

m−1)f(zm) =

ã0z +
∂

∂u
(ã0)xm−1z

m + ã0ym−1z
m + (a′

1 +
∂

∂u
(a′

1)xm−1z
m−1)(z + ym−1z

m)2 + . . .

+(a′
m−1+

∂

∂u
(a′

m−1)xm−1z
m−1)(z+ym−1z

m)m = ã0z+
∂

∂u
(ã0)xm−1z

m+ã0ym−1z
m+a′

1z
2+. . .

+a′
m−1z

m mod ℘m+1
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Hence

ᾱ(ym−1)ã
m
0 + am−1 = ã0ym−1 +

∂

∂u
(ã0)xm−1 + a′

m−1, (1.10)

and in the same to the previous case way we get the desired result.

Step 2 Here two cases are possible:
1) j ≥ i(α);
2) j < i(α).

Case 1). We show that α = f−1β′f , where β′(u) = ᾱ(u).
To do that we find the sequential conjugations α 
→ α′ = f−1

mi αfmi, where fmi(u) =
u + xmiz

mi, fmi(z) = z, m ≥ 1, xmi = ỹ−m
1 ỹ2(x

′
mi)0. If m = (j − i(α) + 1)/i, we have

for the coefficients c′q that:

αf(u) = α(u) + α(xim)α(zim) = ᾱ(u) + cjz
j + . . . +

(ᾱ(xim) + ᾱ(
∂

∂u
xim)zj + . . .)(ã0z + ai(α)−1z

i(α) + . . .)im =

ᾱ(u) + cjz
j + ᾱ(xim)ãim

0 zim + ᾱ(xim)ãim−1
0 ai(α)−1z

j mod ℘j+1

fα′(u) = f(ᾱ(u))+f(c′(m+1)iz
(m+1)i)+. . . = ᾱ(u)+xim

∂

∂u
(ᾱ(u))zim+. . .+f(c′(m+1)iz

(m+1)i)+. . .

+ f(c′jz
j) mod ℘j+1 (1.11)

Since xmi = ỹ−m
1 ỹ2(x

′
mi)0, the equation at zmi has the form

ᾱ(xmi)ã
im
0 − xmi(

∂

∂u
(ᾱ(u))) = 0 (1.12)

We show that all the coefficients c′q in (1.11) can be chosen so that ν̄(ỹ
q/i
1 ᾱ(ỹ−1

2 )c′q) >
i(ᾱ) − 1.

In order to do that if q < j, we prove, applying induction on q/i, that all the
coefficients at z in degrees higher than im in f(ᾱ(u)), f(c′liz

li) satisfy this property,
supposing that c′li satisfies this property at l < q/i.

For f(ul), l > 1 we have by Newton’s binomial formula that

f(ul) = ul +
l∑

k=1

ul−kxk
imzimkCk

l ,

whence
ν̄(ul−kxk

imỹmk
1 ᾱ(ỹ−1

2 )) = l−k+(k+1)ν̄(ỹ2) = l−k+(k−1)i(ᾱ) = l−k+(k−1)(i(ᾱ)−1) >
(i(ᾱ) − 1) for k > 1,
what proves our assertion for f(ᾱ(u)). For f(c′liz

li) we have f(c′liz
li) = f(c′li)z

li, and,
using Newton’s binomial formula again, we get
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l > i(ᾱ)−1−ν̄(ỹl
1)+ν̄(ỹ2) = i(ᾱ)−1−ν̄(ỹl

1)+i(ᾱ), where from l−1+(k−1)(i(ᾱ)−1) >
i(ᾱ) − 1 − ν̄(ỹl

1) for all k, what proves our assertion in this case also.
At zj we have the equation

ᾱ(xim)ãim−1
0 ai(α)−1 + cj = c′j, (1.13)

and we must only solve the equation

ỹ
j/i
1 ᾱ(ỹ−1

2 cj + ỹ
j/i
1 ᾱ(ỹ−1

2 )ai(α)−1ã
im−1
0 ᾱ(xim) = 0 mod ℘̄i(ᾱ) (1.14)

in order to finish the induction step for the coefficients c′q. We have:

ỹ
j/i
1 ᾱ(ỹ−1

2 )cj + ỹ
j/i
1 ᾱ(ỹ−1

2 )ai(α)−1ã
im−1
0 ᾱ(xim) =

ỹ
j/i
1 ᾱ(ỹ−1

2 cj + ỹ
j/i
1 ᾱ(ỹ−1

2 )ᾱ(ỹ−m
1 )ᾱ(ỹ2)(x

′
mi)0ai(α)−1 =

ỹ
j/i
1 ᾱ(ỹ−1

2 )cj + ỹ
(i(α)−1)/i
1 ai(α)−1(x

′
mi)0 mod ℘̄i(ᾱ)

Since ν̄(ỹ
(i(α)−1)/i
1 ai(α)−1) = i(ᾱ) − 1 = ν̄(ỹ

j/i
1 ᾱ(ỹ−1

2 cj), there exists a unique constant
(x′

mi)0, with which the equation (1.14) is solvable.

Let us show that the coefficients c′q, q > j, a′
q, q ≥ 1 satisfy the properties (1.8).

As for coefficients c′q, it is remained to prove, that the coefficients at zd in
α(xim)α(zim) for d > j satisfy (1.8) . It’s clear that (1.8) remains true if i � |q. But if
i|q, then α(zim) = zimD, where D is a series with coefficients of the same behaviour
as aq. It follows from the Newton’s binomial formula. Applying the same arguments
as for f(c′li)z

li, we get that (1.8) holds for α(xim)zim, where from (1.8) also holds
for the product α(xim)zimD, because (1.8) holds for each series α(xim)zimdqz

q, where
D =

∑
q≥0,i|q dqz

q.
For the coefficients a′

q we have

αf(z) = α(z)

fα′(z) = f(ã0)z + f(a′
i(α)−1)z

i(α) + . . . (1.15)

where from, using calculations for f(ul), we get that (1.8) holds for a′
q. Therefore,

since ã0 = 1 mod ℘̄i(ᾱ)−1, we have ν̄(a′
qỹ

q/i
1 ã−1

0 ) > i(ᾱ) − 1 for all q < i(α) − 1.

To complete the induction, let’s show that α′ = f−1α′′f , where the coefficients
c′′q , a

′′
q of the automorphism α′′ satisfy (1.8) and c′′q = 0, 1 ≤ q ≤ j, a′′

q = 0, 1 ≤
q < i(α) − 1. The proof is again by induction on m (℘m). Let’s use the calculations
before the formulas (1.9) and (1.10). The equation (1.9) is solvable with c′m−1 = 0,

ν̄(cm−1ỹ
(m−1)/i
1 ᾱ(ỹ−1

2 )) > i(ᾱ) − 1, m − 1 < i(α) − 1, and to complete the proof we
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only have to check that the properties of the coefficients c′q, a
′
q remain true by the

conjugation f−1
m−1α

′fm−1. But this follows from the same arguments as in the case,

when fm−1(u) = u+xm−1z
m−1, fm−1(z) = z, ν̄(xm−1ỹ

(m−1)/i
1 ỹ−1

2 ) = 0, because we used

only the inequation ν̄(xm−1ỹ
(m−1)/i
1 ỹ−1

2 ) ≥ 0, which is true also in our case, because
xm−1 is a solution of an equation of the type (1.9). In the same way one can prove this

fact in the case fm−1(u) = u, fm−1(z) = z + ym−1z
m, ν̄(ym−1ỹ

(m−1)/i
1 ) ≥ 0. From the

other hand side, one can see from the equation (1.9) that the conjugation fm−1(u) = u,
fm−1(z) = z+ym−1z

m does not change the coefficient c′m−1, so any conjugation fm−1 can
be decomposed into composition of two conjugations f ′

m−1, f
′′
m−1 such that f ′

m−1(z) = z,
f ′′

m−1(u) = u.
Thus, we have proved that α is conjugate to α′′, where j′′ > j, i′′α = i(α). Since our

arguments do not depend on j, we get the required assertion by induction.
In the same way with Proposition 1.2 it is proved now that α = f−1βf , where

β(u) = ᾱ(u), β(z) = ã0z + ai(α)−1z
i(α) + a2(i(α)−1)z

2i(α)−1, where ν̄(ai(α)−1ỹ
(i(α)−1)/i
1 ) =

i(ᾱ) − 1, ν̄(a2(i(α)−1)ỹ
2(i(α)−1)/i
1 ) = i(ᾱ) − 1 (i.e it is the case b) of the theorem).

Case 2). This case is divided into two ones:
a) j = i(α) − 1,
b) j < i(α) − 1.

Let us look first at the case a). We show that α = fβf−1, where β is defined in the
case a) of the theorem.

To do that we make sequential substitutions α 
→ α′ = f−1
mi αfmi, fmi(u) = u +

xmiz
mi, fmi(z) = z + ymiz

mi+1, where xmi = ỹ−m
1 ỹ2(x

′
mi)0, ymi = ỹ−m

1 (y′
mi)0. It is

enough to show that for every m a corresponding automorphism α′ has coefficients
c′q, a

′
q, which satisfy the property:

ν̄(ỹ
q/i
1 ᾱ(ỹ−1

2 )cq) > iᾱ − 1, ν̄(ỹ
q/i
1 a′

q) > i(ᾱ) − 1, i|q, im ≤ q ≤ mi + j, q �= j, 2j,
c′q = a′

q = 0, q < im,
because then α′ can be reduced to the case, when the appropriate coefficients c′q, a

′
q

are equal to zero. That is done using the same substitutions, as by deriving equations
(1.9), (1.10), and with the help of result from the case 1). Since for every m the number
of necessary conjugations is finite, the desired automorphism f : α = fβf−1 exists.

Let us write down the calculations for an arbitrary m:

αf(z) = α(z)+α(ymi)α(zmi+1) = ã0z+B1u
i(ᾱ)−1zi(α)+B2u

i(ᾱ)−1z2i(α)−1+ami+i(α)−1z
mi+i(α)+

ᾱ(ymi)ã
mi+1
0 zmi+1 + ᾱ(

∂

∂u
ymi)Aui(ᾱ)−1zim+1+j+

(mi + 1)ãmi
0 B1u

i(ᾱ)−1ᾱ(ymi)z
mi+i(α) mod ℘mi+i(α)+1

fα′(z) = f(ã0)f(z) + f(a′
im)f(zim+1) + . . . + f(a′

im+i(α)−1f(zim+i(α)) =

ã0z+
∂

∂u
(ã0)xmiz

mi+1+ã0ymiz
mi+1+a′

imzim+1+. . .+a′
im+i(α)−1z

im+i(α)+i(α)ymia
′
i(α)−1z

im+i(α)+
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∂

∂u
(a′

i(α)−1)xmiz
im+i(α) mod ℘mi+i(α)+1 (1.16)

Because of the special form of yim, ᾱ(ymi)ã
im+1
0 = ã0ymi. The coefficients a′

q, q <
im+ i(α)− 1 can be chosen so that they have the pointed properties, in the same way,
as in the case 1). For q = im+ i(α)−1 it is necessary to show, that there exists (y′

mi)0:

ỹ
m+(i(α)−1)/i
1 (ami+i(α)−1+ᾱ(

∂

∂u
(ymi))Aui(ᾱ)−1+(mi+1)ãmi

0 B1u
iᾱ−1ᾱ(ymi)−i(α)ymia

′
i(α)−1−

∂

∂u
(a′

i(α)−1)xmi) = 0 mod ℘̄i(ᾱ) (1.17)

Since
ν̄(ỹ

m+(i(α)−1)/i
1 Aᾱ( ∂

∂u
ymi)u

i(ᾱ)−1) > i(ᾱ) − 1, ν̄(ỹ
m+(i(α)−1)/i
1 ami+i(α)−1) ≥ i(ᾱ) − 1,

ν̄(ỹ
m+(i(α)−1)/i
1 B1ᾱ(ymi)u

i(ᾱ)−1) = i(ᾱ) − 1, ν̄( ∂
∂u

(a′
i(α)−1)xmiỹ

m+(i(α)−1)/i
1 ) ≥ i(ᾱ) − 1 −

1 + i(ᾱ) > i(ᾱ) − 1,
the element (y′

mi)0 exists and is defined uniquely if (im+1) �= i(α), i.e. q �= 2j. Further,

αf(u) = α(u) + α(xmi)α(zmi) = ᾱ(u) + Aui(ᾱ)−1zj + cmi+i(α)−1z
mi+j + ᾱ(xmi)ã

mi
0 zmi+

ᾱ(
∂

∂u
xmi)Aui(ᾱ)−1zmi+j + miãmi−1

0 B1u
iᾱ−1ᾱ(xmi)z

mi+i(α)−1 mod ℘mi+i(α)

fα′(u) = f(ᾱ(u))+f(c′im)f(zim)+. . .+f(c′im+j)f(zim+j) = ᾱ(u)+
∂

∂u
(ᾱ(u))ximzim+c′imzim+. . .

+ c′im+jz
im+j +

∂

∂u
(c′j)xmiz

im+j + jymic
′
jz

mi+j, (1.18)

whence we get similarly that we must solve an equation over (x′
mi)0:

ỹ
m+j/i
1 ỹ−1

2 (cmi+j + miãmi−1
0 B1u

iᾱ−1ᾱ(xmi)−
∂

∂u
(c′j)xmi − jymic

′
j + ᾱ(

∂

∂u
xmi)Aui(ᾱ)−1) = 0 mod ℘̄i(ᾱ) (1.19)

Since (y′
mi)0 was already defined (if mi = j, we can take (y′

mi)0 equal to a constant),

ν̄(ỹ
m+j/i
1 ỹ−1

2 ᾱ( ∂
∂u

xmi)Aui(ᾱ)−1 > i(ᾱ) − 1,

ν̄(ỹ
m+j/i
1 ỹ−1

2
∂
∂u

(c′j)xmi) > i(ᾱ) − 1, ν̄(ỹ
m+j/i
1 ỹ2B1u

i(ᾱ)−1ᾱ(xmi)) = i(ᾱ) − 1,
so an element (x′

mi)0 does exist.

Let us now examine the case b). Now by the similar arguments as in a), we get that
α is conjugate to β,
β(u) = ᾱ(u) + A1z

j + A2z
j+1 + . . . + Ai(α)−1−jz

i(α)−1,

β(z) = ã0z +B1z
i(α) + b2z

2i(α)−1, ν̄(Aqỹ
q/i
1 ᾱ(ỹ−1

2 )) = i(ᾱ)−1 or Aq = 0, ν̄(Bqã
−1
0 ỹ

q/i
1 ) =

i(ᾱ) − 1 if i(α) is finite, and
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β(u) = ᾱ(u) + Azj,
β(z) = ã0z if i(α) = ∞ (see cases c) and d) correspondingly).

In fact, let us use formulas 1.16 and (1.18). Since

ν̄(Aqᾱ( ∂
∂u

ymi)ỹ
m+j/i+q−1
1 ) > i(ᾱ) − 1, the arguments from deriving the formula (1.17)

remain true for all coefficients aq, q ≥ i+ i(α)−1, q �= 2i(α)−1, and the property from

the case a) is realized. Similarly, since ν̄(ᾱ( ∂
∂u

xmi)Aqỹ
m+j/i+q−1
1 ỹ−1

2 ) > i(ᾱ)− 1, we can
apply formula (1.19) for the coefficients cq, q ≥ i + i(α)− 1 and get the desired result.

Remark. In the case b) of theorem, if ã0 �= 1 or ã0 = 1 but y �= 0, where y
is a second parameter of the canonical representation of ᾱ, one can show by direct
calculations that α is conjugate with β: β(u) = ᾱ(u) + Azj, β(z) = ã0z + Bzi(α),
where A satisfies (1.8) and B does not. But, if ã0 = 1 and y = 0, then for any k ≥ 1
∂
∂u

(B)ỹ2 ∈ Im(ᾱ − Id), where B = cỹ−1
2 u1+k(1−i(ᾱ)), whence, by formulas (1.17) and

(1.19), one can derive that β does not exist and the number of parameters can not be
decreased.

Remark. 1. In the case of characteristic p > 0 we have in general dim(kerT ) �=
dim(cokerT ), as it was shown in lemma 1.3. From this follows that automorphisms
can not be parameterised by finite number of parameters in more cases than in the
case of chark = 0. For example, α can not be always redused to β, where β(u) =
ᾱ(u) + A1z

j + . . . + Aku
j+k: k may be equal to the infinity.

2. The classification can be easily generalised to the case of n-dimensional local
field, because we used only the property dim(kerT ) = dim(cokerT ) and arguments
with valuations. In the case of multidimensional equal characteristics local fields of
characteristic 0 all our arguments can be carried over to the case of higher dimension
if we assume that the value group of ν̄ is Z ⊕ . . . ⊕ Z.

Now we only have to prove that the automorphisms β, β′ are conjugate if and only
if β = β′, where β, β′ are automorphisms from the formulation of theorem. It’s clear
that if β is conjugate with β′, then ã0 = ã′

0 and β̄(u) = β̄′(u) = ᾱ(u) is a nesessary
condition, whence β is defined up to the change u 
→ x0 : ᾱ(x0) has the canonical view
and z 
→ cz, c ∈ k∗.

Then, β and β′ must have the same numbers j, j′ and i(α), i′α. Indeed, if β and
β′ are conjugate, then β = f−1β′f , and f can be decomposed in a composition
of automorphisms f = f1f2 . . . fm, where fq(u) = u + xqz

q, fq1(z) = z + yq1z
q+1.

Then from (1.9), (1.10) follows that for q < min{j, j′} we have xq ∈ kerTq,1, for
q1 < min{i(α)− 1, i′α − 1} we have yq1 ∈ kerTq,2. From the proof of the case a) follows
that the conjugations fq with this numbers preserve properties (1.8) of the coefficients
cq, aq1 for q ≤ min{j, j′}, q1 ≤ min{i(α) − 1, i′α − 1}. Therefore, if j �= j′ or i(α) �= i′α,
then the first nonzero coefficient of β(u) or β′(u) or β(z) or β′(z) must lie in the kernel
of the map Tj(j′),1 (Ti(α)(i′α),2), but this contradicts to the choice of these coefficients.
Therefore, j = j′ and i(α) = i′α. So, β and β′ are in the same class defined by the
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pair (j, i(α)). In this case the equality follows from the special choice of coefficients of
zj, zi(α) and the proves of the corresponding cases.

1.3 Proof of the theorem III

Let ᾱn = 1. Then, by Proposition 1.2, there exists x0 such that ᾱ(x0) = ξx0, where ξ
is a primitive root of 1. As in the theorem II, we consider that α(u) = ξu + cjz

j + . . .,
α(z) = a0z + ai(α)−1z

i(α) + . . ..

At first we note that i = 1 or ∞. Indeed, if ai
0 = ᾱ(y)

y
, then, as it was shown in the

theorem II, we may suppose a0 = 1 + cuqn + . . .. But in this case ai
0 = 1 + icuqn + . . ..

Further,

ai
0ᾱ(ai

0) . . . ᾱn−1(ai
0) = ᾱ(y)

y
ᾱ2(y)
ᾱ(y)

. . . ᾱn(y)
ᾱn−1(y)

= 1. So we have that:

ai
0ᾱ(ai

0) . . . ᾱn−1(ai
0) = (1+ icuqn + . . .) . . . (1+ icuqn + . . .) = 1+nciuqn + . . . �= 1, where

from a0 = 1 or i = ∞. Thus, α(u) = ξu + cju
j + . . ., α(z) = z + ai(α)−1z

i(α) + . . . (in
this case dim(kerTk,1) = ∞ = dim(kerTk,2) = dim(cokerTk,1,2)).

Further let us consider that cq ∈ uk((un)), aq ∈ k((un)), because by going over to
conjugations as in (1.9) and (1.10), we can solve all the equations
ᾱ(y) − ξy = cq mod uk((un)), ᾱ(y) − y = aq mod k((un))
(in theorem 2 we have reduced general case to a case aq, cq ∈ cokerTq,1, Tq,2 in the same
way).

As in Proposition 1, it is proved that if i = ∞, then takes place the case O) of the
theorem.

Let i = 1. The case j ≥ i(α) coincide with the case j ≥ i(α) of the theorem 2:
by writing over the formula (1.11), we get that holds (1.12) and there from holds
c′q = 0, q < j, and the equation (1.13) always has a solution xm ∈ uk((un)) , when
aq ∈ k((un)), cq, c

′
q ∈ uk((un)). It holds from (1.15) that by conjugation the coefficients

a′
q = 0, q < i(α) − 1. All other arguments from the theorem 2 should be applied here

also, and in the same way as with the case O), we get the case O’) I).

Let now j + 1 = i(α) and let f(z) = y0z, y0 ∈ k((un)). Then we have:

αf(z) = α(y0)α(z) = (y0 +
∂

∂u
(y0)cjz

j + . . .)(z + ai(α)−1z
i(α) + . . .)

fα′(z) = f(z) + f(a′
1z

2) + . . . = y0z + f(a′
1)y

2
0z

2 + . . . (1.20)

So we get from here that a′
q = 0, q < j, f̄(a′

j)y
j+1
0 = ∂

∂u
(y0)cj + y0ai(α)−1. If the

equation ∂
∂u

(y0)cj + y0ai(α)−1 = 0 isn’t solvable, then dlog(y0) �= −ai(α)−1/cj, where
from ν̄(ai(α)−1/cj) < −1 or ν̄(ai(α)−1/cj) = −1, but res(−ai(α)−1/cj) /∈ Z. If it is
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solvable, then we can consider that ν̄(a′
i(α)−1/c

′
j) = −1, res(a′

i(α)−1/c
′
j) ∈ ”, setting

y0 = u.
The case j + 1 < i(α) is reduced to a case j + 1 = i(α): indeed, by setting y0 = u,

we get that a′
j �= 0 , and it’s the first non equal to zero coefficient in the decomposition

α′(z), while ν̄(a′
j/c

′
j) = −1, res(a′

j/c
′
j) ∈ ”.

The next part of the proof is following the proof of the theorem 2: in order to
prove the rest items of the theorem, we shall go over to conjugations, and as a result
get formulas of the kind (1.17) and (1.19). However, we cannot completely repeat the
arguments from the previous case, because the kernel and cokernel of corresponding
maps Tk,1 and Tk,2 are infinite-dimensional in our case. The formulas (1.17) and (1.19)
are now written down as

∂

∂u
(ym)A + (m + 1 − i(α))Bym − ∂

∂u
(B)xm = a (1.21)

mBxm − ∂

∂u
(A)xm − jymA +

∂

∂u
(xm)A = b (1.22)

where A = cj, B = ai(α)−1, a and b — arbitrary elements from uk((un)) and k((un))
correspondingly, xm ∈ uk((un)), ym ∈ k((un)). It turns out that the solutions
of this system strongly depend on the properties of the numbers, defined before
the formulation of the theorem 3. From now on in the proof we are going to inves-
tigate the solvability of this system in dependence from the behaviour of these numbers.

First of all we note that we can put A = c1u
k, k ≤ 0, |k| < j, c1 ∈ k. Indeed, we

write down the conjugation f−1αf , f(z) = y0z, y0 = uq, where q ≥ 0 is a minimal
positive integer such that qi ≥ ν̄(A), f(u) = x0, ν̄(x0) = 1. Then

αf(u) = α(x0) = ξx0 +
∂

∂u
(x0)cjz

j + . . .

fα′(u) = f(ξu) + f(c′jz
j) + . . . = ξx0 + f̄(c′j)y

j
0z

j + . . . ,

where from we get yj
0

f̄(c′j)
cj

= ∂
∂u

(x0). We consider c′j = A = c1u
k, k = −ν̄(yj

0/cj). Then

(−k + 1)c1y
j
0/cj = ∂

∂u
(x−k+1

0 ). We can choose c1 ∈ k so, that the equation would be

solvable. And here also a′
j = f̄−1( ∂

∂u
(y0)y

−j−1
0 cj + y−j

0 aj).

We show that in all the cases (except the cases 2) a), 2) b) i) of the theorem) such
a conjugation could be found, that it holds A = c1u

k, B = c2u
k1 . By that it appears,

that the coefficients A1, B1 in all the cases of the theorem have the form, as mentioned
above.

Let ν̄(B/A) = −1, res(B/A) = p1/q1 ∈ ”, (p1, q1) = 1.
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We note that q1 doesn’t depend on conjugation. Indeed, A and B change only by
conjugation f−1αf , f(u) = x0, ν̄(x0) = 1, f(z) = y0z. But then from the (1.20) follows,
that res(B′/A′)−res(B/A) ∈ Z, hence we get that q1 doesn’t depend on conjugations.

Let us now show that there is such a conjugation, that B/A = res(B/A)u−1, if
q1 � |j or res(B/A) < 0. Therefore we look for a conjugation f , f(u) = x0, f(z) = y0z,
so that the automorphism α′ = f−1αf would have A′ = c1u

k, k < 0, B′ = c2u
k−1. For

that, considering (1.20), we must solve a system

f̄(A′)yj
0 =

∂

∂u
(x0)cj, f̄(B′)yj+1

0 =
∂

∂u
(y0)cj + y0aj

Dividing the first equation by the second, we get: f̄(B′/A′)y0 =
∂

∂u
(y0)+y0B/A

∂
∂u

(x0)
, where

from

c2

c1

x−1
0

∂

∂u
(x0) =

∂
∂u

(y0)

y0

+ B/A, c1y
j
0A

−1 =
∂

∂u
(x0)x

−k
0 = (1 − k)−1 ∂

∂u
(x1−k

0 ) (1.23)

We look for x0, y0 in a form of x0 = u(1 + ε1u + ε2u
2 + . . .), y0 = uλ(1 + ω1u + . . .). Let

c = c2/c1, B/A = cbau
−1 + γ0 + γ1u + . . .. Then from the first equation (1.23) we get:

cu−1 + c(ε1 + 2ε2u + 3ε3u
2 + . . .)(1 + ε1u + ε2u

2 + . . .)−1 =

λu−1 + (ω1 + 2ω2u + . . .)(1 + ω1u + . . .)−1 + (cbau
−1 + γ0 + γ1u + . . .)

Suppose c = λ+cba �= 0 (we can always find such λ ≥ 0). By comparing the coefficients
in the left and right sides, we get linear equations of the form

cεi = ωi + i−1γi−1 + i−1ψi,

where ψi — certain polynomial from εq, ωq, q < i (they are determined from the
previous equations). From the second equation we get:

c1u
λj(1 + ω1u + . . .)jc−1

a u−ka = u−k + (2 − k)ε1u
1−k + (3 − k)(ε2 + . . .)u2−k + . . .

(where A = cau
ka). Suppose c1 = ca, −k = λj−ka. Then k ≤ 0. Because of cba �= 0, we

can put λ = 0. Hence k = ka > −j. Comparing the coefficients, we get linear equations
of the form

jωi = (i + 1 − k)εi + ψ̃i = (i + 1 + λj − ka)εi + ψ̃i (1.24)

For every i the system has a solution, if (i + 1 − ka)/j �= cba = p1/q1, what holds true
always under the condition that q1 � |j or cba = res(B/A) < 0. If these conditions are
not fulfilled, then B′ can have the form B′ = c2u

k−1 + cibu
ib , what is evident from the

arguments, mentioned above.
If res(B/A) /∈ ”, then applying the same thoughts, we also get the same result.
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Let ν̄(B/A) < −1.
Then we look for B′ in the form B′ = c2u

k+ν̄(B/A). System (1.23) will now have the
form

cx
ν̄(B/A)
0

∂

∂u
(x0) =

∂
∂u

(y0)

y0

+ B/A, c1y
j
0A

−1 = (1 − k)−1 ∂

∂u
(x1−k

0 )

Hence
cuν̄(B/A) + cuν̄(B/A)+1(ε1 + 2ε2u + . . .)(1 + ε1u + . . .)−1 =

λu−1 + (ω1 + 2ω2u + . . .)(1 + ω1u + . . .)−1 + (cbau
ν̄(B/A) + γν̄(B/A)+1u

ν̄(B/A)+1 + . . .)

whence c = cba and equation i looks like following:

ciεi = ωi+ν̄(B/A)+1(i + ν̄(B/A) + 1) + ψi

where ωi+ν̄(B/A)+1 = 0 if (i + ν̄(B/A) + 1) ≤ 0. Equations (1.24) are written over
without changes, where from we get that every system i is solvable, and our proposition
is proved.

Let us now go back to a system (1.21), (1.22). We show, that system of the equations
(1.21), (1.22) is solvable, if m �= j. It holds:

ym = (mB/(jA) − ∂

∂u
(A)/(jA))xm +

∂

∂u
(xm)/j − b/(jA) (1.25)

Hence

∂2

∂u2
(xm) +

∂

∂u
(xm)((2m − j)B/A − ∂

∂u
(A)/A) + xm((m − j)

∂

∂u
(B)B/(BA)−

(2m − j)
∂

∂u
(A)B/A2 − (

∂2

∂u2
(A)

∂

∂u
(A))/(

∂

∂u
(A)A)+

(
∂

∂u
(A))2/A2 + (m − j)mB2/A2) − ∂

∂u
(b/A) − (m − j)Bb/A2 − ja/A = 0 (1.26)

We set q = ν̄(B/A). From this: q ≤ −1, if q = −1, then res(B/A) /∈ Z.
Let us show that the equation

∂2

∂u2
(xm) +

∂

∂u
(xm)((2m − j)B/A − ∂

∂u
(A)/A) + xm((m − j)

∂

∂u
(B)B/(BA)−

(2m − j)
∂

∂u
(A)B/A2 − (

∂2

∂u2
(A)

∂

∂u
(A))/(

∂

∂u
(A)A)+

(
∂

∂u
(A))2/A2 + (m − j)mB2/A2) = cuk mod ℘̄k+1 (1.27)
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is solvable, if q < −1 or q = −1, but res(B/A) /∈ ”, for all k ∈ Z and every constant
c ∈ k. From here we immediately get the solvability of the equation (1.26) for all b and
a, and also of a system (1.21), (1.22). From here will follow the proof of the items A),
B) 1).

If q < −1, then
ν̄((2m − j)B/A − ∂

∂u
(A)/A) = ν̄(B/A) (if 2m �= j) and ≥ −1 (if 2m = j),

ν̄((m − j) ∂
∂u

(B)B/(BA) − (2m − j) ∂
∂u

(A)B/A2 − ( ∂2

∂u2 (A) ∂
∂u

(A))/( ∂
∂u

(A)A) +
( ∂

∂u
(A))2/A2 + (m − j)mB2/A2) = ν̄(B2/A2), because m �= j. Thus,

ν̄(
∂2

∂u2
(xm) +

∂

∂u
(xm)((2m − j)B/A − ∂

∂u
(A)/A) + xm((m − j)

∂

∂u
(B)B/(BA)−

(2m−j)
∂

∂u
(A)B/A2−(

∂2

∂u2
(A)

∂

∂u
(A))/(

∂

∂u
(A)A)+(

∂

∂u
(A))2/A2+(m−j)mB2/A2) =

ν̄(
∂2

∂u2
(xm) +

∂

∂u
(xm)(2m − j)c1u

q + xm(m − j)mc2u
2q) = ν̄(xm(m − j)mc2u

2q)

where from immediately follows solvability of the equation (1.27).
If q = −1,

then we put qa = ν̄(A), qb = ν̄(B), k = ν̄(xm), x = res(B/A). And now for the
solvability of the equation (1.27) is necessary to show that the equation

k(k−1)+k(2m− j)x−kqa +((m− j)qb − (2m− j)qa)x+ qa +(m− j)mx2 = 0 (1.28)

doesn’t have a solution.
This quadratic equation has the critical points −k−qa

m−j
, −k−1

m
(and if m = j, then one

of the points is −k−1
m

), so if res(B/A) /∈ ”, then our assertion is proved. Moreover, in the
case when q = −1, res(B/A) /∈ ” we have proved the solvability of the equation (1.26),
and through that also of a system (1.21), (1.22) for all m, by this proving the case B) 1).

If m = j, q < −1, qa = 0, then the equation (1.27) has the form

∂2

∂u2
(xm) +

∂

∂u
(xm)(mB/A − ∂

∂u
(A)/A) + xm(−mB

∂

∂u
(A)/A2−

(
∂2

∂u2
(A)

∂

∂u
(A))/(

∂

∂u
(A)A) + (

∂

∂u
(A))2/A2 = cuk mod ℘̄k+1,

that is always solvable, because ν̄(xmB ∂
∂u

(A)/A2) < ν̄(x′
mB/A) < ν̄(x′′

m).
If qa �= 0, then this equation isn’t solvable with k = qa − 1 + q. Thus,

if q < −1, α is the conjugation to automorphism β: β(u) = ξu + Auj,
β(z) = z + Bzi(α) + cuν̄(A)−1+qz2i(α)−1 (see case A)).
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The case res(B/A) ∈ ” should be studied precisely. Recall that in this case
ν̄(B/A) = −1.

Let res(B/A) = p1/q1 (= cb/ca), (p1, q1) = 1. The following proof of the theorem
would be divided into three cases (which do not coincide with the corresponding cases
from the formulation of the theorem), in order to make the proof easier:
a) q1|j, q1 �= j
b) q1 � |j
c) q1 = j.

a) (see the case B) 2) b) i)).
Here −k1−qa

m1−j
= −k2−1

m1
= p1

q1
. Then there exist c1, c2 ∈ k such that the equation

(1.26) + c1u
k1−2 + c2u

k2−2 = 0 has solutions with m = m1, what follows from the solv-
ability of the equation (1.27) for all k, except of k = k1−2, k = k2−2, and m1 — is the
first index, when the system (1.21), (1.22) isn’t solveable in a general case. Also in this
case the space of solutions of the homogeneous equation (1.26) is generated by x1 and
x2, ν̄(x1) = k1, ν̄(x2) = k2. Thus, automorphism α is conjugate to the automorphism α′,

α′(u) = ξu + Azj + cj+1+2m1z
j+1+2m1 + . . .,

α′(z) = z + Bzj+1 + B2z
j+1+m1 + . . ., where B2 = c1u

k1−2+qa + c2u
k2−2+qa .

Now let us investigate behaviour of the values k1,mq , k2,mq for different mq, for which
the equation (1.26) has no solutions, where k1,mq , k2,mq are solutions of the equation
(1.28).

Obviously, mq = qq1, q ∈ N. Note that (k1,mq − k2,mq) doesn’t depend on mq

(q �= j/q1). Indeed,
k1,mq−qa

mq−j
=

k2,mq−1

mq
= −p1

q1
. Hence k2,mq = −p1q + 1, k1,mq =

−p1(q − j/q1) + qa, and (k1,mq − k2,mq) = p1j/q1 + qa − 1. We observe, that
k2,mq = k2,mq−1 + k2,m1 − 1, k1,mq = k1,mq−1 + k2,m1 − 1 = k2,mq−1 + k1,m1 − 1.

We write down the formula (13) for the case, when
ym1 = ω1ym1,1 + ω2ym1,2, xm1 = ω1xm1,1 + ω2xm1,2,
where ω1, ω2 ∈ k, xm1 , ym1 are solutions of the homogeneous system (1.21), (1.22)
for m = m1. Because of ν̄(xm1,1) = k1,m1 , ν̄(xm1,2) = k2,m1 , we have ν̄(ym1,1(xm1,1)) =
k1,m1−1, ν̄(ym1,2(xm1,2)) = k2,m1−1. Indeed, from the formula (1.25), ν̄(ym) = ν̄(xm)−1,
if mp1/q1 − qa + k �= 0, where k = ν̄(xm). Let be mp1/q1 − qa + k = 0. Then p1/q1 =

−k1,m1−qa

m1
, whence j = 0. It’s a contradiction. Analogously for k2,m1 qa = 1, but qa ≤ 0,

also a contradiction. So we have:

α′f(z) = z + Bzi(α) + B2z
i(α)+m1 + a′

2m1+i(α)−1z
2m1+i(α) + . . . + ym1z

m1+1+

∂

∂u
(ym1)Azm1+i(α) + (m1 + 1)Bym1z

m1+i(α) + (m1 + 1)B2ym1z
2m1+i(α) + . . .

fα′′(z) = z + ym1z
m1+1 + Bzi(α) + B2z

i(α)+m1 + B3z
m2+i(α) +

∂

∂u
(B)xm1z

m1+i(α)+
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i(α)ym1Bzm1+i(α)+2−1 ∂2

∂u2
(B)x2

m1
z2m1+i(α)+C2

i(α)y
2
m1

Bz2m1+i(α)+
∂

∂u
(B2)xm1z

i(α)+2m1+

(i(α) + m1)ym1B2z
2m1+i(α) +

∂

∂u
(B)i(α)xm1ym1z

2m1+i(α) + a′′
2m1+i(α)−1z

2m1+i(α) + . . .

α′f(u) = ξu + Azj + c′2m1+jz
2m1+j + . . . + ξxm1z

m1 +
∂

∂u
(xm1)Azm1+j+

m1Bxm1z
m1+j + m1B2xm1z

2m1+j + . . .

fα′′(u) = ξu+ξxm1z
m1 +Azj +

∂

∂u
(A)xm1z

m1+j +jym1Azm1+j +2−1 ∂2

∂u2
(A)x2

m1
z2m1+j+

C2
j y

2
m1

Az2m1+j +
∂

∂u
(A)jxm1ym1z

2m1+j + c′′2m1+jz
2m1+j + . . .

As m1 < j, in the expression for α′f(z), α′f(u) there is the only term at z2m1+i(α).
For ymq = ω1ymq ,1 + ω2ymq ,2, xmq = ω1xmq ,1 + ω2xmq ,2 the formula 1.16 should have

the form

α′f(z) = z+Bzi(α)+B2z
i(α)+m1+B3z

i(α)+m2+a′
mq+m1+i(α)−1z

mq+m1+i(α)+. . .+ymQ
zmq+1+

∂

∂u
(ymq)Azmq+i(α) + (mq + 1)Bymqz

mq+i(α) + (mq + 1)B2ymqz
mq+m1+i(α)+

(mq + 1)B3ymqz
mq+m2+i(α) + . . .

fα′′(z) = z + ymqz
mq+1 + Bzi(α) + B2z

i(α)+m1 + B3z
i(α)+2m1+

∂

∂u
(B)xmqz

mq+i(α) + i(α)ymqBzmq+i(α)+

∂

∂u
(B2)xmqz

i(α)+m1+mq + (i(α) + m1)ymqB2z
m1+mq+i(α) + a′′

mq+m1+i(α)−1z
m1+mq+i(α)+

∂

∂u
(B3)xmqz

i(α)+m2+mq + (i(α) + m2)ymqB3z
m2+mq+i(α) + . . . (1.29)

α′f(u) = ξu + Azj + c′mq+j+m1
zmq+j+m1 + . . . + ξxmqz

mq +
∂

∂u
(xmq)Azmq+j+

mqBxmqz
mq+j + mqB2xmqz

mq+m1+j + . . .

fα′′(u) = ξu+ξxmqz
mq +Azj +

∂

∂u
(A)xmqz

mq+j +jymqAzmq+j +c′′mq+m1+jz
mq+m1+j +. . .

Whence follows:

2−1(
∂2

∂u2
(B)x2

m1
) = C2

qa−1(cbu
qa−3 + . . .)(ω2

1x
2
1 + 2ω1ω2x1x2 + ω2

2x
2
2)

2−1(
∂2

∂u2
(A)x2

m1
) = C2

qa
(cau

qa−2 + . . .)(ω2
1x

2
1 + 2ω1ω2x1x2 + ω2

2x
2
2) (1.30)
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y2
m1

B = (cbu
qa−1 + . . .)((ω2

1y
2
1 + 2ω1ω2y1y2 + ω2

2y
2
2)

y2
m1

A = (cau
qa + . . .)((ω2

1y
2
1 + 2ω1ω2y1y2 + ω2

2y
2
2)

∂

∂u
(B)i(α)xm1ym1 = (qa − 1)i(α)(cbu

qa−2 + . . .)(ω2
1x1y1 + ω2

2x2y2 + ω1ω2(x1y2 + x2y1))

∂

∂u
(A)jxm1ym1 = qaj(cau

qa−1 + . . .)(ω2
1x1y1 + ω2

2x2y2 + ω1ω2(x1y2 + x2y1)) (1.31)

ymqB2 = ω1c1ymq ,1u
k1,mq−2+qa+ω1c2ymq ,1u

k2,mq−2+qa+c1ω2ymq ,2u
k1,mq−2+qa+c2ω2ymq ,2u

k2,mq−2+qa

xmqB2 = ω1c1xmq ,1u
k1,mq−2+qa+ω1c2xmq ,1u

k2,mq−2+qa+c1ω2xmq ,2u
k1,mq−2+qa+c2ω2xmq ,2u

k2,mq−2+qa

(1.32)

(
∂

∂u
(B2))xmq = (k1,mq−2+qa)ω1c1xmq ,1u

k1,mq−3+qa+(k2,mq−2+qa)ω1c2xmq ,1u
k2,mq−3+qa+

(k1,mq − 2 + qa)c1ω2xmq ,2u
k1,mq−3+qa + (k2,mq − 2 + qa)c2ω2xmq ,2u

k2,mq−3+qa (1.33)

Let (k1,mq − k2,mq) < 0. We shall show, that in formulas (1.30)- (1.33) monomials
with valuation (k1,mq + k1,m1 + qa − 3), belong to the image of the map (1.27), it means
that the equation (1.27) with the right side in a form of these monomials is solvable.

Indeed, in a case of (k1,mq−k2,mq) < 0 we have p1/q1 < (−qa+1)/j < (−qa+1+i)/j,
if i ≥ 1. But then A = c1u

qa , B = c2u
qb = c2u

qa−1, and ymq = ω1u
k1,mq−1 + ω2u

k2,mq−1,
xmq = ω1u

k1,mq +ω2u
k2,mq , because all the coefficients of the homogeneous system (1.21),

(1.22) have the monomial form. Since (k1,mq +k1,m1 −1) < k1,mq +k2,mq −1 = k1,mq+1 <
k2,mq+1 , the equation (1.27) has monomial solutions of a form, mentioned above.

If (k1,mq − k2,mq) > 0, so (k1,mq + k1,m1 − 1) > k1,mq + k2,m1 − 1 = k1,mq+1 > k2,mq+1 ,
where from follows the same result.

If (k1,mq − k2,mq) = 0, then ymq and xmq consist of the only monomial, i.e. ω1 = 0
and expressions in (1.30)-(1.33) are simplified to the one monomial, which is in the
general case not in the image of the map (1.27).

Now we show that for all q except q = 1, q = j/q1, q = (1 − qa)/p1 + 1 there exist
the coefficients ω1, ω2 (coefficient ω2, if k1,mq = k2,mq) are such that
a′

mq+m1+i(α)−1 + ∂
∂u

(c′′mq+m1+j)/j − c′′m1+mq+j
∂
∂u

(A)/(jA) + (mq+1 −
j)p1u

−1c′′mq+m1+j/(jq1) + (1 − i(α))B2ymq − ∂
∂u

(B2)xmq

belongs to the image of the map (1.27), i.e. the equation (1.27) with the right side in
the form of these expressions is solvable.

According to (1.32), (1.33), we need to show that

(1−i(α)+mq−1)c2ω2ymq ,2u
k2−2+qa−(k2,m1+qa−2)c2ω2xmq ,2u

k2−3+qa+
∂

∂u
(b)/j+b

∂

∂u
(A)/(jA)

+(mq+1 − j)p1u
−1b/(jq1) = 0 mod ℘̄k2,mq+1+qa−1
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where b = mqc2ω2xmq ,2u
k2,m1−2+qa , only if (q − 1)q1(1 − qa − (q − 1)p1) = 0 and

(1−i(α)+mq−1)ω1c2ymq ,1u
k2−2+qa−(k2,m1−2+qa)c2ω1xmq ,1u

k2−3+qa+
∂

∂u
(b)/j+b

∂

∂u
(A)/(jA)

+(mq+1 − j)p1u
−1b/(jq1) = 0 mod ℘̄k1,mq+1+qa−1

where b = mqc2ω1xmq ,1u
k2,m1−2+qa only if −(q − 1)2q1p1 + (q − 1)(qa − 1)q1 + (1 −

j/q1)(jp1 + q1(qa − 1)) = 0 (we remark that ω2 does not depend on ω1).

Since ymq ,1,2 =
p1−qa+k1,2,mq

j
xmq ,1,2u

−1 + . . ., it is necessary to show that

−(1 − i(α) + mq−1)
p1 − qa + k2,mq

j
− (k2,m1 − 2 + qa) +

mq(k2,mq+1 − 1 + qa)

j
−

mqqa

j
+

(mq+1 − j)p1q

j
�= 0

if (q − 1)q1(1 − qa − (q − 1)p1) �= 0,

−(1 − i(α) + mq−1)
p1 − qa + k1,mq

j
− (k2,m1 − 2 + qa) +

mq(k1,mq+1 − 1 + qa)

j
−

mqqa

j
+

(mq+1 − j)p1q

j
�= 0

if −(q − 1)2q1p1 + (q − 1)(qa − 1)q1 + (1 − j/q1)(jp1 + q1(qa − 1)) �= 0. But

−(1−i(α)+mq−1)
p1 − qa + k2,mq

j
−(k2,m1−2+qa)+

mq(k2,mq+1 − 1 + qa)

j
−mqqa

j
+

(mq+1 − j)p1q

j

=
(q − 1)q1(1 − qa − (q − 1)p1)

j
,

−(1−i(α)+mq−1)
p1 − qa + k1,mq

j
−(k2,m1−1+qa)+

mq(k1,mq+1 − 1 + qa)

j
−mqqa

j
+

(mq+1 − j)p1q

j

=
−(q − 1)2q1p1 + (q − 1)(qa − 1)q1 + (1 − j/q1)(jp1 + q1(qa − 1))

j

We observe here, that −(q−1)2q1p1 +(q−1)(qa−1)q1 +(1−j/q1)(jp1 +q1(qa−1)) �= 0.
In fact, if −(q − 1)2q1p1 + (q − 1)(qa − 1)q1 + (1− j/q1)(jp1 + q1(qa − 1)) has solutions
in integers, then its discriminant must be equal to q2

1l
2, where l ∈ Z. But D = (qa −

1)2q2
1 + 4(qa − 1)q1p1(q1 − j) + 4p2

1j(q1 − j), whence follows, that j(q1 − j) = (q1 − j)2,
what is wrong.

So, we have shown that α is conjugated to α′′:
α′′(u) = ξu + Azj,
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α′′(z) = z + Bzi(α) + B2z
i(α)+q1 + B3z

i(α)+2q1 + Bj/q1z
i(α)+(1+j/q1)q1 + Bq2z

i(α)+q1(1+q2),

where Bj/q1 = cu
k1,mj/q1+1

−2+qa , Bq2 = c̃uk2,m1+q2
−2+qa if q1(1 − qa − (q − 1)p1) = 0 and

Bq2 = 0 otherwise.
Let’s show now, that B3 can be taken as cb3u

k2,m2−2+qa . In order to do that, we
exhibit that in formulas (1.30)-(1.33) monomials with ω2

2 belong to the image of the
map (1.27). Then the case q = 1 is equivalent to a general case, and since q = 1 is one
of the solutions of (q − 1)q1(1 − qa − (q − 1)p1) = 0, B3 is defined in the same way as
Bq. For that, according to (1.30)-(1.33), we must show that

∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (mq+1 − j)p1u

−1b/(jq1) + a = 0

where b = C2
j ω

2
2y

2
2,m1

cbq1/p1u
2k2,m1−2+qa + C2

qa
cbq1/p1ω

2
2u

2k2,m1−2+qa + qajcbq1/p1ω
2
2(p1 −

qa + k2,m1)/j, a = C2
qa−1 + C2

i(α)(p1 − qa + k2,m1)
2/j2 + (qa − 1)i(α)(p1 − qa + k2,m1)/j.

In fact,

C2
j

(p1 − qa + k2,m1)
2q1

j3p1

(2k2,m1 − 2 + qa) + C2
qa

q1(2k2,m1 − 2 + qa)

p1j
+

qaj
q1(p1 − qa + k2,m1)

p1j2
(2k2,m1 − 2 + qa) − qa

j
(C2

j

(p1 − qa + k2,m1)
2q1

j2p1

+ C2
qa

q1

p1

+

qaj
q1(p1 − qa + k2,m1)

p1j
)+

m2 − j

j
(C2

j

(p1 − qa + k2,m1)
2

j2
+C2

qa
+qaj

p1 − qa + k2,m1

j
)+C2

qa−1+

C2
i(α)(p1 − qa + k2,m1)

2/j2 + (qa − 1)i(α)(p1 − qa + k2,m1)/j = 0,

and it proves our assumption.
The case k1,mq = k2,mq is more simple, and all the arguments remain true.

b)
In this case the system −k1−qa

m−j
= p1

q1
, −k2−1

m
= p1

q1
is incompatible, that is why for

all m the ”cokernel” of the map (1.27) is one-dimensional, A = c1u
qa , B = c2u

qa−1.
Let denote as k1,nq the solution of the equation −k1−qa

nq−j
= p1

q1
, and as k2,mq the

solution of the equation −k2−1
mq

= p1

q1
. It is clear that mq = qm1 = qq1, as in the case a),

and nq+1 = nq+m1 only if nq+m1 �= j. But in this case the next value of nq+1 is nq+2m1,
so we consider this recurrence relation to be true always. Further, (k1,nq −k2,mq) doesn’t
depend on q, as in a), and k2,mq+1 = k2,mq + k2,m1 − 1, k1,nq+1 = k1,nq + k2,m1 − 1.

The proof, that follows, would be divided into three cases:
1) q1 < j (see case B) 2) b) ii)),
2) q1 > j, j � |q1 (see case B) 2) c) i)),
3) j|q1 (see case B) 2) c) ii)).

We put B2 = c1u
k1,n1−2+qa , B3 = c2u

k2,m1−2+qa , if n1 < m1, and B2 = c1u
k2,m1−2+qa ,

B3 = c2u
k1,n1−2+qa otherwise.

101



In the case 1)
n1,m1 < j, n1 < m1. The idea of the following proof is the following: we look for
the sequentional conjugations fnq and fmq , where fnq(u) = u + xnqz

nq , fnq(z) = z +
ynqz

nq , and xnq , ynq are solutions of the homogeneous system (1.21), (1.22) with m =
nq; fmq(u) = u + xmqz

mq , fmq(z) = z + ymqz
mq , where xmq , ymq are solutions of the

homogeneous system (1.21), (1.22) with m = mq. We choose xnq , ynq , xmq , ymq so that
with these conjugations the equation (1.26) become solvable with m = nq+1, m = mq+1.

For the automorphism fmq we can use the results from the case a), because xmq

and ymq here have the form ω2xmq ,2, ω2ymq ,2, ν̄(ymq ,2) = k2,mq − 1, ν̄(xmq ,2) = k2,mq ,
and m1 = q1 < j, j �= mq. We rewrite for fnq the formula (1.29):
if q > 1, then

α′fnq(u) = ξu + Azj + c′nq+j+m1
znq+j+m1 + . . . + ξxnqz

nq +
∂

∂u
(xnq)Aznq+j+

nqBxnqz
nq+j + nqB2xnqz

nq+n1+j + nqB3xnqz
nq+m1+j + . . .

fnqα
′′(u) = ξu + ξxnqz

nq + Azj +
∂

∂u
(A)xnqz

nq+j + jynqAznq+j+

c′′nq+n1+jz
nq+n1+j + c′′nq+m1+jz

nq+m1+j + . . .

(since nq > m1, there are no more terms with znq+m1+j),

α′fnq(z) = z+Bzi(α)+B2z
i(α)+n1+B3z

i(α)+m1+a′
nq+m1+i(α)−1z

nq+m1+i(α)+. . .+ynqz
nq+1+

∂

∂u
(ynq)Aznq+i(α)+(nq+1)Bynqz

nq+i(α)+(nq+1)B2ynqz
nq+n1+i(α)+(nq+1)B3ynqz

nq+m1+i(α)

fnqα
′′(z) = z+ynqz

nq+1+Bzi(α)+B2z
i(α)+m1+B3z

i(α)+n1+
∂

∂u
(B)xnqz

nq+i(α)+i(α)ynqBznq+i(α)+

∂

∂u
(B2)xnqz

i(α)+n1+nq + (i(α) + n1)ynqB2z
n1+nq+i(α) +

∂

∂u
(B3)xnqz

i(α)+m1+nq+

(i(α) + m1)ynqB3z
m1+nq+i(α) + a′′

nq+n1+i(α)−1z
nq+n1+i(α) + a′′

nq+m1+i(α)−1z
nq+m1+i(α) + . . .

The formula remains true for q = 1 also, as it is seen from the calculations, similar to
q = 1 in case a).

If n1|m1 and k1,nq + (m1/n1 − 1)k1,n1 = k2,mq , i.e. m1/n1k1,n1 = k2,m1 , then the
coefficient a′′

nq+m1+i(α)−1 (c′′nq+m1+i(α)−1 ) depends on a′′
nq+n1+i(α)−1 (c′′nq+n1+i(α)−1) in a

general case. In this situation for almost all q the conjugation fnq can be chosen so that
the equation (1.26) is solvable for m = mq, and fmq so that equation (1.26) is solvable
for m = nq+1.

Thus, the arguments, similar to the case a), tell us that α is conjugated to β:
β(u) = ξu + Azj,
β(z) = z + Bzi(α) + B2z

i(α)+n1 + Bqz
i(α)+mq + Bq2z

i(α)+nq2 ,
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where Bq = cuk2,mq−2+qa or equals to zero. It depends on that, if at least one expression
from

∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (mq+1 − j)p1u

−1b/(jq1) + a

equals to zero or not, with b = uk1,nq +wk1,n1−2+qanq, a = (k1,n1−2+qa)u
k1,nq +wk1,n1−3+qa+

(1−i(α)+mq−1)u
k1,nq +wk1,n1−3+qa(p1−qa+k1,nq)/j, w has the values from 1 to q1/n1−1,

in other words, if equals to zero at least one of expressions

−(1 + w)n2
1p1 + n1jw − (q − 1)(2 + w)q1n1 + q1(−2 + (1 + w)qa)+

q1[p1(j(q−1)(w+2)+j−(q−1)2q1+(q−1)q1+2q1)+2j(qa−1)+(q−1)q1((1+w)qa−2)]
(1.34)

Further, Bq2 = cuk1,nq2
−2+qa or zero, in accordance with equality to zero of the expres-

sion
∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (nq2 − j)p1u

−1b/(jq1) + a

with b = nq2−1u
k2,mq2−1+k1,n1−2+qa , a = (k1,n1 − 2 + qa)u

k2,mq2−1+k1,n1−3+qa + (1 − i(α) +

mq2−2)u
k2,mq2−1+k1,n1−3+qa(p1 − qa + k2,mq2−1)/j, i.e.

− (q2 − 2)2q2
1p1 + (q2 − 2)q1jp1 + p1j(j − n1) + (3j + n1)q1(qa − 1) (1.35)

We note, that this equation doesn’t have solutions in integers, i.e. Bq2 = 0. Really,
its discriminant must be equal to q2

1p
2
1l

2, l ∈ Z. But D = q2
1j

2p2
1 + 4q2

1p
2
1j(j − n1) +

4q3
1p1(qa − 1)(3j + n1), hence 0 < p2

1q
2
1(j − n1)

2 = q2
1p1(qa − 1)(3j + n1) < 0, a

contradiction. Thus we have proved the case B) 2) b) ii) i’).

If n1 � |m1 or (m1/n1)k1,n1 �= k2,m1 , then the solvability of the equation (1.26)
for m = nq+1, a = a′′

nq+m1+i(α)−1, b = c′′nq+m1+i(α)−1 doesn’t depend on coefficients

a′′
nq+n1+i(α)−1 (c′′nq+n1+i(α)−1). In this case for almost all q fnq can be chosen so that the

equation (1.26) is solvable for m = nq+1, and fmq so that equation (1.26) is solvable
for m = mq+1. Not very complicated modification of all arguments, mentioned before,
leads us to the conclusion, that α is conjugated to β:
β(u) = ξu + Azj,
β(z) = z + Bzi(α) + B2z

i(α)+n1 + B3z
i(α)+m1 + B4z

i(α)+2m1 + Bqz
i(α)+m1 + Bq2z

i(α)+nq2 ,
where Bq = cuk2,mq−2+qa or equals to zero in accordance with equality to zero of the
expression
q1(1 − qa − (q − 1)p1),
B4 = Bq for q = 1, Bq2 = cuk1,nq2

−2+qa or equals to zero in accordance with equality to
zero of the expression

∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (nq2 − j)p1u

−1b/(jq1) + a = 0
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with b = nq2−1u
k1,nq2−1+k2,m1−2+qa , a = (k2,m1 − 2 + qa)u

k1,nq2−1+k2,m1−3+qa + (1− i(α) +

nq2−2)u
k1,nq2−1+k2,m1−3+qa(p1 − qa + k1,nq2−1)/j, i.e.

−n2
1p1−q1(p1(2j+q1(q2−3)2)−(j+q1(q2−2))(qa−1))+n1q1(−1−2p1(q2−3)+qa) (1.36)

This equation has no solutions in integers by the same reasons as (1.35), where
from Bq2 = 0 (see case B) 2) b) ii) ii’) ).

In the case 2)
m1 < n1, and since j � |q1, we can apply here the arguments from the case 1). Then the
result would coincide with the result of the previous paragraph.

In the case 3)
m1 < n1, but j|q1, so we rewrite the formula (1.29) for the conjugation fmq , q ≥ 1 in
the following way:

α′fmq(u) = ξu + Azj + c′mq+m1+jz
mq+m1+j + . . . + ξxmqz

mq +
∂

∂u
(xmq)Azmq+j+

mqBxmqz
mq+j +

1

2

∂2

∂u2
(xmq)A

2zmq+2j + C2
mq

B2xmqz
mq+2j + mqB

∂

∂u
(xmq)Azmq+2j+

mqB2xmqz
mq+m1+j + mqB3xmqz

mq+n1+j + . . .

fmqα
′′(u) = ξu + ξxmqz

mq + Azmq + Azj +
∂

∂u
(A)xmqz

mq+j+

jymqAzmq+j + c′′nq+jz
nq+j + . . . + c′′mq+m1+jz

mq+m1+j + . . .

α′fmq(z) = z+Bzi(α)+B2z
i(α)+m1+B3z

i(α)+n1+a′
mq+m1+i(α)−1z

mq+m1+i(α)+. . .+ymqz
mq+1+

∂

∂u
(ymq)Azmq+i(α)+(mq+1)Bymqz

mq+i(α)+
1

2

∂2

∂u2
(ymq)A

2zmq+2i(α)−1+C2
mq+1B

2ymqz
mq+2i(α)−1+

(mq + 1)B
∂

∂u
(ymq)Azmq+2i(α)−1 + . . . + (mq + 1)B − 2ymqz

mq+m1+i(α) + . . .

fmqα
′′(z) = z + ymqz

mq+1 + Bzi(α) + B2z
i(α)+m1 + B3z

i(α)+n1+

∂

∂u
(B)xmqz

mq+i(α) + i(α)ymqBzmq+i(α) +
∂

∂u
(B2)xmqz

i(α)+m1+mq+

a′′
nq+i(α)−1z

nq+i(α) + . . . + a′′
mq+m1+i(α)−1z

mq+m1+i(α) + (i(α) + m1)ymqB2z
m1+mq+i(α) + . . .

Hence follows, that two cases are possible:
a’) the solvability of the equation (1.26) for m = mq + m1 doesn’t depend on

coefficients c′′nq+j, . . . , c
′′
mq+m1

, a′′
nq+j, . . . , a

′′
n1+m1

, that is it depends only on c′′mq+m1+j,
a′′

mq+m1+i(α)−1 (and it is equal to −p1 + qa − 2 �= q1(qa − 1)/j).
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b’) the solvability of the equation (1.26) for m = mq + m1 depends on coefficients
c′′nq+j, . . . , c

′′
mq+m1

, a′′
nq+j, . . . , a

′′
n1+m1

, i.e. −p1 + qa − 2 = q1(qa − 1)/j.
In the case a’), repeating the proof as in the previous cases, we get the same result

as in the case 2) (it corresponds to a case B) 2) c) ii) i’)).
In the case b’) the conjugations fmq determine the solvability of the equation (1.26)

for m = nq, and conjugations fnq — for m = mq+1. Here, in this case of m = nq, as seen
from the formula above, can exist not more than two q — solutions of the equation

∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (nq2 − j)p1u

−1b/(jq1) + a = 0

with b = 2−1 ∂2

∂u2 (uk2,mq
)u2qa + C2

mq
u2qa−2p2

1/q
2
1u

k2,mq + mqp1/q1u
2qa−1 ∂

∂u
(uk2,mq ),

a = 2−1 ∂2

∂u2 (uk2,mq−1)u
2qa(p1−qa+k2,mq)/j+C2

mq+1u
2qa−2p2

1/q
2
1u

k2,mq−1(p1−qa+k2,mq)/j+

(mq + 1)p1/q1u
2qa−1 ∂

∂u
(uk2,mq−1)(p1 − qa + k2,mq)/j, i.e.

(p2
1(−1+q−q1(−1+q−2q2+qq1))−qq2

1(qa−1)+p1q1(1−3q−(q−1)qq1+qqa)) = 0 (1.37)

and in the case m = mq+1 not more than (mq+1 − nq)/j + 1 = q1/j = w q — solutions
of the appropriate equation

∂

∂u
(b)/j − b

∂

∂u
(A)/(jA) + (nq2 − j)p1u

−1b/(jq1) + a = 0 (1.38)

Thus, α is conjugated to β:
β(u) = ξu + Azj,
β(z) = z + Bzi(α) + B2z

i(α)+m1 + Bqn,1z
i(α)+nq1 + Bqn,2z

i(α)+nq2 + Bqm,1z
i(α)+mq1 + . . . +

Bqm,wzi(α)+mqw ,

where Bqn,i = ciu
k1,nqi

−2+qa , Bqm,j = cju
k2,mqj

−2+qa or 0 depending on solvability of
corresponding equations (it is the case B) 2) c) ii) ii’)).

In the case c),
when q1 = j, we use arguments from both: the previous case and the case a), and get
from there, that α is conjugated to β:
β(u) = ξu + Azj,
β(z) = z + Bzi(α) + B2z

2i(α)−1 + B3z
3i(α)−2 + Bqm,1,1z

i(α)+q0q1 + Bqm,1,2z
i(α)+q2q1 +

Bqm,1,3z
i(α)+q3q1 + Bqm,2,1z

i(α)+q′1q1 + Bqm,2,2z
i(α)+q′2q1 + Bqm,2,3z

i(α)+q′3q1 ,

where B2 = cb2u
−p1−1+qa , B3 = cb3u

−p1+2qa−2, Bqm,1,i = cbqm,1,iu
−p1q−1

1 (qiq1−j)+2qa−2,

Bqm,2,j = cbqm,2,ju
−p1q′j+qa−1 or 0 depending on solvability of corresponding equations

∂
∂u

(b)/j − b ∂
∂u

(A)/(jA) + (nq2 − j)p1u
−1b/(jq1) + a = 0. If we denote as b50, a50 b and

a in (1.37), then the appropriate b, a, b′, a′ for two equations are equal to

b = b50 + c−2
a mqu

kmq,1u−p1+1−2+qa
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a = a50 + c−2
a (1 − i(α) + mq − m1)u

−p1+qa−2+qaukmq,1−1(p1 − qa + k1,mq)/j (1.39)

b′ = b50 + c−2
a mqu

kmq,2u−p1+1−2+qa

a = a50 + c−2
a (1 − i(α) + mq − m1)u

−p1+qa−2+qaukmq,2−1(p1 − qa + k2,mq)/j (1.40)

where ca is a constant for the coefficient A, and the rest notations are taken from the
case a). By direct calculations it is not difficult to show, that these equations are not
solvable.

The proof of the last statement in the theorem is similar to the proof of the state-
ment in the theorem 2.

The theorem is proved.
�
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