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ABSTRACT: We introduce a “web-based formalism” for describing the category of half-
supersymmetric boundary conditions in 1+ 1 dimensional massive field theories with N =
(2,2) supersymmetry and unbroken U(1)g symmetry. We show that the category can
be completely constructed from data available in the far infrared, namely, the vacua, the
central charges of soliton sectors, and the spaces of soliton states on R, together with

certain “interaction and boundary emission amplitudes.”

These amplitudes are shown to
satisfy a system of algebraic constraints related to the theory of A, and L., algebras.
The web-based formalism also gives a method of finding the BPS states for the theory
on a half-line and on an interval. We investigate half-supersymmetric interfaces between
theories and show that they have, in a certain sense, an associative “operator product.”
We derive a categorification of wall-crossing formulae. The example of Landau-Ginzburg
theories is described in depth drawing on ideas from Morse theory, and its interpretation
in terms of supersymmetric quantum mechanics. In this context we show that the web-
based category is equivalent to a version of the Fukaya-Seidel A,.-category associated to
a holomorphic Lefschetz fibration, and we describe unusual local operators that appear
in massive Landau-Ginzburg theories. We indicate potential applications to the theory of
surface defects in theories of class S and to the gauge-theoretic approach to knot homology.



Contents

1. Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Preliminaries

Branes

Supersymmetric (B, B,) Strings
Bulk Vertices

An Algebraic Structure
Categorical Wall-Crossing Formula
A More Detailed Summary

2. Webs

2.1
2.2
2.3
2.4

2.5

Plane Webs

Half-Plane Webs

Strip-Webs

Extended Webs

Special Configurations Of Vacuum Weights

3. Tensor Algebras Of Webs And Homotopical Algebra

3.1

3.2

3.3

Lo And Plane Webs

3.1.1 Examples Of Web Algebras

Algebraic Structures From Half-Plane Webs

3.2.1 Ls.-Modules

3.2.2  Ay-Algebras

3.2.3 The LAy -Identities

3.2.4  Conceptual Meaning Of The LA.-Identities
Bimodules And Strip Webs

4. Representations Of Webs

4.1

4.2
4.3
44
4.5
4.6

Web Representations And Plane Webs

4.1.1 Isomorphisms Of Theories

Web Representations And Half-Plane Webs

Web Representations And Strip-Webs

On Degrees, Fermion Numbers And R-Symmetry
Representations Of Extended Webs

A Useful Set Of Examples With Cyclic Vacuum Weights
4.6.1 The Theories T

4.6.2  The Theories %SU(N)

4.6.3 Cyclic Isomorphisms Of The Theories
4.6.4 Relation To Physical Models

co 3 ot O

11
12
15
16

16
16
24
28
31
32

34
34
37
37
38
39
40
41
43

44
45
49
50
54
o7
60
61
61
69
75
76



5. Categories Of Branes 79

5.1 The Vacuum A,-Category 79
5.2 Branes And The Brane Category Bt 82
5.3 Homotopy Equivalence Of Branes 83
5.4 Brane Categories And The Strip 85
5.5 Categorification Of 2d BPS Degeneracies 87
5.6 Continuous Deformations 88
5.7  Vacuum And Brane Categories For The Theories 7:9N And ’BSU(N) 89
6. Interfaces 97
6.1 Interface Webs 97
6.1.1 Definition And Basic Properties 97
6.1.2 Tensor Algebra Structures 99
6.1.3 Web Representations, Interfaces, And Interface Categories 100
6.1.4 Identity And Isomorphism Interfaces 101
6.1.5 Trivial Theories 105
6.1.6 Tensor Products Of A.-Algebras 105

6.2 Composite Webs And Composition Of Interfaces 105
6.3 Composition Of Three Interfaces 116
6.3.1 Limits 118
6.3.2 Homotopies 120
6.3.3 Homotopies Of Homotopies 123

6.4 Invertible Interfaces And Equivalences Of Theories 130
7. Categorical Transport: Simple Examples 130
7.1 Curved Webs And Vacuum Homotopy 132
7.2 Rotation Interfaces 133
7.3 Wedge Webs 134
7.4 Construction Of Interfaces For Spinning Vacuum Weights 136
7.4.1 Past And Future Stable Binding Points 136
7.4.2  Defining Chan-Paton Spaces And Amplitudes 142
7.4.3 Verification Of Flat Parallel Transport 149
7.4.4 Rigid Rotations And Monodromy 150
7.4.5 The Relation Of Ground States To Local Operators 151

7.5 Locally Trivial Categorical Transport 151
7.6 S-Wall Interfaces 153
7.7 Categorification Of Framed Wall-Crossing 161
7.8 Mutations 162
7.9 Categorical Spectrum Generator And Monodromy 166
7.10 Rotation Interfaces For The Theories 7:9N And %SU(N) 167
7.10.1 Powers Of The Rotation Interface 182



8.

10.

11.

12.

Categorical Transport And Wall-Crossing 183

8.1 Preliminary Remarks 183
8.2 Tame Vacuum Homotopies 187
8.3  Wall-Crossing From Exceptional Webs 189

8.3.1 Lyo-Morphisms And Jumps In The Planar Taut Element 189

8.3.2 As-Morphisms And Jumps In The Half-Plane Taut Element 195

8.3.3 An Interface For Exceptional Walls 197
8.4  Wall-Crossing From Marginal Stability Walls 199
Local Operators And Webs 209
9.1 Doubly-Extended Webs And The Complex Of Local Operators On The Plane209
9.2 Traces Of Interfaces 213
9.3 Local Operators For The Theories 7V and 75V®Y) 214

A Review Of Supersymmetric Quantum Mechanics And Its Relation To

Morse Theory 217
10.1 The Semiclassical Approximation 217
10.2 The Fermion Number Anomaly 221
10.3 Instantons And The Flow Equation 222
10.4 Lifting The Vacuum Degeneracy 224
10.5 Some Practice 228
10.6 Why Q% =0 230
10.7 Why The Cohomology Does Not Depend On The Superpotential 232

Landau-Ginzburg Theory As Supersymmetric Quantum Mechanics 238

11.1 Landau-Ginzburg Theory 238
11.2 Boundary Conditions 242
11.2.1 Generalities 242
11.2.2 Hamiltonian Symplectomorphisms 246
11.2.3 Branes With Noncompact Target Spaces 250
11.2.4 W-Dominated Branes 251
11.2.5 Thimbles 253
11.2.6 Another Useful Class Of Branes: Class T} 254
11.3 The Fukaya-Seidel Category 258
MSW Complex On The Real Line: Solitons And Instantons 261
12.1 The Fermion Number 261
12.2 Properties Of The n-Invariant 264
12.3 Quantum BPS States 266
12.4 Non-Triviality Of The Differential 271



13. MSW Complex On The Half-Line And The Interval 274

13.1 The Half-Line 274
13.2 The Strip 275
13.3 The Fermion Number Revisited 277
13.4 Implications Of The Bulk Anomaly 283
13.5 Implications Of The Boundary Anomaly 286

14. (-Instantons And (-Webs 288
14.1 Preliminaries 288
14.2 Fan-Like Asymptotics and (-Webs 290
14.3 The Index Of The Dirac Operator 296
14.4 More On (-Gluing 298
14.5 The Collective Coordinates 299
14.6 Interior Amplitudes And The Relations They Obey 305
14.7 (-Instantons On A Half-Space Or A Strip 308
14.7.1 Preliminaries 308

14.7.2 Boundary Amplitudes And The Relations They Obey 310

14.7.3 (-Instantons On A Strip 312

15. Webs And The Fukaya-Seidel Category 314
15.1 Preliminaries 314
15.2 Morphisms 316
15.3 Multiplication 322
15.4 The Higher Ao, Operations 325

16. Local Observables 328
16.1 The Need For Unfamiliar Local Observables 328
16.2 Local Open-String Observables 330
16.3 Closed-String Observables 333
16.3.1 Twisted Closed-String States 333

16.3.2 Fans Of Solitons 336

16.3.3 More On The Mirror of CP! 340

16.3.4 Closed-String Amplitudes 343

16.4 Direct Treatment Of Local A-Model Observables 345

17. Interfaces And Forced Flows 351
18. Generalizations, Potential Applications, And Open Problems 357
18.1 Generalization 1: The Effect Of Twisted Masses 357
18.2 Generalization 2: Surface Defects, Spectral Networks And Hitchin Systems 359
18.3 Generalization 3: Hierarchies Of Scales And Cluster-Induced Webs 363
18.4 Potential Application: Knot Homology 370
18.4.1 The Main Point 370

18.4.2 Preliminary Reminder On Gauged Landau-Ginzburg Models 373



18.4.3 Lightning Review: A Gauge-Theoretic Formulation Of Knot Homology374

18.4.4 Reformulation For M3 =R x C'

18.4.5 Boundary Conditions Defining The Fields Of The CSLG Model

18.4.6 Finite-Dimensional LG Models: The Monopole Model
18.4.7 Finite-Dimensional Models: The Yang-Yang Model

18.4.8 Knot Homology From Interfaces Between Landau-Ginzburg Models

. Summary Of Some Homotopical Algebra

Al

A2
A3
A4
A5
A6

B.1
B.2

Shuffles And Partitions

Ay Algebras

A~ Morphisms

Aso Modules

L Algebras, Morphisms, And Modules
LA, Algebras, Morphisms, And Modules

. A, Categories And Mutations

A Categories And Exceptional Categories

Mutations Of Exceptional Categories

B.2.1 Exceptional Pairs And Two Distinguished Branes
B.2.2 Left And Right Mutations

. Examples Of Categories Of Branes

C.1

One Vacuum

C.2 Two Vacua

. Proof Of Equation (7.181)

. A More Technical Definition Of Fan Boundary Conditions

379
382
385
389
389

392
392
393
397
398
400
402

404
404
407
407
408

412
412
412

415

416

Signs In The Supersymmetric Quantum Mechanics Formulation Of Morse

Theory

F.1
F.2
F.3

Preliminaries
A Mathematical Sign Rule
Approach Via Supersymmetric Quantum Mechanics

417
418
419
420

1. Introduction

1.1 Preliminaries

This paper is devoted to the study of massive two-dimensional theories with (2,2) su-
persymmetry. The supersymmetry operators of positive spacetime chirality are denoted
Q+,Q -+ and those of negative chirality by Q_, Q_. (The adjoint of an operator O is denoted



O.) It will be important that there is an unbroken U(1) R-symmetry, whose generator we
call F or “fermion number.” Supersymmetry generators of F = +1 are Q_ and Q 4, and
those of F = —1 are Q4 and @_. In Minkowski space with metric d¢? = —dt? + d?, the
supersymmetry algebra is

{QJH@—Q—} =H +P

{Q-.Q }=H-P
{Q—HQ—} :7
{QJH@*} = Z7 (11)

with other anticommutators vanishing. Here H ~ —i0; and P ~ —i0, are the energy and
momentum and Z is a central charge, which commutes with the whole algebra and with
all local operators.

Typically, we consider a theory with a finite set V of vacua (in some applications, one
allows infinitely many vacua) in each of which there is a mass gap. Because Z is central,
in the 75 sector, which is defined as the space of states that interpolate from a vacuum i
at r — —oo to a vacuum j at x — +00, Z is equal to a fixed complex number z;;. Cluster
decomposition implies that for 7, j,k € V, 2;; + zjr = 2z, and therefore there are complex
numbers W; (unique up to a common additive constant) such that W; — W; = z;;, 4,5 € V.
W; is called the value of the superpotential in vacuum i € V.

A large supply of massive N' = 2 theories with U(1) R-symmetry can be constructed
as Landau-Ginzburg (LG) models with chiral superfields ¢q, ..., ¢, valued in C", and
a suitable superpotential function W(¢1,...,¢,). (Any superpotential at all leads to a
theory with a U(1) R-symmetry. Generically such a theory is massive and we usually call
these theories massive N/ = 2 theories, leaving the R-symmetry understood.) Many of
our considerations apply to more general LG models with general Kéahler target space X
and holomorphic Morse function W, but our considerations are already quite nontrivial
for the case X = C, and we restrict attention to X = C” in this introduction. Since a
model defined in some other way may have a description as an effective LG theory at low
energies, it may be that for some purposes this type of example is universal. In this paper,
we describe a framework that we believe applies generally, but on some key points we rely
on knowledge of LG models to infer what structure to expect.

Our goal is really to understand what additional information beyond the vacua and
their central charges is needed in order to describe the supersymmetric states of a massive
N = 2 theory. The most elementary extra needed information concerns the BPS soliton
states in the ij sector. For useful background and further references see [14, 15, 50]. Let
Qij=Q- — C;1@+, with |(| = 1. Then for a state of P =0 in the ij sector,

{Qij, Qij} =2(H — Re (Cglzij))- (1.2)

A standard argument shows that BPS states — states annihilated by Q;; and Q;; — can
exist only if H = |2;;| and (;; = 2;j/|2ij|. Such states come in supermultiplets consisting
of a pair of states with 7 = f, f + 1 for some f. Using cluster decomposition, it can be
shown that the values of f mod Z depend only on the vacua i and j. The number of BPS



multiplets for a given value of f is the most basic observable that goes beyond a knowledge
of the set V of vacua and the corresponding superpotential values W;. In this paper, we
write R;; for the space of BPS solitons in the ij sector.

As reviewed in Section §12, in an LG model, a classical approximation to R;; is the
space R;; of solutions of a certain supersymmetric soliton equation. In general, R;; does
not necessarily give a basis for the space R;; of quantum BPS soliton states. To determine
Rij, one must in general compute certain instanton corrections to the classical soliton
spectrum. The instantons are solutions of a certain nonlinear partial differential equation
that we will call the (-instanton equation.! For LG models, the construction of this paper
can be developed taking as the starting point either the classical space R;; of BPS solitons
or the corresponding quantum-corrected space R;;. However, the construction is probably
easier to understand if one starts with the classical space R;;, so we will use that language
in this introduction. For an abstract massive N' = 2 model that is not presented as an LG
model (and more generally is not presented with anything one would call a classical limit),
there is no space R;; of classical solitons and one has to make the construction in terms of
the space R;; of quantum solitons, that is, BPS states in the ij sector.

1.2 Branes

We can get a much richer story by considering also half-BPS branes. We consider our
theory on a half-plane H defined by > 0 with a boundary condition at x = 0 determined
by a brane B. We suppose that, for some complex number (y of modulus 1, the brane
% is invariant under the supersymmetry Qm = @ — ngl@ . and its adjoint Qgp. We also
generally assume that (g does not coincide with any of the ¢;;. (This assumption keeps us
away from walls at which jumping phenomena occur.)

A basic question about such a brane is as follows. If we formulate a massive N = 2
theory on the half-plane H with the brane B8 at x = 0 and a vacuum i € V at z = oo, then
what supersymmetric states are there, and with what values of the fermion number 77 We
write &(B) or just & for the space of such states. The spaces &;(B) depend on the brane
8 and on additional microscopic details of the theory. (In a Landau-Ginzburg theory, as
explained in Section §13, &;(B) can be determined by solving the classical soliton equation
with boundary conditions determined by 8 and computing instanton corrections. The
relevant instantons are solutions of the (y-instanton equation obeying certain boundary
conditions.)

The assumption that (y3 does not coincide with any of the (;; ensures that one cannot
make a supersymmetric state consisting of a BPS soliton at rest in the presence of the
brane 8. However, if we transform to Euclidean signature (by letting ¢ = —i7 so that the
metric on R? becomes ds? = d72 + da?), there can potentially exist a BPS configuration
consisting of B together with a boosted or more precisely (in Euclidean signature) a rotated
soliton. To understand why, recall that (;; was defined so that an ij BPS soliton at rest
at fixed x — so that its world line is a straight line in the 7 direction — is invariant under
Qij = Q- — C;1§+ If we rotate the z — 7 plane by an angle ¢, then Q;; transforms

1,

'For some prior work on this equation, see [88, 21, 41].



to @ij = e 02 — Ciglei*’ﬂ@Jr. If we pick ¥ = Gij/Cs, then @ij is a multiple of Q.
Hence a soliton whose worldline is a straight line at an angle ¢;; = Arg((;;/(n) to the 7-
axis preserves the same supersymmetry as the brane 8. Accordingly, one can ask (Figure
1) whether there is a supersymmetric coupling by which 8 emits a BPS solition of type
ij at an angle ¢;; to the vertical. The answer to this question is not determined in any
elementary way by any data we have mentioned so far. All we can say from the point
of view of low energy effective field theory is that in general, the answer depends on the
choice of a soliton state in R;;, and on the assumed initial and final states in £;(8) and

&;(B). Thus the answer can be summarized by a linear transformation?
Tijw : £;(B) = &(B) ®@ Ryj. (1.3)

(In a Landau-Ginzburg theory, this linear transformation can be determined, in principle
by solving the (-instanton equation with suitable boundary conditions near the brane and
at infinity. This is explained in Section §14.)

1.3 Supersymmetric (B, B,) Strings

At first sight, it may not be obvious that the amplitude for a supersymmetric brane to
emit a supersymmetric soliton at an angle is related to anything that is usually studied
in a supersymmetric theory. To see that it is, replace the half-plane x > 0 with a strip
0 <z < L, where we can take L to be much greater than the Compton wavelength of
any particle in any of the vacua i € V. Let B, and B, be a pair of mutually BPS branes,
meaning that (p, = (u,, so that Oy, = Oxp,; we denote them as Qyp. Use B, and ‘B,
to define boundary conditions at © = 0 and = L, respectively. By a supersymmetric
(By,*B,) state, we mean a state of this system of zero energy or equivalently a state
annihilated by Qs and its adjoint.

What is the space of these supersymmetric states? There is an obvious approximation
for large L. Far from x = 0 and from x = L, the system must be exponentially close to one
of the vacua i € V. For given i, near x = 0, the system is in some state in £(28,) and near
x = L, it is in some state in &(B,). The mass gap means that to a good approximation,
these two states can be specified independently and thus a large L approximation to the
space of supersymmetric (By, B, ) states is given by

DievEi(Be) @ E:(B). (1.4)

In general, however, eqn. (1.4) only gives an approximation to the space of supersym-
metric (By,B,.) states. The states just described have very nearly zero energy, but they
may not have precisely zero energy. The reason for this is that, rather as in supersymmet-
ric quantum mechanics [87], instanton corrections can lift some approximate zero energy
states away from zero energy, though only by an exponentially small amount. A simple
instanton in this context is a process in which brane B, emits a BPS soliton at an angle
and that soliton is absorbed by %, (Figure 2). The angle at which the soliton propagates

’In the abstract formulation of §4, T} is generalized to to a multisoliton emission amplitude B (an
element of the vector space (4.29)) that satisfies a Maurer-Cartan equation (eqn. (4.47)).



Figure 1: An ij soliton emitted from the boundary. This process is supersymmetric if the soliton
is emitted at the proper angle.

Figure 2: A supersymmetric soliton exchanged between the two branes on the left and the right.

in this figure is determined by supersymmetry, and therefore it is reasonable to expect that
the instanton sketched in the figure has precisely 1 real modulus, which one can think of
as the “time” at which the soliton is exchanged.

In supersymmetric quantum mechanics, an instanton that depends on only 1 real
modulus — the time of the instanton event — gives a correction to the matrix element of a
supercharge of fermion number F = 1. (An anti-instanton that depends on 1 real modulus
similarly corrects the matrix element of an F = —1 supercharge.) More generally, in the
field of an instanton that depends on k real moduli, there are k fermion zero modes, so to
get a non-zero amplitude, one must insert operators that shift F by k units. In massive
LG models, the same relationship holds between the dimension of instanton moduli space
and the violation of fermion number, as explained in Section §14.

Given the facts stated in the last paragraph, the instanton of Figure 2 describes a



Figure 3: This figure shows a variety of rigid strip instantons constructed using boundary vertices
only.

process in which F changes by 1 and thus this instanton can contribute to the matrix
element of Qm between initial and final states that have zero energy in the approximation
of eqn. (1.4). In other words, such instantons can shift some approximately supersymmetric
states away from zero energy. They must be taken into account in order to determine the
supersymmetric (By, B,) states.

Once one gets this far, it is not hard to see that additional types of supersymmetric
instantons might also be relevant. First of all, there might be amplitudes for the branes
By and/or B, to emit simultaneously two or more supersymmetric solitons at suitable
angles. (In a massive Landau-Ginzburg model, such a multiple emission event is again
computed by a solution of the (-instanton equation with suitable boundary conditions.
We consider again the solutions that have only a single real modulus corresponding to
overall time translations.) If so, when the theory is formulated on a strip, many additional
types of supersymmetric instantons are possible. In particular, the instantons indicated
in Figure 3 all depend on only a single real modulus — the overall time of the tunneling
event — since the angles are fixed by supersymmetry. Therefore, these instantons must all
must be taken into account to determine which states of the (B, B, ) system are precisely
supersymmetric. We will say that an instanton in the strip is “rigid” if it has no moduli
except the one associated to time translations. So the instantons depicted in Figure 3 are
all rigid. (Later in this paper, we will make a distinction between “rigid” and “taut” webs
of BPS states on R? or on a half-plane, but in the present context of instantons on a strip,
this distinction does not arise.)

~10 -



Figure 4: A “bulk” vertex that involves a coupling of three BPS solitons. The vacua involved are
i,j,k € V, and the solitons that emanate from the vertex are respectively of types ij, jk, and ki.

1.4 Bulk Vertices

This is still far from the whole story. Certain “closed string” processes must also be
considered. Once one realizes that there can be supersymmetric “boundary” vertices in
which BPS solitons are emitted from a brane, it is natural to wonder if similarly there can
be “bulk” vertices involving the coupling of BPS solitons.> The most basic example is a
trilinear coupling of three BPS solitons (Figure 4), with each soliton emitted at an angle
wij = Arg(;;j/(m, as above. Low energy effective field theory allows this possibility. (In a
Landau-Ginzburg theory, such a coupling arises from a solution of the (-instanton equation
with suitable asymptotic conditions.)

A cubic bulk vertex has at least 2 real moduli, corresponding to the position of the
vertex in R?. For our present discussion, the relevant case is that these are the only moduli
(otherwise, we will not be able to make a rigid instanton in the strip). We say that a bulk
vertex is rigid if it has only the 2 real moduli associated to spacetime translations. Is a rigid
cubic bulk vertex, if it exists, relevant to the problem of understanding the supersymmetric
(B, B,) states? One may think the answer is “no” because once a bulk vertex is included,
even a rigid one, the number of real moduli will be at least 2.

However, it is not hard to construct strip instantons that depend on only 1 real modulus
even though they involve bulk vertices that individually would depend on 2 real moduli

3Examples of such bulk vertices have been constructed in [13, 39]. No analogous explicit examples of
boundary vertices are known.

- 11 -
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Figure 5: Rigid strip instantons whose construction makes use of bulk vertices. We assume the
bulk vertices have no moduli except the ones associated to spacetime translations.

each. Some examples are shown in Figure 5. These web instantons must all be included to
determine which (B, B, ) states have precisely zero energy.

In short, to answer the seemingly simple question of finding the supersymmetric states
on an interval in a massive theory, we need a full understanding of all bulk and boundary
vertices involving couplings of BPS solitons, and how they can be put together to make
what we will call a “web” of BPS solitons.

1.5 An Algebraic Structure

At this point, matters may seem bewilderingly complicated. However, there is a hidden
simplification: the data that we have described can be combined into a rich algebraic
structure that makes things tractable. This structure is the real topic of the present paper.

To illustrate the basic idea, we start with a cubic vertex involving vacua i, j, k and
another cubic vertex involving vacua k, j,l. We assume that each vertex has only the 2
moduli associated to spacetime translations. If the vertices are far apart, we can make an
approximate solution involving all four vacua ¢, j, k, [ by gluing together the jk soliton that
emerges from one vertex with the kj soliton that emerges from the other vertex (Figure 6).
After slightly adjusting the output of this gluing operation, one gets a family of solutions
of the (-instanton equation with a three-dimensional moduli space that we will call M.
(One expects that index theory and ellipticity of the LG instanton equation ensure that
this adjustment can be made.)

To the extent that we can identify the moduli from the figure, two of them are associ-
ated to spacetime translations and the third is the distance d between the two vertices. So
if we rely entirely on this figure, it looks like M is a copy of R x R, , where R? parametrizes
the position of, say, the 15k vertex, and R is the half-line d > 0.

- 12 —



Figure 6: An “end” of the moduli space of solutions of the (-instanton equation corresponding
to two widely separated vertices of type ijk and kj¢. Assuming the individual vertices have only
the obvious moduli associated to spacetime translations, this component of the moduli space is
three-dimensional.

At least in the context of LG models, R? x R, cannot be the correct answer, since
R4 has a boundary at d = 0. Because of the superrenormalizable nature of the LG
theory, there will be no such boundary in the moduli space of solutions of the (-instanton
equation. (A technical statement is that the (-instanton equation is a linear equation plus
lower order nonlinear terms. The linear equation with target space X = C" does not
admit “bubbling” and the superpotential is a lower order term which does not change that
property.) For a generic superpotential, any family of solutions can be continued, with no
natural boundaries or singularities, and with ends that arise only when something goes to
infinity. In a massive LG theory, the scalar fields cannot go to infinity (since the potential
energy grows when they do), so all that can go to infinity are the vertices. This means
that the “ends” of the moduli space have a semiclassical picture in terms of a soliton web,
as in Figure 6. Moreover, this is also true for the reduced moduli space M’ = M /R? that
is obtained by dividing out by spacetime translations.

In Figure 6, the reduced moduli space, to the extent that we can understand it from the
figure, is a copy of R, with one visible end for d — co. But the moduli space cannot just
end at d = 0. It has to continue somehow. Because a one-manifold without boundary that

~13 -



Figure 7: The component of moduli space that has one end depicted in Figure 6 must have a
second end. The second end might be as depicted here. Note that the “fans” of vacua at infinity
are the same in this figure and in Figure 6 so they can appear as parts of the same moduli space.

has at least one noncompact end is a copy of R, which has two ends, it must continue to
infinity with a second end. A correct view of the figure is that it gives a good approximate
picture of a family of solutions of the (-instanton equation when d is large. When d is
not large, the semiclassical picture of the solution given in Figure 6 is not valid. But the
reduced moduli M’ must have a second “end” that again has a semiclassical interpretation.

Low energy effective field theory is not powerful enough to predict what this second
end will be. In general, there are different possibilities. In the case at hand, a natural
possibility (Figure 7) is that in addition to the ijk and kjl vertices that we started with,
there are also solutions of the (-instanton equation corresponding to ijl and [ki vertices.
The reason that the soliton webs shown in figs. 6 and 7 can both appear as part of the
same moduli space is that they connect to the same “web” of BPS solitons at infinity.

In this situation, if we represent an ijk vertex by a symbol f3;;;, we see that there is
some sort of relation between the products 3,10k and B3;j8x;. What is this relationship
precisely?

The answer turns out to be that the bulk vertices are part of an algebraic structure
known as an L., algebra. (More precisely, they define a solution of the Maurer-Cartan
equation in an L algebra. Such a solution can be used to deform an L., algebra to a

— 14 —



new Lo, algebra.) This structure often appears in closed-string theory (for instance, see
[96, 97]), and in related areas of mathematics. The vertices associated to emissions from
a brane can similarly be used to define what in open-string theory and related areas is
sometimes called an A, algebra. We expect that these algebraic structures are universal
for massive N/ = 2 theories, though in motivating them, we have made essential use of LG
models. The reason that we expect so is that these algebraic structures are well-adapted to
answering our basic question of how to determine the spectrum of supersymmetric states
in the presence of branes.

1.6 Categorical Wall-Crossing Formula

The spaces R;; of quantum BPS soliton states and the spaces of quantum ground states
&i(*B) on the half line are objects of independent interest. As the parameters of the under-
lying theory are varied, these spaces of ground states are expected to jump across certain
walls of marginal stability. The standard theory of wall-crossing constrains the variation
of the Witten indices of such spaces of states: the BPS and framed BPS degeneracies

pij = Tre,, (~1)" (B, ) = Tre, @) (~1)" (L5)

The framed BPS degeneracies jump across walls where ¢? aligns to some Gij- The form of
the jump is universal [31]:

Sij+ QUB,j) = QB j) + QB, i)y (1.6)

with all other Q(8, k) remaining unchanged.
The BPS degeneracies jump across walls where (;; aligns to some (. The form of the
jump is universal [15]
ik = ik + ik (1.7)
with all other uy; remaining unchanged. This formula can be derived directly by requiring
compatibility with the framed BPS wall-crossing formula: the relation

Syl Siw[p] S 1] = Sks[1')Sin[1]Si5 (1] (1.8)

implies that the u and p/ degeneracies are related as in (1.7).

In Sections 7 and 8 we address the problem of providing a categorification of such
wall-crossing formulae, i.e. we describe the categorical data which should be added to the
vector spaces R;; and & (*B) in order to allow for a universal description of how such vector
spaces (and the categorical data itself) jump across walls of marginal stability.

The categorical data which has to be added to the &;(28) to describe their wall-crossing
properties essentially coincides with the amplitudes for the emission of BPS solitons from
the boundary condition 93, organized into an object of an appropriate category. The
categorical wall-crossing of &;(*B) is encoded in a “mutation” of that category.

The categorical wall-crossing of the R;; is determined again by requiring compatibility
with the categorical framed BPS wall-crossing formula. The existence of a categorical BPS
wall-crossing formula is related to the observation that mutations form, in an appropriate
sense, a representation of the braid group.
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1.7 A More Detailed Summary

In this introduction, we have omitted several subjects that are treated in considerable detail
in the main text. These include interfaces between theories, as well as bulk and boundary
local operators in massive N/ = 2 theories.

The curious reader who wants to learn more detail, but is daunted by the length of
the present paper, is referred to [35]. These are lecture notes that summarize the entire
paper from a broad perspective, and can serve as a detailed introduction.

2. Webs

In the previous section we have motivated from qualitative physical considerations the
concept of webs associated to a massive two-dimensional supersymmetric QFT. In this
section we abstract that idea and discuss in some detail a purely mathematical construction.

2.1 Plane Webs

We begin with webs in the plane R?, which we sometimes identify with C.

The definition of a web depends on some data. We fix a finite set V called the set of
vacua. Typical elements are denoted i, j,--- € V. We also fix a set of weights associated to
these vacua which are complex numbers {z;}, that is, we fix a map z : V — C. We assume
that z;; # 0 for i # j. The pair (V, z) will be called vacuum data. The following definition
is absolutely fundamental to our formalism:

Definition: A plane web is a graph in R?, together with a labeling of the faces (i.e.
connected components of the complement of the graph) by vacua such that the labels
across each edge are different and moreover, when oriented with ¢ on the left and j on
the right the edge is straight and parallel to the complex number z;; = 2z — z;. We
take plane webs to have all vertices of valence at least three. In Section §2.4 we define
a larger class of extended plane webs which have two-valent vertices. In Section §9 we
will introduce a further generalization to doubly extended plane webs by allowing certain
zero-valent vertices.

Some examples of webs are shown in Figure 8. We make a number of remarks on some
basic properties that immediately follow from this simple definition:

1. Note that the edges do not have an intrinsic orientation. If we reverse the orientation
of an edge then j is on the left and 7 is on the right and then the oriented edge is
parallel to zj; = —z;;. Edges which go to infinity are called external edges and the
remaining edges are internal edges. In section §4 we give external edges a canonical
outward orientation.

2. At each vertex of a plane web the labels in the angular regions in the clockwise direc-
tion define a cyclic fan of vacua, which is, by definition, an ordered set {i1,...,is}
so that the phases of z;, ;, ,,, with k understood modulo s, form a clockwise ordered
collection of points on the unit circle. Put differently

Imz;, |

>0 (2.1)

i Pk, k41
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is5

3

Figure 8: Some examples of plane webs.

fa) (b)

Figure 9: (a) A configuration of weights z; which is not convex. The green triangles indicate the
points iz;. The dual graph gives an example of a web shown in (b). Note that the corresponding
web has a loop.

for all k. We generally denote a cyclic fan of vacua by I = {i1,...,is} and we say
that I has length s.

3. A useful intuition is obtained by thinking of the edges as strings under a tension
given by z;;. Then at each vertex we have a no-force condition:

Ziviy T Zigjiz T+ Zigiy = 0 (2.2)
It follows that the edges emanating from any vertex cannot lie in any half plane.

4. For plane webs the graph must be connected. Moreover, for a fixed set of weights {z;}
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there are only a finite number of plane webs. * We can prove these statements with
a useful argument which we will call the line principle: If we consider any oriented
line in the plane which does not go through a vertex of the web then we encounter an
ordered set of vacua given by the labels of the regions intersecting the line. The line
principle says that no vacuum can appear twice. To prove this note that we can orient
all the edges which intersect the line to point into one half-plane cut out by the line.
Then a vacuum cannot appear twice since if it did in the sequence {i, ji,...,jk, i}
then, on the one hand, the sum of the tensions z; j, +---z; ; = 0, but on the other
hand all the terms in the sum point into the same half-plane, which is impossible.
Therefore there are only a finite number of possible sequences of vacua. This implies
that there are only a finite number of possible vertices. Other corollaries of the line
principle are that no vertex can appear twice within any given web and there are at
least three external edges.

5. A sequence of weights z;, is associated to a cyclic fan of vacua I = {iy,...,i:} if and
only if they are the clockwise ordered vertices of a convex polygon in the complex
plane. The topology of a web to is captured by the decomposition of the polygon P,
associated to I () into the polygons P, associated to the I,(w). This can be seen
by noting that an internal edge of the web connecting vertices v; and v corresponds
to a shared edge of the polygons P,, and P,,. On the other hand, each external edge
of the web is associated to a single vertex v and corresponds to an external boundary
of Py. See, for example, Figure 9. Indeed, the decomposition can be identified with
a dual graph to the web. This provides an alternative, intuitive explanation of many
properties of the webs. The paper [54] of Kapranov, Kontsevich, and Soibelman
emphasizes this dual viewpoint and suggests that it is the proper formulation for
generalizing the structures we find to higher dimensional field theories.

6. A corollary of the above remark is that for a given set of weights {z;} there is a web
with a closed loop if and only if there is a sequence of weights {z;,,..., 2} which
are vertices of a convex polygon such that there is a weight z;, in the interior of the
polygon. The existence of a web with a closed loop implies that there are positive
numbers A\, with

)\131’171’0 + -+ )\szis,i() =0 (23)
and hence
Zig = 112y ig ++ + sZig g (2.4)

with ta = Ao/ D5 Ag. Conversely, if (2.4) holds with Im(z;, i %) > 0 for all k
then it is easy to show that {ix_1,ix, 70} is a cyclic fan of vacua so the web shown in
Figure 9(b) exists.

7. Some notation: We will denote a web (or rather its “deformation type” - defined
below) by a gothic “w,” which looks like w. The set of vertices is denoted by V(w),

4This finiteness property is one advantage of the requirement that all vertices have valence bigger than
two.
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10.

and it has order V(w). Similarly, the set of internal edges is £(tv) and has order
E(r). At each vertex v € V(i) there is a cyclic fan of vacua I, (). The cyclic fan
of vacua at infinity is denoted /().

We have the relation V' (t0) — E(to) + F(tv) = 1, where F'(tv) is the number of bounded
faces (and hence the number of internal loops). This follows since if we add a vertex
at infinity then the web triangulates S2.

In the applications to Landau-Ginzburg theories in Sections §§11-17 below the vacua
V will be the critical points of the superpotential and the vacuum weights z; are
essentially the critical values of of the superpotential. The precise relation, as deter-
mined by equation (11.15) and Figure 133 below is z; = (W;, where W is the critical
value of the superpotential and ( is a phase, introduced in Section §11.

Finally, we note that in the application to knot-homology described in §18.4 we will
need to relax the constraint that V is a finite set. In general, if V is infinite one
can choose weights z; leading to pathologies. (For example, if the weights have an
accumulation point in the complex plane, there will be infinite numbers of webs with
the same fan at infinity.) In Section §18.1 we describe a class of models where V is
infinite, but for which our theory still applies. The knot homology examples belong
to this class.

11 11
. i2 . )
Z4 . Z4 22
13 7:3

Figure 10: The two webs shown here are considered to be different deformation types, even though
the web on the left can clearly degenerate to the web on the right.

A plane web has a deformation type: This is an equivalence class under translation

and/or scaling of the lengths of some subset of the internal edges. This scaling must of

course be compatible with the constraints that define a web: In terms of the string model

of the web mentioned above we are allowed to stretch and translate the strings, but we

must not rotate them, and we must maintain the no-force condition. In a deformation

type no edge is allowed to be scaled to zero size. See Figure 10. The set of webs with
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fixed deformation type t is naturally embedded as a cell D(w) C (R?)V(®) by considering
the (z,y) coordinates of all the vertices of the web. The (internal) edge conditions impose
E(1) linear relations on these coordinates, together with inequalities requiring that each
edge have positive length. When the vacuum weights z; are in general position the edge
conditions will be independent equations and then D(1w) will be a convex cone of dimension

d(w) := 2V (1) — E(w0). (2.5)

We will sometimes refer to d(t) as the degree of the web. Note that there is a free action
of translations on the set of webs of a given deformation type, so d(to) > 2. We will refer
to the quotient D, (1) of the moduli space D(w) by the translation group as the reduced
moduli space. Thus, provided the weights are in general position, the dimension of the
reduced moduli space, called the reduced dimension, is d, (1) := 2V (w) — E(w) — 2.

For generic configurations of weights {z;} the boundary of the closure D(tv) of D(w)
in R2V(™) consists of d(w) — 1 dimensional cells where some edge inequality is saturated.
Thus at each boundary cell two or more vertices of w collapse to a single point p and o
reduces to a simpler web tv; with a marked vertex v at p. In a small neighbourhood of such
boundary cell to can be recovered from tv; by replacing v with an infinitesimally small copy
of a second web w9 formed by the collapsing vertices and edges. The cyclic fan I (w2)
coincides with the cyclic fan I,(1o;).

In order to formalize the relation between tv, tv; and twy we introduce the key con-
struction of convolution of webs:

Definition: Suppose w and w’ are two plane webs and there is a vertex v € V() such
that
I,(w) = Io (). (2.6)

We then define to *, o’ to be the deformation type of a web obtained by cutting out a small
disk around v and gluing in a suitably scaled and translated copy of the deformation type
of to/. It is important that we only use a deformation type here. In general the external
edges of ' do not necessarily meet at a single point when continued inward. However
we can deform to’ so that the edges literally fit with those of to, provided we take the
disk sufficiently small. This and similar statements can be proven trivially from the linear
nature of the constraints imposed on the positions of the vertices by the topology of a web.

The procedure is illustrated in Figure 11. When writing convolutions below we always
put the “container web” on the left.

One easily verifies the relations

E(o %, w') = E(tv) + E(w') (2.7)

V(o #, w') =V () + V(n') -1 (2.8)

and hence we have the important relation

d( *, ') = d(w) + d(w') — 2 (2.9)
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Figure 11: Illustrating the convolution of a web w with internal vertex v having a fan I, () =
{41, 42, Js, ja} with a web 1o’ having an external fan I (') = {j1, j2, j3, ja}-

showing that we can take any sufficiently small representative o’ in D, (w’) and insert it
into any given representative w in D, (1’).

With these results at hand, it is now clear that, for generic weights {z;}, the top
dimension boundary cells of D(tv) are in one-to-one correspondence with pairs (11, )
such that o = w; *, vy and d(twv;) = d(tv) — 1. In the neighbourhood of each such
boundary cell we have a local isomorphism between D(w) and D(w;) X D, (t03).

We now introduce some special classes of webs which will be of the most use to us:

Definition: A rigid web is a web with d(tv) = 2. A taut web is a web with d(rv) = 3 and
a sliding web is a web with d(w) = 4.

A rigid web must have E(w) = 0 hence V(tv) = 1 and hence is just a single vertex.
Using V(tv) — E(tv) + F(tv) = 1 and eliminating E(tv) we have

V(1) =d(w) — 1+ F(io) (2.10)

and hence a taut web has at least two vertices, a sliding web at least three vertices, and so
forth.

Let W be the free abelian group generated by oriented deformation types of webs. By
“oriented” we mean that we have chosen an orientation o(tv) of the cell D(tv). Henceforth
the notation tv will usually refer to such an oriented deformation type, rather than a
specific web. In W the object —tv is the oriented web with the opposite orientation to
tv. Henceforth, when working with WW we will assume the vacuum weights are in generic
position. We return to this assumption in Section §2.5 below.

We now define a convolution operation

ST WXW W (2.11)
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by defining tv; *, wo = 0 if I (w2) # I,(tv1) and then setting

101 * 109 1= Z 101 *, 09, (2.12)
veEV(101)

Note that, because of the line principle, at most one term on the right hand side of (2.12)
can be nonzero. Moreover, in order for this to be well-defined on W we must orient
D(1; xt2). If o(tv) is an orientation of D(tv), thought of as a top-degree form, we can use
the freely-acting translation symmetry to define a “reduced orientation” by

or(to) := L(c'?ay)L(c'iU)O(m) (2.13)
and then we define
o(t1 * 103) := o(tw1) A o, (102). (2.14)

(This uses the product structure near the boundary of the cell where vy shrinks to a single
vertex.)

Since taut webs have a one-dimensional reduced cell we can and will choose a standard
orientation for all taut webs to be the orientation with tangent vector in the direction of
increasing size. That is, the moduli of the taut web can be taken to be an overall position
x,y together with a scaling modulus £. We take the orientation to be dzdydfl. Now we
can define the taut element t € VW to be the sum of all oriented taut webs with standard
orientation:

ti= > w (2.15)
d(w)=3

Including the orientation data, we arrive at our final characterization of the generic
codimension one boundaries of f(m): a typical web to looks like a convolution tv; *, 102
where toy is a taut web and the orientation of w is written as o(w) = o(w1) A dla, with lo
oriented towards the interior of the cell D(tv). Applying this picture to the case where v is
a sliding web we note that 1oy is a taut web as well, and the natural orientation dxdydf;dls
might or might not agree with the orientation of tv. We should thus write to = £t %, t02.
Looking carefully at the global structure of the moduli spaces of sliding webs, we deduce
our first result:

Theorem: We have
txt=0. (2.16)

Proof: Every element toxtv’ in the convolution is a sliding web, since reduced dimension
is additive. The reduced moduli space of a sliding web is a two-dimensional cone. Up to a
linear transformation it has boundary:

ORY = (Rxo x {0}) IT ({0} x Rxo) IT{(0,0)}. (2.17)

Therefore, the terms can be grouped into pairs, each pair contributing to the same defor-
mation type. If the two boundaries are represented by convolutions of taut webs tv * tog
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and tog * vy respectively, the corresponding orientations d¢1dls and df3df, of the reduced
cell are opposite to each other. Thus

101 * oy + tog * toy = 0. (2.18)

This concludes the proof. A concrete example illustrating the above argument is shown in
Figures 12 and 13.

Figure 12: The two boundaries of the deformation type of the sliding web shown on the right
correspond to different convolutions shown above and below. If we use the lengths L, Lo of the
edges as coordinates then the orientation from the top convolution is dLy A dL;. On the other
hand the orientation from the bottom convolution is dL; A dLo and hence the sum of these two
convolutions is zero. This is the key idea in the demonstration that txt = 0.

de,
\

de,

Figure 13: A graphical proof that the two boundaries of the reduced moduli space of a sliding

web are associated to opposite orientations. It is drawn as a cone since the moduli space of plane
webs inherits a metric from the embedding into R?Y, and with this metric the two boundaries are
not orthogonal in general.
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2.2 Half-Plane Webs

Definition:

a.) Let H C R? be a half-plane, whose boundary is not parallel to any of the Zij. A
half-plane web in H is a graph in the half-plane, which allows some vertices, but no edges,
to be subsets of the boundary. The boundary vertices have valence of at least one. We
apply the same rule as for plane webs: Label connected components of the complement of
the graph by vacua so that if the edges are oriented with ¢ on the left and j on the right
then they are parallel to z;;.

b.) A half-plane fan (often, we will just say, “fan”) is an ordered sequence of vacua
{i1,...,in} so that the rays from the origin through z; ;, ., are ordered clockwise for
increasing k and z;, ;,, € H. 5

Remarks:

1. Unlike plane webs, half-plane webs need not be connected.

2. Let u denote a typical half-plane web. There are now two different kinds of vertices,
the boundary vertices Vy(u) and the interior vertices V;(u) with cardinalities Vj(u)
and V;(u), respectively.

3. We will consider Vy(u) to be an ordered set and we will use a uniform ordering
convention for all half-planes H which is invariant under rotation. To this end we
choose a direction 9 along OH so that if 9, is the outward normal to H then 9, A9 is
the standard orientation of the (z,y) plane R?, namely 8% A a%. 6 Now, our ordering

of the boundary vertices

Vo(u) = {09, ... 0 (2.19)
is that reading from left to right proceeds in the direction of 9. In particular, if H,
is the positive half-plane x > ¢, (with boundary on the left) then v?, o) s a

sequence of vertices with decreasing “time” y, while for the negative half-plane Hg,
x < g, (with boundary on the right) the sequence of vertices is in order of increasing
time.

4. We denote general half-plane fans by J, reserving I for cyclic fans. We will denote
the half-plane fan at infinity by J(u). Similarly, if v € Vy(u) there is a half-plane
fan J,(u).

We can again speak of a deformation type of a half-plane web u. The set of webs of a
given deformation type is denoted D(u). It has dimension:

d(u) :=2V;(u) + Va(u) — E(u). (2.20)

SWhen we write z;; € H for a general half-plane H we mean that if we rigidly translate H to H’ so that
the origin is on its boundary then z;; € H’. We will use this slightly sloppy notation again later in the
paper.

5Thus the mnemonic is “Outward-Normal-First” = “One Never Forgets.”
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Now translations parallel to the boundary of H act freely on D(u) and hence d(u) > 1. Once
again we define half-plane webs to be rigid, taut, and sliding if d(u) = 1,2, 3, respectively.
Similarly, we can define oriented deformation type in an obvious way and consider the free
abelian group Wy of oriented deformation types of half-plane webs in the half-plane H.
Some examples where H = H, is the positive half-plane are shown in Figures 14, 15, and
16.

Figure 15: Four examples of taut positive-half-plane webs

We can again ask how a half plane web u can degenerate near the boundary of the
closure D(u) in R2ViW+Va(W) We have now two types of boundary cells: either the collapsing
vertices of u come together to a point in the interior of H or they come together to a point
in the boundary H. Correspondingly, we can define two kinds of convolution.

If u and v’ are two half-plane fans, v? € Vy(u), and J,o(u) = Joo (') then

TRy (2.21)
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Figure 16: Three examples of sliding half-plane webs

is obtained by cutting out a small half-disk around v? and gluing in a small copy of u’. For
this operation V; is additive as is E but Vy(ux,0 u') = Vy(u) + Va(u') — 1, so the dimension
behaves like:

d(u*,ou') =d(u) +du) — 1. (2.22)

We can extend *,0 to an operation
* 0 Wy X Wy — Wy (2.23)

by defining w0 v’ = 0 if Jo(u) # Joo(v') and then taking

uxu = Z Ukyo ' (2.24)
UBGVQ(LL)

Once again, at most one term in this sum can be nonzero. To define the orientation of
D(u* u') we again introduce a reduced orientation o,(u) := ¢(J)o(u) by contracting with
the vector field 9 described above (2.19) and defining

o(uxu') = o(u) Ao, (). (2.25)

Similarly, if v € V;(u) is an interior vertex then we can convolve with a plane-web w
to produce a deformation type u *, to with orientation o(u) A o,(w). Now Vy and E are
additive but V;(u %, to) = V;(u) + V() — 1 and hence we now have

d(u*, 10) = d(u) + d(ro) — 2. (2.26)
Again we can define
* Wy X W = Wy (2.27)
by defining u *, v = 0 if I,,(u) # I (1) and then
UK = ) sk, . (2.28)
veEV;(u)
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Once again, by the line principle, at most one term in this sum can be nonzero.
Thus all the boundary cells of D(u) are associated to some container half plane web
u; with either a marked interior vertex v resolved to a small taut plane web tvg, or a

9 resolved to a small taut half-plane web uy. We can write either

marked boundary vertex v
U = Uj %, 102 OF U = U] *,0 Uy at each boundary cell.

We now define the half-plane taut element

o= Y u (2.29)

d(u)=2

There is one scale modulus ¢ so that as ¢ increases the web gets bigger. The canonical
orientation of taut elements is then dy; A d¢ where 9 = aiy”. Since there are now two kinds

of taut elements we henceforth denote the planar taut element (2.15) by t,. We now have:

Theorem: Let t, be the taut element for planar webs and ty the taut element for the
half-plane H. Then, combining the two convolutions (2.23) and (2.27)

ty x ty 4ty x b, = 0. (2.30)

Proof: The idea of the proof is essentially the same as in the proof of (2.16). The
reduced moduli spaces of sliding half-plane webs are still two-dimensional cones, and have
paired boundary cells which induce opposite orientations. Thus all terms in 2.30 cancel
out in pairs. An example of the argument is shown in Figure 17.

Figure 17: An example of the identity on plane and half-plane taut elements. On the right
is a sliding half-plane web. Above is a convolution of two taut half-plane webs with orientation
dyAdfy Ndls. Below is a convolution of a taut half-plane web with a taut plane web. The orientation
is dy A dly A dfy. The two convolutions determine the same deformation type but have opposite
orientation, and hence cancel.

Remark: Since half-plane webs are not connected one might wonder whether we should
introduce a new operation of time-convolution in the identity (2.30). Certainly terms
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appear which can be interpreted as time-convolutions but these are properly accounted for
by the first term of (2.30). On the other hand, will see in §2.3 below that when we replace
the half-plane by a strip we do need to introduce a separate time-convolution operation.

2.3 Strip-Webs

We now consider webs in the strip [z, 2,] X R. Again, we assume that the boundary of
the strip is not parallel to any of the z;. Strip-webs are defined similarly to half-plane
webs: We allow some vertices but no edges to lie on the boundary of the strip. Now there
are two connected components of the boundary of the strip so the boundary vertices are
decomposed as a disjoint union of two sets Vg = Vy 1 L1 Vy r. Every strip web is associated
to a certain choice of vacua in the far future (y — +o00) and in the far past (y — —o0).
We can refer to them as the future and past vacua of the strip-web, respectively.

Once again we can speak of deformation type. We denote a generic strip-web, or
rather an oriented deformation type, by s. The dimension of the space of strip-webs of
fixed deformation type is

d(s) := 2Vi(s) + Va(s) — E(s). (2.31)

Again time translation acts freely on the set D(s) and hence d(s) > 1. As overall rescaling
is not a symmetry of the problem, the moduli spaces D(s) are not cones anymore.

Definition: We define taut strip-webs to be those with d(s) = 1 and sliding strip-webs
to be those with d(s) = 2. In other words there is no distinction between rigid and taut
strip-webs.

Remark: The above definition might be surprising since we did not introduce rigid strip
webs. The source of the distinction is the presence or lack of scaling symmetry. When
the geometry in which the webs live has a scaling symmetry, such as the plane or half-
plane, we distinguish between rigid and taut webs. Otherwise rigid and taut webs are
indistinguishable, and have no reduced modulus.

We can define as usual the closure D(s) of D(s) in R2Vi()+Va(s)  This introduces three
kinds of boundary cells, corresponding to a collection of vertices collapsing to a point in the
interior or on either boundary of the strip. Correspondingly, we have now three kinds of
convolution. Recall that the “container web” is written on the left. First, we can convolve
strip webs with planar webs so that

d(s %y, W) = d(5) + d(w) — 2 (2.32)

and o(sx*,,10) = o(s) Ao, (10). Next, we can convolve a strip web s with a positive half-plane
web with vertices on the left boundary as

§k,0 Uf, (2.33)

where v? € Va,r(s). Similarly, if V9 e Va,r(s) and up is a web in the negative-half-plane
(so it has boundary vertices on the right) then we write

§ %,0 UR. (2.34)
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We have
d(s 0 1) =d(s) +d(u) — 1 (2.35)

with orientation o(s) A or(u) in both cases. The reduced orientation is defined with the
vector field 0 defined in (2.19).

An important aspect in what follows is that we can introduce another operation on
strip-webs namely time concatenation: If §; and s9 are two strip webs such that the future
vacuum of so coincides with the past vacuum of s; we define

51 089 (236)

to be the deformation type of a strip web where s1 and so are disconnected and separated
by a line at fixed time, with s; in the future of so. If the future vacuum of s5 and the past
vacuum of s1 differ, we define the concatenation s1 o 59 to be zero. Note that when s o 59
is nonzero then

d(51 052) = d(ﬁl) + d(ﬁg). (2.37)

Because of the assumption that none of the z;; points in the direction along the strip,
no connected strip-web may have an arbitrarily large extension along the strip. The only
webs which can grow to arbitrarily large size have at least two disconnected components,
and can thus be written as the concatenation of simpler webs.

Proceeding as before we define the free abelian group Wg generated by oriented
deformation types of strip-webs. We extend x in the usual way to define operations
¥ 1 Weg x W — Wg and * : Wg x Wr, g — Ws where Wy, is the group of positive-
half-plane webs (with boundary on the left) and Wpg is the group of negative-half-plane
webs (with boundary on the right). We introduce the taut element for the strip:

ty = 5 (2.38)
d(s)=1

with s oriented towards the future. That is, choosing any boundary vertex v? with y-
coordinate y? the orientation is o(s) = dy?.

It is natural now to study the moduli spaces of sliding webs. There are two possible
topologies: the closure of the reduced moduli space D, (s) for a sliding web s can be either
a segment or a half-line. 7 At each of the boundaries at finite distance s can be written as
the convolution of an appropriate taut strip-web and a taut plane or half-plane web. In all
cases, the convolution gives an orientation pointing away from the boundary. On the other
hand, the semi-infinite end of a half-line moduli space is associated to a concatenation
of two taut strip-webs. If we denote the coordinates on the moduli space of two taut
strip-webs s1 and so as y; and yo, the orientation of s; o s5 is

0(51 052) =dy; Ndys = —dy; A d(y1 — yg) (2.39)

"In the case of extended webs introduced below there are some exceptional cases where the moduli space
of sliding webs can be R. Nevertheless there are two ends with opposite orientation and the convolution
identity holds.
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In the conventions where s; in the future of so, y1 — yo is the natural coordinate on
the reduced moduli space, increasing towards infinity. Thus the concatenation gives an
orientation on the half line towards the origin.

Thus we have the

Theorem: Let t, be the planar taut element and t; and tg the taut elements in the
positive and negative half-planes, respectively, and t; the strip taut element. Then

torty +toxtp+tsxty+ts0t, = 0. (2.40)

Figure 18: The only vertex in a theory with three vacua.

Figure 19: The positive and negative half-plane taut elements are illustrated here. Letting y
denote the y-coordinate of any boundary vertex and ¢ the internal edge length t; has orientation
—dydl and ti has orientation dyd¢.
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Figure 20: The taut element on the strip with three vacua. Letting y denote the y coordinate of
any edge vertex the orientation is dy

sty — teot, —

Figure 21: The various terms in the convolution identity on the strip. In this simple example with
three vacua t; x t, = 0. The orientations of the three terms are —dyd¢ on the first line and +dyd¢
on the second line.

Example Suppose there are three vacua in V. Then two of the Rez;; have the same sign,
and without loss of generality we will assume that Rezio > 0 and Reze3 > 0. Thus the only
planar vertex is of the form shown in Figure 18. The taut element t; for the positive-half
plane then has two summands while the taut element for the negative half-plane has a
single summand as shown in Figure 19. The taut element on the strip is shown in Figure
20. The various convolutions are illustrated in 21 and cancel.

2.4 Extended Webs

A small generalization of the webs defined above will turn out to play a role below. In
some circumstances it will be useful to relax slightly the restriction that interior vertices
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should be at least tri-valent and boundary vertices at least univalent. In particular, we will
consider the following two generalizations: First, we can allow two-valent interior vertices
and second, we can allow zero-valent boundary vertices. These generalizations weaken
somewhat the finiteness properties of webs. Nevertheless, the number of webs of a given
degree d is still finite since the addition of such vertices increases d by one. This is sufficient
to keep our formulae sensible.

We will refer to this larger class of webs as extended webs when the distinction is
important. Extended webs satisfy most of the same properties as standard webs. The def-
initions and properties of deformation types, orientation and convolution will all hold true
for extended webs. The taut elements for the extended webs satisfy the same convolution
identities as the taut elements for standard webs. The whole algebraic structure defined in
the next section 3 persists as well if we consider extended webs.

2.5 Special Configurations Of Vacuum Weights

At several times in our discussion above we required the set of vacuum weights {z;} to
be in general position. Nevertheless, there are special configurations of weights which will
be of some importance in the discussion of certain homotopies in Section §6.3 and in the
discussion of wall-crossing in Section §8 below.

We can consider {2} to define a point in CV — A, where CV is the space of maps
V — C and A is the large diagonal where z; = z; for some pair 7 # j. Within this space
are two subspaces of special weights. They are generically of real codimension one but have
complicated self-intersections of higher codimension.

The first special codimension one subspace is defined by weights such that some triple
of weights z;, zj, 25, for three distinct vacua i, j, £ become colinear:

We call these walls of marginal stability. Generic one-parameter families of weights will
cross such walls. When this happens the set of cyclic vacua and the set of webs changes
discontinuously. For example, with four vacua we can pass from a set of webs which are
all tree graphs to a set of webs with loops. We will discuss some consequences of such
wall-crossings in Section §8, and especially in Section §8.4 below.

A more subtle special configuration of weights is one for which there exist exceptional
webs. These are, by definition, webs such that

D(v) := dimD(w) > d(w). (2.42)

Such webs can arise because, for some configurations of vacuum weights there can be webs
where the edge constraints are not all independent. We say that some edge constraints are
ineffective. Let us decompose z;; into real and imaginary parts z;; = u;; + iv;;. If an edge
e is of type 77 and has vertices (xgl), yél)) and (x§2), yéz)) then the edge constraints are a
set of linear equations

uijie) (U = yM) = vij (@ — V) = 0 (2.43)
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Figure 22: An example of an exceptional web. There is only one reduced modulus corresponding
to overall scaling. Therefore dim D(w) = 3. Nevertheless V =4 and £ =6 so d(w) =2V — E = 2.

which we can write as M (1) L(tw) = 0 for a matrix M (o) of edge constraints and a vector
L(w) of vertex coordinates. The real codimension one exceptional walls in CV — A are
defined by the loci where the rank of M () drops from E(w) to E(tv) — 1. Of course, the
closure of the exceptional walls will have many components, intersecting in places where
the rank drops further.

An example of an exceptional web is shown in Figure 22. This is plainly a taut web, so
the dimension of is deformation space is three, but d(w) = 2! When such phenomena arise
we will distinguish the true dimension D(w) from d(t) by calling the latter the expected
dimension. We use the terminology of index theory because, as we will see in Section §14,
this literally does correspond to an issue in index theory.

The example shown in Figure 22 requires at least six vacua. If we hold all but one
fixed and vary the last then it is clear that any small perturbation will destroy the web.
However, a generic one-parameter family of weights nearby this configuration will have
a point admitting such an exceptional web. Further triangulating one of the triangles in
Figure 22 reduces the expected dimension by 1 and in this way we can produce examples of
exceptional webs with arbitrarily small and negative expected dimension. In general, if a
deformation type w is exceptional so that v := D(tw) — d(tv) > 0 then generic v-parameter
families of weights {z; } will intersect the loci of such webs. We will discuss the consequences
of exceptional walls in the wall-crossing story in Section §8.3.

We can now be more precise about the meaning of “generic weights” or “general
position” used both above and below. This term implies that the weights are not on walls
of marginal stability and do not admit exceptional webs.

Remarks

1. Finally, we remark that there are certain high codimension configurations of weights
where webs can degenerate in ways which are not described in terms of convolution
at a single vertex. An example is shown in Figure 23.
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Figure 23: The sliding web shown here has two degenerations, neither of which is of the form
101 * 102.

2. There are also exceptional vacuum configurations and webs for the half-plane and
strip geometries, and these will be used in Section §8.

3. Tensor Algebras Of Webs And Homotopical Algebra

In this section we consider algebraic operations defined by webs on various tensor algebras

such as 8

W =WaeW?2aWwag. .. (3.1)

and its analogs for Wy and Wg. Here we take the graded tensor product using the Koszul
rule. The grading of a web such as t,u,s will be given by the dimension d(w), d(u), d(s),
respectively. We will find various algebraic structures familiar from applications of homo-
topical algebra to string field theory. While these algebraic structures emerge naturally
from thinking about webs the reader should be aware that the L., and A, algebras which
are used to make contact with the physics only make their appearance when we come to
Section §4.

3.1 Lo, And Plane Webs

The convolution of webs is not associative: (toq * 2) * tog — 17 * (W9 * tvg) consists of
terms where tvo and tog are are glued in at distinct vertices of to;. One could readily write
down a tower of associativity relations for some generalized convolution operations, which
insert multiple webs at distinct vertices of a single container web. It turns out that for our
applications we only need an operation

T(w) : W2V )y (3.2)

8We take the tensor algebra without a unit, i.e. we do not include the ground ring Z.
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which replaces all the vertices of a plane web with other webs. More precisely, we define
T'(ro) as follows:

Given an ordered collection of ¢ = V (tv) plane webs {wy,...,10,}, we seek some per-
mutation o of an ordered set of vertices {v1,...,v/} of w (with any ordering), such that
Ivo(a)(m) = I(to,) for a = 1,...,¢. If the permutation does not exist, i.e. if the ar-

guments cannot be inserted into to (saturating all the vertices exactly once) then we set
T(ro)[wy, ...,y = 0. If the permutation exists, it is unique, since a given cyclic fan of
vacua can appear at most once in to. We then define T'(to)[wy, ..., 1, to be the oriented
deformation type obtained by gluing in tv, in small disks cut out around the vertices vy(q)
of ro. The orientation is given by o(w) A op(t01) A -+ A 0p(tvg). This is the only place the
ordering of {toy,...,wy} is used. In particular, T'(tv) is graded symmetric, exactly as we
would expect from manipulating graded elements v, of degree d(w,) with the Koszul rule.
(Since d and d, differ by two the sign is the same.) Now, we regard {toy,...,w,} as a
monomial in W®* and extend by linearity to define (3.2). Finally, we can extend T(v) to
amap T() : TW — W, by setting T'(to) : W™ — W to be zero unless n = V().

It is useful to recall at this stage the definition of n-shuffles. If S is an ordered set
then an n-shuffle of S is an ordered disjoint decomposition into n ordered subsets

S =S S - 118, (3.3)

where the ordering of each summand S, is inherited from the ordering of S and the S, are
allowed to be empty. Note that the ordering of the sets S, also matters so that Sy II S
and Sy I1S; are distinct 2-shuffles of S. For an ordered set S we let Shy,(.S) denote the set
of distinct n-shuffles of S. We can count n-shuffles by successively asking each element of
S which set S, it belongs to. Hence there are nlS! such shuffles.

We are now ready to formulate a useful compatibility relation between the % and T

operations:
T(v*w')[rwy,...,w,] = > € T(w)[T(1)[S1], 5] (3.4)
Sha (S)
where we sum over 2-shuffles S = S; 11 .Sy of the ordered set S = {wy,...,10,} and we

understand that T'(tv)[()] = 0. The sign € in the sum keeps track of the web orientations, and
it is determined as follows. We let 0,(S,) be the ordered product of reduced orientations
of the tv; in S, and define

B Or(Sl) A 07-(52) .
‘= or(M0) A== Aop(roy,) 51,5 (3:5)

exactly as we would expect from manipulating graded elements w of degree d(w) with the
Koszul rule.

Next we extend the map w — T'(w) to be a linear map by setting T'(tv; + toy) :=
T(w7)+T(w2). It now makes sense to speak of T'[t], which will play a particularly important
role for us. The relation (3.4) is bilinear in to and tv’. Summing w and 1’ separately over
taut elements and applying t * t = 0 it follows that, for any ordered set S (i.e. for any
monomial in TW):

S esns TOITO[S1], 5] = 0. (3.6)
Shy(S)
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We can interpret these relations as defining a version of an “L., algebra.” To make
this clear and to lighten the notation let us denote by b, (“closed brackets”) the restriction
of T(t) to W®™, so

by : WO — W (3.7)

has degree deg(b,) = 3 — 2n and satisfies the identities

Z €51,55bny (bny (S1),82) =0 (3.8)
Sha (S)

where n; = |S;], i =1, 2.
Remarks:

1. The degrees and associativity relations (3.8) coincide with the notion of L., algebra
which appears in other areas of physics, such as closed-string field theory [96, 27].
The degrees and signs used in the mathematical literature are slightly different. Our
definitions are known as the Lo, [—1] relations. (For a relation of these relations to
the more standard Lo, relations see [73].)

2. Tt is worth noting that (roq *tog) %13 — 101 * (tvg *1w3) can be interpreted as webs with
o and tvs inserted into distinct vertices of tvy and is therefore graded symmetric
in tog and 3. This is precisely the definition of a (graded) “pre-Lie-algebra,” thus
making contact with the papers [16, 63, 78, 8].

3. Note that since every taut web has at least two vertices the differential b; is always
identically zero. In technical terms these algebras are “minimal” [57].

4. Moreover, by, (1,...,t0,) is a web with

V=n+ i(\/(mi) ~1) (3.9)
=1

vertices. Since we can grade W by the number of vertices it follows that by is a
nilpotent multiplication.

5. The T operation also satisfies a natural associativity relation.

T(T(w)[t1®- - -@t0,]) 01 - @ N] = Z e T (1) [T(w1)[S1], T (w2)[S2], ..., T (1,)[S.]]

Shy (S)
(3.10)
where the sum over n-shuffles refers to the ordered set
S ={ry, - ,ox} (3.11)

The sign € in the sum keeps track as usual of the webs orientations. This relation
will not play an important role in the following.
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3.1.1 Examples Of Web Algebras

We can describe the Lo[—1]-algebra fairly explicitly if there are n vacua with weights z;
which are in the set of extremal points of a convex set. We can enumerate the vertices by
ordering the vacua so that {1,...,n} is a cyclic fan of vacua. Then there is an n-valent
vertex tis.., and we can make all other (n — j)-valent vertices by deleting j vacua from
the cyclic fan {1,...,n} to form cyclic fans with smaller numbers of vacua. We must have
at least 3 vacua so there are in all:

§<n> 22”—%(n2+n+2) (3.12)

=0

different vertices. We denote these by to; where [ is a cyclic fan of vacua, which, in these
examples is just a cyclically ordered subset of {1,...,n} with at least three elements.

We can make all taut elements by “resolving” the vertices. These will be enumerated
by pairs of cyclic fans of vacua I, Io which are compatible in the sense that they are of the
form:

I = {i1,i0,... ik} Io = {ig,igs1, .. y01} (3.13)
and, if we denote
Il*IQ:{il,ig,...,ik,’ik+1,...,’il} (314)

then I; x I5 is also a cyclic fan. Then we have

t=> 1.5 (3.15)

where we sum over such compatible pairs of fans. All the taut webs have exactly two vertices
and therefore (for such convex configurations of vacuum weights) the higher products b,, = 0
for n > 2.

The only nonzero products of vertex webs is

b2(m117m12) =170 (316)

However, if a taut web wy,.7, has vertices with I; or I of length greater than 3 then it can
also define products of non-vertex webs which have I (w) = I; or = Is. Note also that no
taut web has any vertex with I,, = {1,2,...,n} and so any web with I (t0) = {1,2,...,n}
such as the vertex vy . ,, and all its resolutions, will be in the annihilator of by. We have
an (n — 2)-step nilpotent algebra. That is, (n — 2) applications of by will always vanish.

When the weights z; of the vacua are not extremal points of a convex set then the
algebras can be more complicated and the higher products b,, can be nonzero.

3.2 Algebraic Structures From Half-Plane Webs

There are three obvious generalizations of T' to half-plane webs: we can either replace all
interior vertices of some half-plane webs u with plane webs, replace all boundary vertices
with half-plane webs, or both. The latter operation is the composition of the former
two: we can first replace the interior vertices, then the boundary vertices (if we try the
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opposite, we create new interior vertices at the first step). It is instructive to discuss all
three possibilities. The first case, discussed in §3.2.1, shows how half-plane webs provide
an Lo,-module for the Ly,-algebra of plane webs. Then, in §3.2.2 we show that inserting
half-plane webs into half-plane webs defines an A,.-algebra structure. When we combine
the two operations we end up with a set of identites we call the LA, .-identities in §3.2.3.
Finally in §3.2.4 we give a conceptual interpretation of the LA, ,-identities in terms of an
Loo-morphism between the L., algebra of plane webs and the L., algebra of Hochschild
cochains on the A, algebra of half-plane webs.

3.2.1 L,-Modules

The first possibility - replacing just interior vertices - is not our essential goal, but it is
instructive. We define a multilinear map T;[u] : TV — Wy, which is, as before, zero unless
there is some permutation o which matches the arguments w, of a monomial {toq,...,w,}
to the interior vertices of u in the sense that Lyi (u) = I(,), in which case it is the
simultaneous convolution with orientation o(u) A o.(t1) A -+ A o,(tvoy). This map has a
simple relation to convolutions:

Ty(ws )y, w,] = D e T(w)[T(w)[S1], S

Sha (S)
Ti(ws )y, ... w,] = Y € Ti(w)[S1] = T;(w)[Sy] (3.17)
Sha (S)
with the usual definition S = {r1,...,w,}.

The € signs keep track of the relative web orientations on the two sides of the equations.
It is important to observe that the signs arise from the reorganization of a product of
reduced web orientations. It would thus be incorrect to assume glibly that e coincides
with the Koszul rule: we defined the degree of a web as the dimension of the unreduced
moduli space. The correct sign rule could be denoted as the “reduced Koszul rule”: treat
the symbols as if they had degree given by the reduced dimension of moduli spaces. This
subtlety was invisible for bulk webs, for which the reduction of moduli space removes two
dimensions, but it is important for half-plane webs. The prime on the ¢ in the second
equation of (3.17) takes into account that we must bring 1’ across the monomial Sj in the
tensor algebra using the reduced Koszul rule.

If we plug our second theorem ty; * ty 4ty * t, = 0 into (3.17), we get a neat relation

> esis Tiltn)[T(4)[S1], o] + €, 5, Tilt) [S1] * T(t)[Sa] = 0 (3.18)
Sha(S)
This identity can be used to define Wy as a “right-module for the L..-algebra W.”

In general, if £ is an Loo-algebra with products b% of degree 3 — 2n, then a left Loo-
module M is a graded Z-module with operations b : £L#"®@ M — M defined for n > 0 and
of degree 1 — 2n so that the analog of the Loo-identities holds, i.e. for all S = {¢q,... ¢}
and m € M:

> e (05, (S1), Sasm) + > e (S1: b2 (Sa3m)) = 0 (3.19)
Sha(S) Shy(S)
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In the present case, the module operations for a set S = {w1,...,t,} are
u = usk T (ty)[5] (3.20)

The module relations are

D ess wr Ti(ty) [T(4)[S1], Sal + €, 5, (wx Ti(tg)[S1]) * Tu(ty)[S2] =0 (3.21)
Shy(S)

and can be proven from (3.18) by convolving with u. The only nontrivial step is the
observation that
(ul * u2) * Uz — U * (u2 * u3) (3.22)

is (reduced Koszul) graded symmetric in uy and uz. That is, once again we use the property
that convolution defines a pre-Lie algebra structure.

3.2.2 A,-Algebras

We can define the second natural multilinear map Ty [u] : TWy — Wy, by inserting half-
plane webs at all boundary vertices of u. In contrast to the interior vertices, the boundary
vertices will always be time ordered, so we define the map to be zero on u; ® -+ ® uy
unless the arguments match the boundary vertices, J,0 (1) = Jo(ug) for a = 1,...,¢, in
that order. (Recall from equation (2.19) that we have chosen an ordering of the boundary
vertices.) When this is satisfied we glue in to get a new deformation type in the usual way
with the orientation

o(u) Aop(ug) A+ Aop(up). (3.23)

Before stating the compatibility of T with * it is useful at this point to define a notion
of ordered n-partitions. If P is an ordered set we define an ordered n-partition of P to be
an ordered disjoint decomposition into n ordered subsets

P=PIPI---1IP, (3.24)

where the ordering of each summand P, is inherited from the ordering of P and all the
elements of P, precede all elements of P, inside P. We allow the P, to be the empty
set. For an ordered set P we let Pa,(P) denote the set of distinct n-partitions of P. If
p = |P| there are (n+£—1) such partitions.

Now we can state the compatibility:

n

Tr(usro)ug, ... up] =€ (Ty(u)|ug, ..., u,]) *xw — Z € Tr(u)[ug, ...ty * 10, ... 1y,
m=1
TH(u*u’)[ul, oo ,un] = Z € TH(u)[Pl,TH(u’)[Pg ,P3]
Pas(P)
(3.25)

In the second identity we have introduced a sum over ordered 3-partitions of an ordered
set P of half-plane webs. As before, we take Ty [u][P] =0 if P = (.
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Combining this with t3; * t3; + t3 * t, = 0 we arrive at the relation

e (Tr(t)[wr, - wn]) = > €0 Dottt 1y
m=1 (3.26)
+ D e Tu(t) [Py, Tt [Pa), P3] = 0.
Pas(P)

where
6 = (~1)Zs )= ()ELEE) g = ()P = () Zeen B (37

We can interpret (3.26) as the the standard axioms for an A, algebra structure on
Wy To make this clear and to lighten the notation let us denote by a,, (“open brackets”)
the restriction of Ty (ty) to Wi™ for n > 1 and the operation

ay(u) = Ty () [u] — (=% Mk, (3.28)

for n = 1. The first of the Ay-relations demands that aq(aj(u)) = 0. This works out to
be

o (430) (T (t30) [u]) — (= 1) T (t50) [ty 4+ (= 1) O (T (t30) [u] )ty — (st )3t = 0 (3.29)

Thus to match to (3.26) we also need to check that (u=t,)*t, = 0. Although convolution
is not associative, the difference (u*t,) * t, —ux* (t, x t,) consists of terms where two taut
webs tv; and tvy are inserted separately at two vertices vl and v2 of u. Each such terms
appears twice in the sum, either from (1 %,1 t01) *,2 w2 or from (1t *,2 tv2) *,1 ;. The two
contributions have opposite orientations and cancel out against each other.

Moving on to the higher identities, the

an W5 =Wy n>1 (3.30)
have degree deg(a,) = 2 — n and satisfy the identities

Z (_1)P1ap1+P3+1(P17 apy (P2), P3) =0 (3.31)
Paz(P)

where p; = |P;|, i =1,2,3.

3.2.3 The LA -Identities

Finally, we can consider the combined operation
T): TWy TW — Wy (3.32)

as

T)[ug, ... up; 101, ..., 100 =€ Ty (Ti(w)[o1, ..., 05]) [ug, ..., uy,) (3.33)
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We included a sign, to convert the orientation
o(u) A (0p(01) A+ Aop(to,)) A (0p(ug1) A+ Aop(uy,)) (3.34)

in the right hand side to the natural orientation for the order of the arguments on left hand
side
o(u) A (op(ur) A+~ Aor(up)) A (op(t01) A+ A op(10,,)) . (3.35)

Again, we note that convolution and T interact well together:

Txu)[P;S]= > eTW)[P,TW)[P; 5], Ps; S (3.36)
Sha(9),Paz(P)

where S is the set of plane web arguments and P is the set of half-web arguments. The
sign is given by the usual reduced Koszul rule.
Similarly
T(usw)[P;S]= Y €55 T(w)[P;T(10)[S1], 5] (3.37)
Sha(S)

Combining (3.36) and (3.37) with (2.30) we get some nontrivial algebraic identities

> €T (t)[Pr, T(ty)[Po; S1], Pa; So] + > € T(t3)[P; T(t,)[S1], S = 0. (3.38)
Sha(S),Paz(P) Sha(5)

We will refer to this hybrid equation as an “LA." identity. (This is not standard
terminology.) It has a somewhat refined algebraic meaning, which we will decode presently.
Before that, we would like to remark that both T; and T3 can be recovered from T by
filling either kinds of slots with the sum over all rigid plane webs ¢ or all rigid half-plane
webs ty:

T[S] =Y T[5"; 9]

1
Ty[P] = ET[P, "] (3.39)

and we can similarly fill in the slots of (3.38) to get the corresponding equations (3.18) and
(3.26).

3.2.4 Conceptual Meaning Of The LA..-Identities

We now give a conceptual interpretation of the LA, identities (3.38). It is useful to
organize the equations (3.38) by first considering the special cases where S has cardinality
0,1,2. Then the general structure will become clear. Correspondingly, we can decompose
the taut element ty; according to the number of interior vertices in the taut webs:

b = €0 + () 42 4. (3.40)

Note that the only taut half-plane webs with no interior vertices have precisely two bound-

(0)

ary vertices and therefore p := T'(t,”) is simply a multiplication map

W Wy X Wy — Wy (3.41)
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When (3.38) is restricted to S = () we learn that u is an associative multiplication, up to
sign:
po(p(ur,uz),ug) + (=)0 u(uy, p(ug, ug)) = 0 (3.42)

and therefore fi(ug,us) = (—1)®0) =1 (uy, up) is strictly associative.
Next, for a fixed planar web to let

p =T 0] TWy — Wy (3.43)

Recall that a Hochschild cochain on an algebra A is simply a collection of linear maps
F, : A®" — A, n > 1, or equivalently an element of CC®(A) := Hom(T'A, A). Therefore
for a fixed w we may view 1) as a Hochschild cochain on the associative algebra Wy.
Then, taking S = {rw}, equation (3.38) becomes

0= /j(ula ﬁ(l) (u27 cee 7un))+

n—1
+ Z(_l)rﬁ(l) (Ul, <oy Upy /j(uT+1a uT+2)7 Up43,. .- aun)

+ (_1)nﬁ(ﬁ(1)(u17 s vunfl)v un)
= BOGE) (uy, ... up)

where 1Y) is related to pM) by signs in a way analogous to the relation of 4 and 7. In
the last line of (3.44) we have recognized that the previous lines define the Hochschild
differential B on the Hochschild complex. Thus, our identity (3.38) when |S| = 1 simply
says that p(M) is a Hochschild cocycle. In order to discuss the cases |S| > 2 we introduce
the notation

™(8) i= e, T+ 1 8] : TWy — Wiy (3.45)

where S = {tvy,...,w,}, n > 1, and ¢, is again an appropriate sign redefinition. Then the
identity for |S| = 2 reads

i (ba (01, 102)) = BOE? (1, 102) + B@ (M (v01), 7 (102)) (3.46)

where by is the multiplication on W defined by T'(t,,), and we have introduced the Hochschild
bracket B on the Hochschild complex CC*®(Wsy).

Quite generally the Hochschild bracket on CC®(A) may be defined on two cochains
F, G of degree n,m by

BA(F,G) = FoG— (—1)FIE-VIG-DG o F

FoG:= Z eF(up, ... e, G(Upit, oo oy Upem)y -+ - - Upbm—1) (3.47)

where the sign € can be found in many papers. See, for examples, [58, 1]. In general, the
Hochschild complex is a differential graded Lie algebra with operations B1) and B®). A
differential graded Lie algebra can be considered to be a special case of an L..-algebra, so
we can speak of the L., algebra of a Hochschild complex.
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To summarize these facts concisely we need the general notion of an L., morphism
between two Lo, algebras. See equation (A.52) below.
Now, returning to our example, we consider the map

i i TW — CC*(Wy) (3.48)

defined by

Then, separating (3.38) into the cases S; = 0, or Sy = (), or both S, Sy are nonempty,
and grouping together the terms Sy II .So with Sy I1 .57 in the latter case we see that the
equation (3.38) may be concisely summarized as the statement that g is an Loo-morphism
from the Loo-algebra of planar webs to the Los-algebra of the Hochschild complex of Wy.
This is the conceptual meaning of the LA, identities.

3.3 Bimodules And Strip Webs

Starting from a strip web s, we can define three elementary operations Tj 1 r(s) which
replace either all interior, left boundary or right boundary vertices with plane, positive
half-plane or negative half-plane webs, respectively. (Recall that the positive half-plane
‘H, has boundary on the left.) The definitions of these operations are completely parallel
to the definitions given in the previous two sub-sections. Due to our choice of ordering
of boundary vertices, the arguments of 77,(s) should be ordered left to right in decreasing
time, and right to left in decreasing time for Tr(s).
We can then define appropriate composite operations

Tri(s)[P; S] == €T, (T5(s)[S]) [P]
Tir(s)[S; P'] := Tr (Ti(s)[S]) [P']
Tr,r(s)[P; ]:TR( L(s)[P]) [P']
S; P') := 'Tr (T, (Ty(5)[S]) [P]) [P'] (3.50)

)
T(s)[P;

where €, € are (reduced, as always) Koszul signs for reordering the arguments.
We will now just sketch some of the various algebraic structures which follow from the
strip web identity (2.40) which we quote here:

ok tp +tsxtp+ ts* by + ty 0t = 0. (3.51)

These structures will involve the notion of an As.-module.

In general, if A is an Ay-algebra with products m;! then a left A,.-module M is a
graded Z-module with operations mM : A" @ M — M defined for n > 0 and of degree
1 — n so that the analog of the A.-identities holds, i.e. for all P = {ay,...,a,} and
m € M:

S (=nPmpt L (Prmiy (Pa), Pasm) + Y (= 1)P mp ! (Prsmy! (Pa;m)) =0 (3.52)

Pas(P) Pax(P)
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Similarly, one can define right A.-modules as well as bimodules. When we include interior
operations T; then there will be Lo, maps to the L., algebra of Hochschild cochains with
values these modules.

As the simplest example let us consider Hy,, the positive half-plane and denote tj, :=
ty, and Wy, := Wy, . Proceeding as in the previous section the identity (2.40) implies:

S €Tyt [P T, (t2)[P2], Pl+
Pas(P)

+ €T (ts)[P) * tr + €TL(ts)[P] * t, — Zn: €T (ts) U1, - -y Uy * b, Uy |+ (3.53)
m=1
+ D e Tu(t)[Pr] o Ty(t)[Pa] = 0
Pax(P)

where, as usual P = {uy,...u,}.
One can interpret the equations (3.53) as defining a left A,-module structure on
M = Wy for the As-algebra A = Wy, defined using Ty, (t1). To see this define

m(s) == (=) &s % (t, + tg) (3.54)
and, for n > 1, mM : W?" ®@ Ws — Wg by

m)!(Pys) = Tp(ts)[P]os (3.55)

M

In verifying the module relations we find that (m}*)? = 0 for reasons analogous to those

mentioned above. Then we compose the LHS of (3.53) with os and use

(D)™ (TL(8)[P] * (& + tr)) 05 = (Tr(t)[P) 0 ) * (t + tr) — Tr(t)[P] o (s * (t + tr))
(3.56)
to recast these equations into the left-module conditions.

In a similar fashion, Tr(ts) gives a right Ao, module for the A, algebra we associated
to Ty, (tr) and 17, g(ts) gives an A bi-module, with left and right actions given by the
two A algebras we associated to Ty, (tr,) and Ty, (tr).

As for the interior operation, T;(ts) will satisfy relations such that the operations
«Ti(tr) + «T;(tr) + *T;(ts) define a right Lo, module. The three T ;(ts), T r(ts), T'(ts)
satisfy lengthy axioms, which essentially define some left, right or bi-module for the u
operations (as in Section §3.2.4) associated to either boundary, together with L., maps
from the L.o-algebra of planar webs to the L,.-algebra of the Hochschild complexes of the
modules, compatible with the maps defined before.

4. Representations Of Webs

Definition: Fix a set of vacua V and weights {z; };cy. A representation of webs is a pair
R = ({Ri;}, {Ki;}) where

a.) R;; are Z-graded Z-modules defined for all ordered pairs ij of distinct vacua.

b.) Kjj is a degree —1 symmetric perfect pairing
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Kij: Rij @ Rj; — Z. (4.1)

By degree —1 we mean that Kj;(r;j,75;) is only nonzero when deg(r;;) +deg(r};) = +1
so that the integer K;;(rj, r;Z) is degree zero. The pairing is symmetric in the sense that

Kij(rij,rj) = Kji(rji, 7ij) (4.2)

As the degrees of the arguments differ by one unit, the symmetry of K;; makes sense.
Property (b) of K;; is motivated by the realization in Landau-Ginzburg models explained
near equation (12.18) above. Note that since K;; is nondegenerate, I?;; and Rj; have the
same rank. The property that it is a perfect pairing will be used in several points of the
development, for example, in the derivation of equations (7.26),(7.27) below. Often we will
drop the subscripts and just write to K for the pairing when no confusion can arise.

4.1 Web Representations And Plane Webs

Given a representation of webs, for every cyclic fan of vacua I = {iy,1i9,...,i,} we form
Ry = Ril,iz & Ri27i3 X Rz’n,il (43)

Note that to write this formula we needed to choose a place to start the cyclic sequence.
Different choices in the definition of R; are related by a canonical isomorphism because
the Koszul rule gives a canonical isomorphism

Riy iy @ Riy iy @ -+- @ Rip iy = Rig i @ Rig iy @+ @ Ry, iy @ Ry iy (4.4)

We will sometimes refer to Ry as a representation of a fan.
Now we collect the representations of all the vertices by forming

Rint = DRy (4.5)
where the sum is over all cyclic fans of vacua. We want to define a map
p(to) : TR — Rint (4.6)

with properties akin to 7'(tv).

As for T'(w), we take p(t0)[r1,...,7r,] to be zero unless n = V(tv) and there exists an
order {vy...v,} for the vertices of to such that r, € Ry, . If such an order exists, we will
define our map

p() : Buey )R, (w) = Bi(w) (4.7)

as the application of the contraction map K to all internal edges of the web. Indeed, if an
edge joins two vertices vi,ve € V(o) then if Ry, (w) contains a tensor factor R;; it follows
that R I,,, (w) contains a tensor factor R;; and these two factors can be paired by K as shown
in Figure 24.

In order to define p(tv) unambiguously, we need to be very precise about the details of
the contraction: Since K has odd degree, the order of the contractions will affect the sign
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of the result! It is useful to denote by K, the pairing which we will apply to the tensor
factors associated to the edge e. Then we are attempting to make sense of the overall sign
of an expression such as

et (w)Ke © @g—17a (4.8)

where each of the r, € RIva () I8 a linear combination of tensor products 4, 4, ® - @1, i
if Iva(m) = {il,ig, . ,im}.

Given a specific order of the edges in £(tv) and vertices in V(w), the meaning of 4.8
is clear: we shuffle the symbols around using the Koszul rule until each K. is followed by
the two tensor factors it is supposed to contract, and then we execute all the contractions.
We are left with a sequence of residual tensor factors, which can be reordered again with
the Koszul rule until they agree with the order in Ry (). The final result depends on the
initial order we picked for the vertices and edges of w in an obvious way: by the Koszul
rule for permuting the r, or the degree —1 K, symbols among themselves. Our aim is to
define a graded-symmetric operation. As the r, appear in the product in the same order
as the arguments of p(tv), this is automatically true.

The only remaining subtlety is to relate the order for the edges of tv and the orientation
o(t) in such a way that

p(—w) = —p(i) (4.9)

We can do so if we remember that the moduli space of deformations of a web is given by a
locus in R2V(®) cut locally by a linear constraint for each edge of the web. We can easily
describe a vector field transverse to some edge constraint. For example, we can define 0,
by acting with a clockwise rotation on the coordinates of the two endpoints of the edge
(the choice of origin for the rotation is immaterial). If we have some order for the edges,
we can define an orientation for to from the canonical orientations dz,dy, in each R? factor
as
I 00 J[ davdy. (4.10)
ec&(w) veV(w)

where o means we contract the poly-vector field on the left with the differential form on
the right.

We are finally ready to give a complete definition: if the arguments are compatible
with the vertices of the web

o(w)
Rece K, O®n: T (411)
He@‘,‘(m) 3@ o HvEV(m) dwvdyy ec&(w) Hre a=1"a
where we use the same ordering of edges for the product over 0, in the denominator and
for the product over K.. Otherwise, p(w)[ry,...,r,] = 0. This map has degree —E(tv).
The analogy between T" and p extends to the interplay with the convolution operation.

p(r)[ry,...,m] =

plo s w0)[r, . ] = ) esy,5 p(1)[p(w)[S1], S (4.12)
Shy(S)
where we sum over 2-shuffles of the ordered set S = {ri,...,r,}. Once again we define

p(r0)[0] = 0. The sign €g, s, keeps track as usual of the Koszul signs encountered in the
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Figure 24: The internal lines of a web naturally pair spaces R;, ;, with R;, ;, in a web represen-
tation, as shown here.

shuffling of the arguments r;. The only subtlety in checking this relation is the overall sign
of each term in the left and right hand sides. It is useful to observe that we can order the
edges of w * o’ by listing all edges of tv first, then all edges of tv’. Then the order of the K
factors on the two sides of the equation is the same, the order of the 0. vector fields in the
denominators is the same, the orientations in the numerators coincide and the reshuffling
of the arguments is accounted for by the € sign.

On the left hand side, the overall position of the second web is removed (convolution
uses the reduced orientation of ') from the numerator, the position of the insertion vertex
in to is removed from the denominator. As the overall position of the second web is identified
naturally with the position of the insertion vertex, this does not introduce any extra sign.

Now we extend p linearly by defining p(rw + ') := p(w) + p(to’). In close analogy to
the previous section we can plug t,*t, = 0 into the relation (4.12) and arrive at the axioms
of an L algebra p(t) : TR™ — Rt

> s olty)lo(t)[S1], 5] = 0 (4.13)

Sha (S)

The main difference between this algebra and the web algebra W we encountered before is
that R™ may have a rich subspace of degree 2, which allows us to discuss solutions to the
Maurer-Cartan equation for the Ly, algebra:

Definition: An interior amplitude is an element B € R™ of degree +2 so that if we define
e € TR™ @ Q by
1 1
=t B8+ BRA@+ (4.14)
then
p(ty)(%) = 0. (4.15)
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Note that any taut summand w in t has 2V () — E(w) = 3 and then p(tv) has degree
—E(1), so evaluated on f2V(®) we get an element of degree 3. Thus, (4.15) is a nontrivial
identity consisting of a sum of elements of degree 3.

Definition: A Theory T consists of a set of vacuum data (V, z), a representation of webs
R = ({Ri;},{K;;}) and an interior amplitude 3. If we want to talk about Theories with
different data we can write 7(V,z, R, ). In the remainder of this section we will assume
we are working within a specific Theory.

An interesting property of the Maurer-Cartan equation (4.15) for an L, algebra is
that a solution can be used to “shift the origin” of the algebra. If we define

pa(0)[r1, ... 7] i= p(w)[ry, ... 7, e (4.16)

then we claim that pg(t,) : TR™ — R satisfies:

D esis, p8(b)lpa(4)[S1], Sa = 0. (4.17)
Shy(S)

To prove this note that the 2-shuffles of the ordered set S=Su {B,...,B} with n copies
of B appended at the right end of S include (Z) copies of decompositions of the form

S= (S U{B,....B0) I (S2U{B,....0) (4.18)

with k B’s in the first summand and n — k s in the second. ? Now we multiply the Lo
axiom for p(t,) applied to S by % and sum over n. Thanks to the above remark the sum
can be rearranged to give the left-hand-side of the the L., axioms for pg(t,) applied to
S. Thus far the argument applies to any element 3 € R™. To see what is special about
interior amplitudes note that while we defined p(1)[S] = 0 for S = (), we have pg(w)[0] # 0
in general! Hence, for general 3, the term with S; = 0 will contribute an extra “source
term” in the identities. However, if 3 is an interior amplitude then we can drop this term
and just sum over shuffles with S; # () to recover the standard Lo, relations.

Remarks:

1. The p and T operations are compatible:

p(T(w)[rw1, -, 0u])(re, -+, rn) = > € p(w) [p(101)[S1], p(12)[Sa], .. ., p(10) [ S]]
Shy, (S)

(4.19)
where S = {rq,---,rn}. This equation is clearly analogous to the T'T associativity
relation. In a sense, p behaves as a representation for the algebraic structure defined
by T', hence our terminology.

9We are being slightly sloppy here about the difference between union and disjoint union. Consider the
initially appended 3’s as distinct and only identify them after we apply p(t,)[S1], etc.
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2. The origin of the term “shift the origin” is from the analogy to string field theory.
Our space R™ is analogous to the space of closed-string fields, and solutions of the
Maurer-Cartan equation are analogous to on-shell backgrounds (at tree level). Now,
there is an identity

ps(S,e”) = p(S, M) (4.20)

which shifts the origin of the space of string fields.

4.1.1 Isomorphisms Of Theories

It is worth giving a careful definition of an isomorphism between two Theories 7() and
T2 First of all, we require that there be a bijection

@: vV 5 v (4.21)

so that the weights are mapped into each other. That is, viewing the vacuum weight as a
map z : V — C we have

©* (@) = 2V (4.22)

It will be convenient to “trivialize” ¢ so that we identify V(1) = V(2) = V. Then ¢ is a
bijection of V with itself. Because we will discuss successive composition of interfaces from
the right it will be convenient to write the action from the right so

i > ip (4.23)
and the condition on the weights is
2 1 :
zi(@) = zi( ) VieV (4.24)

Next, for every distinct pair of vacua (i,j) we have an isomorphism of graded Z-

modules:
i R = RY. (4.25)

such that
(pij ® w)*(Kﬁ?j@) = Kf? (4.26)

Finally, for any cyclic fan of vacua I we let I be the image cyclic fan of vacua (it is
cyclic thanks to (4.24)). Then the ¢;; induce an isomorphism ¢y : Rgl) — R(Ii) and we
require that

o1(8y)) = B (4.27)

These three conditions define an isomorphism of Theories.

Remarks:

1. If o112 . 7 5 7@ g an isomorphism and ¢@3) : T2 — 76) is another isomor-
phism then 1223 is an isomorphism 7 — 73),
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2. Automorphisms are isomorphisms of a Theory with itself, and these always form a
group. Note that a non-identity automorphism must still induce the identity per-
mutation on V. For, suppose that iy # i for some i. Then (4.24) implies z; = z;,.
But, setting j := i@ we see that this clashes with the condition on vacuum data
that z;; # 0 for all ¢ # j. The maps ¢;; can still be nontrivial so a Theory can still
have a nontrivial automorphism group. In the text we make use of some nontrivial

isomorphisms which are not automorphisms.

4.2 Web Representations And Half-Plane Webs

In Section §5.2 below we will introduce an abstract notion of the Lefschetz thimbles which,
in the context of Landau-Ginzburg theory define special branes in the theory associated to
each of the vacua. (See Section §11 below.) This motivates the following

Definition: Fix a set of vacua V. We define Chan-Paton data to be an assignment ¢ — &;
of a graded Z-module to each vacuum ¢ € V. The modules &; are often referred to as
Chan-Paton factors.

Now fix a half-plane H. If J = {ji1,...,j,} is a half-plane fan in H then we define
RJ(g) = gjl ® le,jz Q- ® Rjn—hjn ® g;n' (4‘28)
and the counterpart to (4.5) is
R2(€) := @ R;(E) (4.29)

where we sum over all half-plane fans in .
We are ready to define the web-representation analogue of T'(u) defined in (3.32),
namely a map

p(u) : TR?() @ TR™ — TRY(E) (4.30)
graded symmetric on the second tensor factor. As usual, we define the element

p)[rd, D) (4.31)

by contraction. In the equations below we will abbreviate this to p(u)[P; S] where

P:{rla,...,ra} S={r1,...,r}. (4.32)

We define p(u)[P;S] to be zero unless the following conditions hold:

e The numbers of interior and boundary vertices of u match the number of arguments
of either type: Vy(u) = m and V;(u) = n.

e The boundary arguments match in order and type those of the boundary vertices:
7“2 € Ry, (Recall these are ordered from left to right in the order described in

(2.19).).

e We can find an order of the interior vertices V;(u) = {v1,...,v,} of u such that they
match the order and type of the interior arguments: r, € Ry, (u)-
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If the above conditions hold, we will simply contract all internal lines with K and
contract the Chan Paton elements of consecutive pairs of 72 by the natural pairing &RET —
Z.. We keep track of signs as before, building an orientation for u from the orientation on
R2ViW+Va(W) denoting the coordinates of interior vertices as z, y, and boundary vertices
as y“‘l The edge vector fields . can be built as before, adjusting them so that the boundary
vertices remain on the boundary.

o(u)
[Heeg(u) 86} o [H(anl dyﬂ [Hfuevi(u) dxvdyv}

Pecew)Ke] [H 9.,

The ordering of the products over dyﬁ and 0y, follows that specified in (2.19).

p(W)[ry, .. i1, ] =

o {@?:1%7’3} [®g=17a] (4.33)

In order for the signs to follow as closely as possible the conventions in T'[u], we
introduced m auxiliary degree —1 variables 6,, to be contracted with dual dy, to get the
final result. The 6, produce useful signs as they are brought across the 7“2 by the Koszul
rule. The use of 8,72 mimics the use of reduced orientations in the definition of 7. Omitting
the 6, auxiliary variables in p would have the same effect as replacing

[Tor(ua) — Hayﬁ [T o) (4.34)

in T', giving rise to somewhat less pleasing sign rules in the various associativity identities.

Figure 25: A typical half-plane web. The signs for the contraction are fixed as explained in the
example.

Example: As an example of how the formalism works consider the half-plane web shown in
Figure 25. This half-plane web is taut and hence has a canonical orientation o, (u) oriented
towards larger webs. Therefore o,(u) = [dz] = [dy1] = [—dy2]. (Note that the web gets
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larger if we increase x or y; but smaller if we increase y3.) Now we can take 9= _8%1 SO
we get o(u) = [dy1dyz]|. Similarly, O, A Oe, = —6% A 6%. Thus, the prefactor on the first
line of (4.33) works out to

o(u) [dy1 dy,]

861 N 3e2(—dy1)(—dy2)(dxdy) B —[dyldyg] =1 (4'35)

Now, p(u) can only be nonzero on sums of vectors of the form r{ ® r{ ® r where
7“18 S 5]1 & le & 5;3 Jl = {j1>j21j3}
r) €&, @R, RE;,  Jo={js, s} (4.36)
r € Ry I= {j27j47j3}
Moreover it suffices to consider monomials of definite degree:

T(19 =& Tj1j2rj2j35;3

7’3 = 5;'3rj3j46;4 (4.37)
T = 14254754537 4352

Therefore

p(u) [’I“?, Tg; T] = _K€1K62 691 692 (917‘?)(927“2)7’

= (~) R g K g 3
From here on, we simply apply the Koszul rule. The net result is
p(u) [r?,rg; Tl = Kej @ T jo @ Tgjy @ E;Z €& QR ® 5;4 (4.39)
where Joo = {Jj1,j2,j4} and k is a scalar given by
ko= (=1 (€5,(65,)) - (Baga (g Taga)) - (KGngs (Pjagas Tjaga)) (4.40)

14]
s=1+ ‘7’1 ‘ + |7"j2j4|(|7“j4j3| + |Tj3j2|) + |Tj2j3"

With this definition in hand, we can check that p behaves just like T" as far as convo-
lutions are involved. Since the combinatoric structure is the same as for T, we can focus
on the signs. First, we can look at:

puxw)[P;S] = > €55 p(u)[P;p(1)[S1], Sa). (4.41)
Sha(S)

The orientations in the numerators appear in the same way on both sides of the equation.
The K factors in p(to) on the right hand side are inserted to the right of the 6,79 factors in
p(u) and need to be brought to the left in order to match the left hand side. This reproduces
the reduced Koszul rule. We also need to bring the 0. factors in the denominator to the
left of the dy3, but this cancels against the sign to bring the K factors to the left of the
o)

o
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Next, we can look at

pluxW)[P;S] = Y e p(w)[Pr, p(w)[Py; Su], Ps; Sal. (4.42)
Sha(S),Pas(P)

To compare the right hand side to the left hand side, we need to transport the Kdy block
in p(u'), together with the @ in front of it, to the left of the P; arguments 0,72 in p(u). We
also need to transport the arguments r, of S7 to the right of the P3 arguments OGT?L . This
reproduces the reduced Koszul rule. All denominator manipulations needed to reorganize
the 0. and dy® give signs which cancel out against the identical manipulations on the K
and Op, .

Plugging in the usual convolution identities for taut elements, we derive the LAy
relation for p[ty] analogous to (3.38):

> e p(t)Pr,p(t0)[Po; S1), Pa; Sol + Y € p(ta)[Ps plty)[S1], So] = 0. (4.43)
Shy(S),Pas(P) Sha(S)

The most important consequence of these identities is that if we are given an interior
amplitude §, we immediately receive an A, algebra with operations

pa(ty) : TRP(E) — RP(E) (4.44)
defined by
s, ] = p(G)[rd, ... r0; ) (4.45)

This is the main object of interest for us. A useful point of view on this derivation is that
because p(t,)[e’] = 0, any convolution of the form u  t, will give zero when inserted into
pp: applying the convolution identities to e? we get

pluxty)[P,e”] = p(u)[P; p(ty)[e”] €] (4.46)

We are ready for the the half-plane analog of the interior amplitude:

Definition
a.) A boundary amplitude in a Theory T is an element B € RY(E) of degree +1 which
solves the Maurer-Cartan equations

> psta)[B"] = 0. (4.47)
n=1

b.) A Brane in a Theory T is a pair B = (&, B) of Chan-Paton data &, together with a
compatible boundary amplitude B. '°

10WWe will often simply refer to a Brane 9B by its boundary amplitude B when the Chan-Paton data are
understood.
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We remark that equation (4.47) is a sum of elements of degree 2. Note that we can
also define formally !

1 oo
——=> B 4.4
1-B n:oB (4.48)
and write the equation as
1
——1]=0. 4.4
palt0) ] = 0 (4.49)

Remarks:

1. In conformal field theory the term “brane” is often used for conformally invariant
boundary conditions consistent with a given conformal field theory C. These branes
form a category. In our context we think of a boundary amplitude as a bound-
ary condition and indeed in the context of Landau-Ginzburg theories, as described
in Sections §§11-14.7 below, we will see that boundary conditions indeed provide a
boundary amplitude. We will see that, for a fixed Theory T, the boundary ampli-
tudes, or equivalently the different Branes, also form a category.

2. The higher operations
pa(tu)[P; 5] := p(t3)[P; S, €] (4.50)

still satisfy LA relations. They will not play a further role for us.

3. As for 8, we can use B to “shift the origin” in the A, algebra. The operations
ph(ty) : TRY(E) — R2(€) defined by

1 1 1 1
B0 ) = palb)—go g gl (45D)

again satisfy the A..-relations if B is a boundary amplitude. The proof is similar
to that of (4.17). We will identify this A, algebra in §5.2 with an A, algebra of
endomorphisms Hom(B, B) (see (5.17)).

4.3 Web Representations And Strip-Webs

Now we will explore what implications a representation of webs has when combined with
strip webs. Suppose we are given a web representation R = ({R;;}, K) and Chan-Paton
factors £, ; and Eg; for the left and right boundaries of the strip. We will denote the fans
for the left boundary as J and the fans for the right boundary as J. , with corresponding
spaces R;(£1) and R3(Er). The direct sum over positive- and negative- half-plane fans
with these Chan-Paton spaces will be denoted as R? (€1) and R%(ER), respectively.

Definition: We define the space of approximate ground states to be

ELR = Diev€L;i @ €, (4.52)

" The reader is cautioned about a possible notational confusion. Late on, we will introduce an identity
element Id. Given a multilinear function f, the first term in the expansion of some f(X, ﬁ, Y)is f(X,Y),
not f(X,1Id,Y)
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and a typical element is denoted by g.
Given a strip web s we plan to define an operation

pls] : TR?(EL) @ TR™ @ ELr @ TRY(ER) — ELr (4.53)

As usual, we take this to be zero unless all the arguments are compatible with the appro-
priate vertices of the strip web and defined by a familiar formula otherwise:

p(s)[rl,...,rm;rl,...,rn;g;?’?,...,?’f] =
o(u)
Mece 8] o [T dyg] [Tev,o doodse] [TTi: 3]

[®ces(s)Ke] [H %, ] [H %,
a=1

Recall that, reading from left to right the r]a are inserted on the boundary in order of

o [®Z”:16’ar§] [®po1mal @ g [@3215(1?2} (4.54)

decreasing y while the 7; are inserted in order of increasing time.

> N
),__f'}l

Figure 26: Strip webs whose contractions are described in the text.

Example: The contraction associated with the strip-web on the left in Figure 26 maps
Rii(6) @ (& ®E) @ Rij(E) = & @ & (4.55)
It operates on a typical primitive tensor via
(0 @7 V)@ (U, @V ) @ (T @y @) = £(v] )T W) K (rji, T:)v; @ U (4.56)

where the superscript * indicates a vector is in £* and the sign is determined by the Koszul
rule. Similarly, the strip-web on the right in Figure 26 maps

<Rkj(5) ® Rji(5)> ® (& ®E) @ Riji(€) — & ® &f. (4.57)
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It operates on a typical primitive tensor via

(r @ T ® V) ® (v @75 @ 0] ) ® (v ® ) @ (T} @ Fij @ Tjp @ Ty)

() V) () o) (@ VK (rig, i) K (756, T3 v © T

(4.58)

where the sign is determined by the Koszul rule.

The full map p(s) satisfies the same compatibility relations with convolutions as T'(s)o,
which combined with the convolution identities for the taut elements tell us that p(ts)
satisfies the same lengthy algebraic relations as T'(ts)o , described in Section §3.3.

Now let us select a specific choice of interior amplitude £, together with left and right
boundary amplitudes By, and Bp, respectively, and define an operator drr : ELr — ELRr

by the equation
1 1

drr: g pts)[—; e’ g5 ——]. 4.59
LR Y9 p(s)[l_BLae ’g’].—BR] ( )

The ts o ts + - - - = 0 identity (2.40) reduces to the crucial nilpotency
dip=0 (4.60)

essentially because all other terms in the convolution identity give zero when evaluated on
ﬁ, e, and ﬁ. That is, dr g is a differential on the complex &y .

We believe these considerations amply justify the following

Definition: The complex of ground states associated to a left and right brane in a given
theory is (€ r,drr). The cohomology of this complex gives us the ezact ground states for
this system.

Remarks:

1. When our formalism is applied to physical theories and physical branes the above
definition coincides with the physical notion of groundstates, thus realizing one of
the primary objectives of the introductory section §1.

2. We can define operations

1
1- Bg

psR(ts)[P; g] := pl(ts)[P; €’ g; ] (4.61)

These endow £ r with the structure of an Ay left module for ps(ty). Similarly,
pp(ts)[P; g P'] = p(ts)[P; e”; g; P (4.62)

defines an A, bimodule structure on &y i.
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4.4 On Degrees, Fermion Numbers And R-Symmetry

Throughout this section, and in later sections, we define the R;; as graded vector spaces,
with a Z valued degree which determines the Grassmann parity of objects and allows us
to use the Koszul rule in our manipulations.

The integral grading of objects such as the complex of ground states €1, the R™ and
RI[£] spaces used in defining the interior and boundary amplitudes should be canonically
well-defined, as these objects are expected to be in correspondence to objects in a physical
theory which have a well-defined, integral grading given by the conserved R-charge.

On the other hand, the individual R;; and &; spaces are expected to be in correspon-
dence with objects in a physical theory for which the definition of R-charge is possibly not
integral and ambiguous, due to contributions from boundary terms at infinity. Concretely,
the R-charge operators g;; and g; on R;; and &; are defined up to a constant shift

TGij = Qij + fi — fj G — G — fi (4.63)

which leaves the R-charges of £pr, R™ and R?[€] invariant.

When we attempt to associate a web representation to a certain physical theory, we
can always select some choice of f; such that the R-charges are integral, and can be used
to define integral degrees. Such a choice, though, it is not unique, and may break some
symmetry of the theory. Different choices are related by shifts with integral f;.

As changes in degrees affect the Koszul rules, a shift in degree in the R;; will lead
to sign changes in the definition of p. Furthermore, it may affect the signs in the MC
equations for interior and boundary amplitudes. In order for our algebraic structures to
behave well under degree shifts, we would like to be able to reabsorb such signs into sign
redefinitions in the &7z, R™ and R?[€] spaces and in the K pairing.

More precisely, we would like to define a new web representation in terms of some

YR;; isomorphic, perhaps not canonically, to the degree-shifted Rgi*f ﬂ, and CP factors

V&, isomorphic, perhaps not canonically, to the degree-shifted Ei[_f ) such that we have
canonical isomorphisms
gLR ~ \/ELR Rint o \/Rint Ra[g] o~ \/Ra[g] (464)

which intertwine between p defined by the original representation, and Vp defined by the
new representation and map interior and boundary amplitudes for the original representa-
tion to interior and boundary amplitudes for the new representation.

There is a natural, physical way to find such maps, but the story has an unexpected
twist: in order to relate naturally p and Vp, we need to also act with an automorphism of
the web algebra, i.e. a linear map fyy : v — to which commutes with all web convolution
operations. Such a map will not, in general, preserve the taut element and thus will not map
interior amplitudes to interior amplitudes, except in some special cases we will describe
below, unless we generalized the notion of taut element and interior amplitude slightly.

Lets first describe our degree-shift maps. The maps will act as +1 on each summand
& ®EF, R, Rj[€]. Consider some one-dimensional graded vector spaces V; of degree f;
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and their duals V;*, with a canonical isomorphism V;* ® V; = Z. Define
YRij=Vi® Ry V] V&=&@V] (4.65)

We can focus on R™ and the plane web representation. The same analysis holds for
half-plane and strip web representations. Consider the Y R;. We can apply the canonical
isomorphism V;* ® V; = Z to relate canonically

VRilmin = Vi1 X R”Llln & sz (4.66)

We can then define a canonical isomorphism Y R;,..;, = R;,...;, by Koszul-commuting V;,
all the way to the right and applying the canonical isomorphism. It is easy to see that
such canonical isomorphism makes a neat commutative diagram with the isomorphisms
Ri”’Q..,in = Ri2-~-z’ni1 and VRi1i2~-~in = vRiz-uinil defined in 4.1.

We should define VK as well. Of course, VR;; ® YR;; is canonically isomorphic to
Vi ® Rij ® R;j; ® V;*. As the degrees of the middle factors add up to 1, there is no sign
to pay to bring V; all the way to the right and apply the canonical isomorphism again to
R;j ® R;;. Thus we can take YK to coincide with K up to this canonical isomorphism.

Lets compose Yp with the canonical isomorphisms: we take the arguments 7, in Ry,
map them canonically to elements in ¥Ry, and do our contractions with VK, which means
we contract the R;; elements with K and the V;, V;* pairwise according to the same pattern.

Effectively, the only difference between Yp and p is the composition of a bunch of
canonical “pair creation” maps Z — V;* ® V; and “annihilation” maps V;* ® V; = 7Z, along a
pattern dictated by the topology of the web. It is easy to see that the chain of contractions
produces a loop for every internal face of the web. Thus Yp and p differ by a factor of
Hiefaces[m] (_ 1)f1 :

We can absorb the difference into a linear map

w— flow= | J] (1w (4.67)
icfaces)
Thus the web representation transforms canonically under the degree shift combined with
the action of this linear map on the space of webs.
The sign f[ro] has a striking property:

flro1 #y 102] = froq] f[roo] (4.68)

as convolution does not create new internal faces. Thus the map commutes with all web
algebraic operations. We can call a collections of numbers with such property a cocycle for
the web algebra.
It should be clear that the taut element t is not invariant under twisting by a general
cocycle of]: 12
t—t,= > ofww. (4.69)

tautw

12 A notable exception is a case of vacuum weights which form a convex polygon: the special cocycles are
trivial because there are no internal faces. Half-plane and strip taut webs may have internal faces bounded
by one of the boundaries of the space, but the extra sign can be reabsorbed in a re-definition of R? [€]. This
will be important in later examples
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On the other hand, the twisted taut element t, is still nilpotent, and we could extend
our definition of theory by replacing t with t, in our definition of interior amplitudes, etc.
Although we will suppress this possibility in the remainder of the paper, it is likely relevant
to concrete applications.

Our final statement is that degree shifts f; in the R;; relate canonically a theory
associated to a cocycle o and a theory associated to a cocycle o f.

(b)

Figure 27: In figure (a) we show an extended taut planar web. The contribution of this web to
the equation for an interior amplitude shows that such an (extended) interior amplitude can be
used to define a differential on R;;. Similarly, in figure (b) we show a taut extended half-plane
web. Its contribution to the Maurer-Cartan equation for the corresponding A, algebra shows that
a compounent of the (extended) boundary amplitude defines a differential on &;.

Figure 28: A bivalent vertex can be added to any leg of any vertex to produce a taut extended
web, as shown here.
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4.5 Representations Of Extended Webs

We can extend the definition of web representations to extended webs. For plane webs, we
have new fans available, with two vacua only, and associated vector spaces

Rijy = Rij @ Rj; (4.70)

The interior amplitude includes now a component 3;; in R(;;). We can use K to “raise an
index” of 3;; to define a degree 1 map

Qij : Rij — Ryj (4.71)

by
Qij(rij) == (1 ® Ka3)(Bij @ 1ij). (4.72)

where the subscript 23 means that K is contracting the second and third factors in R;; ®
Rj; ® R;;. The equation satisfied by 3 implies that ();; is a nilpotent differential, making
R;; into a complex. This is illustrated in Figure 27(a). '3 As the two-valent interior vertex
only appears in taut plane webs with two vertices, the equations for § differ from the
standard case only by terms where some @;; acts on an external ij leg of 3. The relevant
kinds of taut webs are illustrated in Figure 28.

For half-plane extended webs, we have a single-vacuum fan available, and associated
vector spaces

Rl((c;) =& ® 51* (473)

¢

associated to a half-plane “web” consisting of one vertex on the boundary, with no ingoing
lines. When working with extended webs the definition of R?(£) in (4.29) now reads

ROE) = @i&i @ E @ Buyen (EOR; O E) @ - (4.74)

When speaking of elements of Ra(é’ ) we refer to the new summand @,;&;®E;" in the definition
of Ra(é’ ) as the scalar part. Thus the boundary amplitude includes now a scalar part ); in
R;(£). The Maurer-Cartan equation now includes a taut web with two zero-valent vertices
and this contribution requires the scalar part @Q; to be a differential on &;, making the
Chan-Paton factors into a complex. See Figure 27(b). Moreover, the zero-valent boundary
vertices only appear in taut half-plane webs with two vertices, so the equations for Q; + B
differ from the equations for B with unextended webs only by an anti-commutator between
some Q; and B.

It is also interesting to observe that we can define an element Id; as the canonical
identity element in R;. Then we set

13To give a little more detail: The interior amplitude identity says that Kos(8;; ® Bi;) = 0, where again
the subscript 23 indicates which factors the K acts upon. Then, using similar notation, to check Qf]- =0
we need to verify Kaz(8i; ® Kas(8i; @ ri5)) = 0. Since Koz and Kus act on different spaces and hence
(anti)commute we can first contract Ko3(8i; ® fi;) to get zero.
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The Id element behaves as a graded identity for the A algebra pg(ty), i.e. pg(ty)[Id] =0,
(since there is no taut web with a single boundary vertex) while, using the conventions of
(4.33),

ps(ty)[Id, 7] =r ps(ta)[r,1d] = (1)1, (4.76)
while pg(ty)[P1,1Id, P>] = 0 if both P;, P> are nonempty (simply because there are no taut
webs of the appropriate kind). This feature alone can make extended webs useful.

For extended strip webs, the new vertices only appear in simple taut (=rigid) webs
consisting of a single zero-valent vertex on either boundary. Thus we should simply add

Biev[Qr; ®1+1® Qry) (4.77)

to the differential dr, g.

4.6 A Useful Set Of Examples With Cyclic Vacuum Weights

We will now describe an infinite family of non-trivial examples of Theories and Branes
which will be used again in Sections §5.7 and §7.10 to illustrate our formal constructions.
As explained in Section §4.6.4, they are also of physical interest.

Fix a positive integer N and consider the vacuum data

VY iz =e Rk p=0,---N—1 (4.78)

For convenience, in this section, we choose a small positive ¥, so that zy has the most
positive real part among all vacua, and a small negative imaginary part. The vacua are
a regular sequence of points on the unit circle ordered in the clockwise direction. In
particular they form a regular convex polygon and hence there are no webs with loops. Let
us enumerate the rigid vertices. Note that if 4, j, k are three successive vacua in a cyclic fan
then, by our conventions, they label regions in the clockwise order and hence zj;, rotates
counterclockwise through an angle less than 7 to point in the direction of z;;. It follows
that the corresponding vertices z;, z;, 2, on the unit circle must be clockwise ordered. From
this we can conclude that the rigid vertices are in one-one correspondence with increasing
(reading left to right) sequences of numbers between 0 and N — 1. In particular, the
trivalent vertices are labeled by triples of vacua with 0 <i < j <k <N —1.

In what follows we will consider two examples of web representations R. We will
analyze the resulting Lo, MC equation and, for a specific choice of interior amplitude 5 we
will analyze the Ao, MC equations and Branes in these Theories. While the development
is a purely formal illustration of the mathematical constructions developed above, the two
classes of models are meant to correspond to two physical models, as explained in Section
§4.6.4 below.

4.6.1 The Theories 7:9N

Our first class of Theories, denoted 7:9N have web representations such that R;; is one-
dimensional space, with degree (or “fermion number”) 0 or 1:

R = yAR 1<
Rij =7 1> (4.79)
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Moreover, we take K to be the natural degree —1 map K : Z @ Z — Z given by multi-
plication. ™

This restriction on the degree has a neat consequence: the degree of R equals || — 1,
where |I| is the number of vacua in the fan I. Thus the interior amplitude, which must have
degree 2, is concentrated on trivalent vertices only. We can therefore label the independent
components of the interior amplitude by 8;x € R;j ® R, ® Ry; with ¢ < j < k. To complete
the definition of the theory we must choose a specific interior amplitude. Therefore, let us

examine the L., MC equation.

Figure 29: The two terms in the component of the L, equations for i < j < k < t.

The only taut webs with only trivalent vertices have four vacua at infinity. For each
increasing sequence of four vacua, ¢ < j < k < t, there are two taut webs corresponding to
the two ways to resolve the 4-valent vertex as shown in Figure 29. Therefore the Lo, MC
equation is a collection of separate equations, one for each such increasing sequence, of the

form

(&) [Bijks Bikt) + p(4) [Bije, Bjkt] = Kik © (Bijr @ Bikt) + Kjr o (Bije @ Bjwe) =0 (4.80)

where K. is the contraction of the R;. ® Ry; factors and so forth. We used the fact that
for a canonically oriented taut web to with two vertices,

Oe o (dx1dyrdxadys) = dr1dy2d(y1 — y2) = o(w) (4.81)

to deal with the orientation ratio in p. (See Section §4.1 for the definition of d,.)
In order to compute the relative signs in the two terms of the MC equation, we re-
member that
Bijk @ Bikt € Rij ® Rjx @ Ry @ Rip @ Ry @ Ry; (4.82)

1 0One could introduce an extra multiplicative factor in the definition of K. Invertibility over the integers
constrains it to be +1. One could extend it to be a nonzero rational number and tensor the representations
over Q. When counting the ¢-webs of Section §14 it is natural to take the multiplicative factor to be 1.
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and thus K has to go through two degree 1 spaces I;; ® Rj, to contract Ry; @ R, while
Bijt @ Bkt € Rij @ Rjy @ Ry @ Rjp @ Ry @ Ryj (4.83)

As Ryj has degree 0, we can carry it through the other factors to the right of Rj;, and then
Kj; has to go through a single degree 1 factor R;; in order to contract R;; ® Ry;. Therefore,
if we identify now 3;;; with an integer b;;;, then the Lo, MC equations becomes the system
of quadratic equations:

bijkbikt — bijtbjkt =0 1< g < k<t (4.84)

For example, for N = 4 we have a single equation familiar from the conifold. On the
other hand, for large N there are more equations than variables so it is nontrivial to have
solutions at all, let alone integral solutions. '® Fortunately there is a simple canonical
solution given by b;;r = 1 for all i < j < k. This choice of interior amplitude 3 defines the
Theory we will call 7:9N .

Next, we can look at half-plane webs and Branes. In general the half-plane taut
element will depend on the relative choice of ¥ and of the slope for the half-plane H. We
have already chosen 9 to be small and positive and we will now choose H to be the positive
half-plane.

20

Figure 30: Paths defining positive-half-plane fans for the cyclic weights (4.78). These can be
divided into four types according to whether the vacua in J = {i,...,j} are down-type vacua
i,j €[0,%) or up-type vacua i, j € [5, N —1]. (We use the fact that ¢ is small and positive here.)
Reading the paths in the direction of the arrows gives the sequence of vacua encountered reading the

fan in the counterclockwise direction, and this corresponds to reading the vacua in J = {i,...,j}
from right to left. Shown here is the case N = 8. The vacua zg, ..., 23 are lower vacua. The vacua
Z4,...,27 are upper vacua. The green path is of type u...u. The maroon path is of type wu...d.

The blue path is of type d...u. Finally the purple path is of type d...d.

Let us now enumerate the possible positive half-plane fans J = {j1,...,js}, where we
recall that reading from left to right we encounter the vacua in the clockwise direction. The

5From the relation to Landau-Ginzburg theory discussed in Section §14 we expect integral solutions.
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presence of the boundary breaks the cyclic symmetry so that when speaking of half-plane
webs and Branes it is very useful to distinguish “upper vacua” or “up vacua” from “lower
vacua” or “down vacua.” The up vacua have positive imaginary part and the down vacua
have negative imaginary part. Thus, the down vacua correspond to ¢ with 0 <7 < % and
the up vacua correspond to ¢ with % <7< N.

In order to enumerate the positive half-plane fans we begin by noting two points:
First, zj, ., has to have positive real part, and hence Re(z;,) > Re(zj,,,). Second,
Zj,.jp+1 MUSt TOtate counterclockwise to point in the direction of z; _, ; . Now read the list
of vacua counterclockwise, i.e. from bottom to top, and from right to left in J. The vacua
then define a path of points on the unit circle, and the half-plane fans are enumerated
by paths which move to the right so that the successive segments rotate counterclockwise.
One way to classify these paths is the following: Denoting generic up- and down-type
vacua as u or d respectively note that the segments dud or wuu rotate clockwise and
are excluded. Therefore the half-plane fans J must be sequences of the type {uj---ua},
{uy -+ -da}, {dy---uz}, {d1---da} where in each case the ellipsis -, if nonempty, is an
ordered sequence of down-type vacua. An example is shown in Figure 30.

Since our interior amplitude is supported on trivalent vertices, to write the Ao, MC
equations we need only list all the taut half-plane webs with trivalent vertices. This can
be done, with some effort. Indeed, if we associate to each half plane fan the sequence of
edges in the weight plane between the corresponding vacua, then each half-plane web with
non-zero representation can be associated to a triangulation of the polygon defined by the
sequences of edges for half-fans at boundary vertices together with the half-fan at infinity.

(o)

Figure 31: The three kinds of taut half-plane webs which can contribute to the A,,-Maurer-Cartan
equation in the examples with cyclic weights.

If the half-plane web does not include intermediate upper vacua in the sequence of
vacua along the boundary, all we can have is a disconnected taut web (Figure 31(a)) or a
web with a single boundary vertex, an edge of which splits at an interior vertex to give a
half-fan at infinity with one extra edge than the half fan at the boundary vertex (Figure
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31(b)) . If the half plane web includes a single intermediate upper vacua, the only relevant
taut half-plane web has two half-fans and a single interior vertex at which the last edge of
one fan and the first of the next fan join to a new semi-infinite line (Figure 31(c)). Webs
with more intermediate upper vacua cannot be taut.

Solving the MC equation is still a rather formidable task, and therefore (with some
later applications in mind), we will constrain the problem further, and impose a simple but
powerful constraint on the degrees assigned to the (nonzero) Chan-Paton factors &;: we
will choose the degrees to be decreasing as we move clockwise around the lower vacua and
decreasing as we move counterclockwise around the upper vacua. Moreover, we require a
reflection symmetry on the degrees of nonzero Chan-Paton factors. So we take:

deglr, =n-—k 0<k<N/2
degén_p_1=n—Fk 0§]€<N/2
(4.85)

for some n. (The integer n is not really needed here but cannot be shifted away in the
related example (4.117) below.)

Figure 32: Three nontrivial components of a boundary amplitude in the cyclic theories. Note
that for small ¥ the slope zy_p 1 is nearly vertical, zj y_r—1 always points downwards, while
ZN—k,N—k—1 can point upwards or downwards, depending on k.

The restriction (4.85) strongly constrains which half-plane fans can support a nonzero
boundary amplitude B (since B must have degree 1). It will allow a simple analysis of
the MC equation for a boundary amplitude with such Chan-Paton factors. Suppose we
consider a component B;; € Ry;..;3(E). It is useful to look at first at fans which include
two vacua only so Bj; € & ® R;j ® £7. If i > j then by (4.79) R;j has degree 0 and hence
the degree of & ® £ must be 1. The only two possibilities are ¢ = N — k and j = k, with
1<k<N/2ori=N-—-Fkand j=N—k—1,with 1 <k < N/2. In both cases i is u-type.
On the other hand, if ¢ < j then by (4.79) R;; has degree 1 and hence the degree of & ® &7
must be zero. Then the only possibility is i = k, j = N —k — 1 with 0 < k < N/2. In this

— 65 —



case i is d-type. It turns out that no half-fans with more than two vacua may contribute
to a degree 1 amplitude. For example, if we consider Eny_p ® Ry_k ¢ ® Ry ® & with
k<l < N —kthen {N —k,{,k} is never a valid half-plane fan. The reason is that the
real part of zy_j k is sin(¥) sin(2wk/N) and is arbitrarily small, and will be smaller than
Re(z¢,) whenever Re(z) > 0. We conclude that the only potentially nonzero components
of a boundary amplitude are of the form:

Byn_kN-k—1 < fr € Hom(En_p—1,EN—k) 1<k<N/2
Bk,N—k—l <~ gk € Hom(EN_k_l,Ek) 0<k< N/2 (4.86)
By_kr < hi€ Hom (&, En—k) 1<k<N/2

where in the second column we have interpreted the indicated component of B in terms of
linear transformations fx, gx, hx. See Figure 32.

A A
9k
fx

Jr+1

g1

N — kA

fl,r.,:
k 1

gk -\
N —_k—-1

Figure 33: Three nontrivial equations in the A, MC equation.

We can now write out the nontrivial components of the A,, Maurer-Cartan equation
for B. We organize them by the type of the half-plane fan J,,. The uu component arises
from a taut web with a single interior vertex and two boundary vertices as in Figure 31(c).
It takes the form

p(t0) BNk, N—k—1, BN—k—1,N—k—2; BN—k—2,N—k—1,N—k) = O (4.87)

and it tells us that fifrx+1 = 0 in the notation of (4.86).
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In a similar fashion, the dd component takes the form

p(t2) [Bre N—k—1, BN—k—1,k+1; Br jt1,N—k—1] = 0 (4.88)

and it tells us that if gghr1 = 0 in the notation of (4.86) (where k < N/2 —1).

Finally, the udu component involves two kinds of webs: a web with two boundary
vertices only as in Figure 31(a), and a web with a single boundary vertex and a single
interior vertex as in Figure 31(b). Both webs contribute to a term in the MC equation
with a half fan of three vacua, which takes the form N — k,k, N — k — 1. Thus we need to
solve

p(t30) BN~k o> Bie, N—k—1] + p(t1) [BN—k,N—k—1; B, N—k—1,N—k) = 0 (4.89)

which tells us that fr = hrgg.

Note that the frfrr1 = 0 constraint follows from the other constraints. Thus the
general solution of the Ao, MC equation subject to the constraint (4.85) is given by a set
of linear transformations { fx, gr, hr} as in (4.86) subject to the two conditions giphri1 =0
and fi = higr (for values of k for which this makes sense). These equations are illustrated
in Figure 33.

Let us consider two simple types of solutions. The the first are the “thimbles” ¥;
defined by the Chan-Paton factors

E(Ti); = 0452 (4.90)

with f; = g; = h; = 0. The second kind are the Branes €, with 1 <k < N/2. These are
defined by taking Chan-Paton spaces

E(Cu)y_p =2 E@)N-k—1=Z  ECur =1 (4.91)

with all other Chan-Paton spaces £(€); equal to zero. For the boundary amplitude we
take fk, gk, hi, to be be multiplication by 1 (and of course f;,g;, h; vanish for j # k) and
hence f; = hjg; and gjh;11 = 0 for all j is satisfied. The motivation for writing down
these branes is that they are generated from rotational interfaces as described at length in
Section §7.10 below.

In order to look at the strip we need to define some boundary amplitudes and Branes
for the negative half-plane. One convenient way to do this is to use the Zy symmetry of
the model and rotate the half-planes by m. We can construct a family of cyclic Theories
by simultaneous rotation of all the vacuum weights z; — e ?z;. As the edges parallel to
2z;j rotate we continue to associate the same spaces R;; to them, together with the same
interior amplitudes, and thus we obtain a family of Theories. A rotation by a multiple of
27 /N leaves the set of vacuum weights invariant. Hence there is an isomorphism of the
rotated planar theory with the original theory. However, because of the degree assignments
in equation (4.79) this isomorphism involves an interesting degree shift on the web repre-
sentation. If z; — w92 with w = exp[27i/N] then the isomorphism acts by i — 7 where
i = (i +d)modN with 0 <7 < N and the rotated web representation % (R;;) is related to
the old one by

o(Ryj) = R,[?]] (4.92)
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with

i<j & i<j
i>j & i>j
[si5] = o ~ o~ (4.93)
+1 i<y & 1> ]
—1 i>j & i<j
A A
-

Figure 34: Rotating the theory for NV even by m maps left Branes to right Branes using the above
rule.

In general the rotation takes one half-plane theory to another half-plane theory. If N

~N/2 _

is even we can use a rotation by w —1 to take the positive half-plane theory to the

negative half-plane theory as in Figure 34. Our rule for mapping Chan-Paton spaces will
be that

o _ colsil

&E=¢7 (4.94)

and the degree shifts are chosen so that there is a degree zero isomorphism
i@ Pyy(Riy) & 2 &0 R0 & (4.95)

and hence the degree-shifts on the Chan-Paton spaces are determined, up to an overall
shift, by
[si5] = [si] = [s5]- (4.96)

The general solution to (4.96) is

1 0<i<X
si:{s+ =Sz (4.97)

s J<i<N-1

for some s. These maps define an isomorphism of theories as in 4.1.1. See also 4.6.3.
In particular, applying this procedure to the Branes €, produces a collection of Branes
for the right boundary, €, 1 < k < N/2 with

g(ék)N—k = Z[s] 5(%k)k—1 = Z[Sfl] 5(€k)k = Z[S] (4.98)
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and the simplest choice is to take s = 1. In the above we have renamed the Brane ¢
rotated by 7 to be Z’Eﬂ _j- The components of the boundary amplitude of %k are obtained
from those of CN/Q,RQand are £1.

The strip complex for the Branes €; and ¢, is non-empty only if k =tork=¢t—1. In
either case, it is a two-dimensional complex, with differential “1”. For example for k = ¢
we have the complex of approximate ground states

ELr = @iS(Qk)i ® 5(6%):

~7 27 ozl g 7 (4.99)

There is only one taut web which contributes to drr given by the amplitude h; and hence
drr(m,n) = (0,m). The cohomology is therefore zero: there are no exact ground states
on the strip between €; and ¢. In particular, in a physical manifestation of this example,
although there are good approximations to supersymmetric groundstates on the interval
in fact instanton effects break supersymmetry.

4.6.2 The Theories %SU(N)

There is an interesting, and much richer, variant of the Theories we have described above:
we keep the same weights, but define
1 .
Rij = Ag i i 1<)
Rij = AN+j—i 1> (4.100)

where A, is the /-th antisymmetric power of a fundamental representation of SU(N). 6
We will show now how to define an SU (N )-invariant interior amplitude, and thus a family
of Theories %SU(N) whose algebraic structures will be SU(N) covariant. We choose an
orientation on the fundamental representation A;, or equivalently, a nonzero vector in
Ay, denoted by vol. It will also be convenient in some formulae to choose an oriented
orthonormal basis {e1,...,ex} and, for multi-indices S = {a; < az < .-+ < ay} the
corresponding vector es = €4, A €qy A -+ Aeq,. These vectors form an orthonormal basis
for Ay.

The fan spaces Ry are the product of SU(N) representations whose Young tableaux
have a total of N boxes, and thus contain a unique SU(N) invariant line: Taking the outer
product of the antisymmetric tensors from each of the factors we antisymmetrize on all the
indices.

The pairing K;j : R;j ® Rj; — Z is uniquely determined by SU(N) invariance to be

V1 N\ V2
Kij(vl X 1)2) = Kyj

(4.101)

vol
where k;; is a nonvanishing normalization factor. For simplicity we will take the x;; to be
given by a single factor  for ¢ < j. Then, by the natural isomorphism R;; ® Rj; = R;; ® R;;
kji = K with a sign determined by 4, j.

161f we want to work over Z or Q we should replace SU(N) with SL(N,Z) or SL(N, Q). We will informally
write SU(N), since this is what appears in the main physical applications.
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Since the degree assignments of (4.100) are the same as those of (4.79) the interior
amplitude only has components on trivalent vertices. We will assume our interior ampli-
tudes are valued in the invariant line in R; and therefore, for i < j < k the amplitude must
be of the form

Bijk = bijr Y %6& ® e, ® eg, (4.102)
Shi*
where b;;), is a scalar, exterior multiplication is understood in the first factor in the sum
on the RHS, and Shgjk is the set of 3-shuffles of S = {1,..., N} such that |Si| = j —i and
[S2| =k —J.

Now let us write the Lo, MC equation. When we compute K;i, (551 ® Bire) we apply the
contraction to a sum over pairs of 3-shuffles 51 I1.5; 11 .53 € Shgjk and S} 11 S5 1154 € Shit.
In fact, the contraction turns out to be valued in the SU(N) invariant line in Ry ;.
because the contraction of three epsilon tensors is proportional to an epsilon tensor. In our
notation we have the identity:

!

651652655653 , , ijkt
€5, €8,€8; €5, €55€54 €5, €83 {vol S1 I Sy IT .S 11 .55 € Shy

(4.103)

vol vol vol 0 else

where Shfljkt is a sum over 4-shuffles with lengths 7 — i,k — j,t — k, N + i — t. Note that

one must be careful to contract R;; ® Ry; — Z in that order. It therefore follows that

€5,€8,€5,€5,
vol

Kir(Biji @ Bine) = Kbijrbi Z

ikt
Sh¥/

es, ®eg, ® €s, & sy (4104)

A similar result holds for Kj;(8;j+ ® Bjkt), which turns out to be (when considered as
an element of R;; ® Rj, ® Ry ® Ry;)

€5, 651 esé €55

vol

Kje(Bije ® Bire) = —rbijebjee

—
Shi/

es; ®eg Qeg @ eg,. (4.105)

The overall minus sign has the same origin as in the second term of (4.84). Therefore the
L MC equations are

bijrbikt — bijtbjke = 0 1< j<k<t. (4.106)

These are the same equations as before. For general N they are overdetermined, and once
again we take the canonical solution b;j; = 1 to define the Theories %SU(N).

We can impose the same restrictions on the degree of Chan-Paton factors as in (4.85).
The same reasoning as before implies that we can interpret the possible nonzero components
of the boundary amplitude as linear transformations. We give them the same names as

before, but now equation (4.86) is generalized to give a set of three maps

Byn_kN-k—1 < fr € Hom(En_p—1,EN—k @ AN—1) 1<k<N/2
BipN-k—1 < gk € Hom(En k1, & @ Ag\lf]i%il) 0<k<N/2 (4.107)
BN—k,k <~ hp € Hom(c‘:k,EN_k X AQk) 1<k< N/2
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There are two independent MC equations. The first (see the northeast corner of Figure
33) says that
KocK35(1 @ Br g1, N—k—1)9kPkt1 : Epp1 = EN—f—1 @ Aojqa
— & oA L © Ao
- & ® Agir]fqu ® Agkt2 ® A[11} ® Ag\ll}f2kf2 ® Azkt1
— &, R A
(4.108)

must vanish. Written out in components this means the following. Choose bases {vq, } for
&, and define matrix elements:

hyy(Vey,) = Z hgn_ T V8n—1, © €1
lTI=2k
BN k1] (4.109)
gk(vﬁN—k—l) = Z Iy 11BN —p—1 Ve ® €I

el T|=N—2k—1

and the MC equation becomes (assuming by ry1 nv—k—1 # 0 as is true for the canonical
interior amplitude):

0= Z Ei7[17]2~g’7k7[2|BN—k—1hﬁN—k—lJl|ak+1 (4.110)

BN —k—1,11,12

The sum is over all multi-indices Iy, I with |I1| = 2k + 2, |[3] = N — 2k — 1. The equation
is meant to hold for all v, agy1, and 1 < i < N. The factor €; 1,1, € {0, £1} comes from
contracting 3 epsilon tensors. The explicit formula is

eielé 611
Silnly = T €LEn (4.111)
where I’ denotes the complementary multi-index to I in {1,..., N} and g7 := & \ij’

The second MC equation says that the sum of the two diagrams on the bottom of
Figure 33) must vanish. Thus,

higr : EN—p1 — EL @ Agif]i%il

(4.112)
= EN—k ® A @ Ag\lf}f%fl
plus
Koas(1®@B)fr : En—k—1 = EN—k ® AN—1
s En @Ay 1 @AY 0 Al Ay (4.113)

= EN-E® ARf]kafl @ Ak

must vanish. When written out in terms of the matrix elements this means that, for all

Vay_,_, and all vg, , and all multi-indices |I1| = N — 2k — 1 and |[2| = 2k we must have
5117]2'}[‘61\772]@:710[]\],]6,1 = Z hBN—IwIQ"Ykg'kaIllaN—k—l (4114)
Vi
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where &7, 1, is a constant given by

_ Ne; Ner e N\ e
— (—=1)" k+1 (611 ? 2) 7 b L _ 4.115
511712 ( ) vol vol ROE,N—k—1,N—k ( )
This constant is zero unless I7 IT I =7 for some i € {1,...,N}, and 7 is the multi-index of

length N — 1 complementary to 3.

The last MC equation follows from the first two, as in the 7;9N theories. fi is a map
Jre :EN—k—1 = EN— @ An_1. We identify Ay_; = A7 and then the component of the MC
given by the upper left diagram in Figure 33 becomes a map

[frfrsa] : EN k2 = EN—k ® AS (4.116)

obtained by antisymmetrizing the two A7 indices to an A3 index. The antisymmetrization
is due to the contraction with Sy_j—2 N—k—1,8N—k- The form of f; determined above in
4.114 shows that [fifk+1] = 0.

Writing down solutions of these Ao, MC equations is considerably less trivial than in
the 7.V theories! It is now natural to impose a requirement of SU(N) invariance on the
boundary amplitude component so that B; ; is in the invariant subspace of & ® Ri; @ £7.
Equivalently, we require that fx, gx, hi be intertwiners.

M

Figure 35: The CP factors for the Brane 91, in the %SU(N) theory, for the case N =8 and n = 3.

Based on this observation and a certain degree of guesswork using the rotational inter-
faces discussed in Section 7 below, we have found a neat class of Branes 91, for this model:
They are generated from thimbles by using the rotational interfaces. See equation (7.161)
et. seq. below. The Chan-Paton factors of 91,, are

L[Qijrkl}nflwrl 0<k<N/2
EMy)k = {L[nH’Nw N e hen o1 (4.117)
Int+k+1-N 32 =

The superscript indicates the degree in which the complex is concentrated, as usual. Here
L;,, are the representations of SU(N) labelled by an (upside down) L-shaped Young
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diagram with a column of height ¢, a row of length m and a total of £ +m — 1 boxes. They

have dimension
(N+m—1)! 1

(N =D =D (m -1 +m—1 (4.118)

dim Ly ,, =

Note that Ly ,, = Sy, the mth symmetric power of A;. Note that we also have Ly 41 = Sy,
and Ly; = Ay. For the lower-vacua, moving clockwise the L shrinks in width and gets
taller. For the upper-vacua, the representation is always a symmetric power, and the

Young diagram gets longer as the vacua move clockwise. Note that the two sets of cases in
[n—(N—1)/2]
N,14n—(N-1)

and these are isomorphic. In order for the representations to

equation (4.117) overlap for k = (N—1)/2. The upper representation is L
[n—(N—-1)/2]
1n—(N—1)/2
make sense the definition requires us to take n sufficiently large. In particular, n > [%] +2

/2 and

the lower one is L

will suffice. We will extend it to all integer n in a later section 7.10.
To define the Brane we must specify the maps

Jr :Sn—k = Sn—k+1 ® An—1
Gk Sn—k = Loky1n—k+1 @ AN_2k—1 (4.119)
hi Lot n—k+1 — Sn—k+1 ® Agp, 0<k<N/2

such that the MC equations (4.110) and (4.114) are satisfied. It will be convenient to
use the volume form to perform a partial dualization on f; and g; and instead use the
equivalent maps

Fo: S, @A — S,
T k 1 k1 (4.120)

Gk * Sn—k @ Askr1 — Lokt1n—k+1

Our choice of Chan Paton factors is such that we have a unique, non-zero SU(N)
invariant line where to choose the maps fx, gi, hr maps. Indeed we note the isomorphism

A[ ® Sm = L£+17m @ L&m_f_l (4121)
and we choose nonzero intertwiners (projection operators)

I, 0 A¢ ® Sm = Levim

: (4.122)
UG 0 A ® Sm = Lpma1

These projection operators are very easily understood. Given a tensor product of an
antisymmetric and symmetric tensor, t* ® t*, we could antisymmetrize one index of ¢* with
the indices of t* to obtain Him or we could symmetrize one index of t* with the indices of
t* to obtain H%’m.

Now we can make SU (N )-equivariant maps by declaring:

ﬁ = VkH%,n—k
Gk = 'YkH%k+1,nfk (4.123)
Hlohk::nkl HQOthO
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where vi, v, and 7 are scalars. The map fk is particularly easy to write when viewed as
amap S,_r — Sp—k+1 ® A since it is just given by symmetrization:

fr:Sym(eq, @ ---€q, ) = Vi Z Sym(eq, ® -+ eq, , @ ep) @ € (4.124)
b

where {e’} is a dual basis to {e,}. From this viewpoint the [f} fr11] = 0 follows easily as
we are antisymmetrizing two indices which had been symmetrized. For the [gphii1] = 0
equation we note that the composition (given by contracting with the interior amplitude)
is a map Logy3n—r — Log+1,n—k+1 ® A1 but working out the tensor product there is no
nonzero intertwiner, by Schur’s lemma. Finally, fi can be defined in terms of hygy, and
since the relevant space of intertwiners is one-dimensional it is always possible to choose
vy, appropriately given ~; and 7. To be precise

10541 i (fr ® 1) = G (4.125)

When the scalars are related in this way the Ao, MC equations are solved.
It is not hard to build a sequence of Branes 91,, based on the conjugate representations
S, fmm. They have Chan-Paton factors

[—k—n] N
— LnZopnikt1 0<Sk<5H
M) = {S“““"N] Yo (4.126)
n+N—k 2 h > -

Finally, we can look at strip complex. We take N even so that we can produce Branes
for the negative half-plane using rotation by 180 degrees, as in the 7:9N theories. The
rotation exchanges upper and lower vacua and, taking into account the degree shift (4.97)
we produce Branes ‘fln:

= [Fithk+s+1] N
£,y = S 0<k<T -1
_ __— N
EMnopr = LEH L 0<k< 5 1 (4.127)

where n =n — % + 1 and s is an arbitrary degree shift.
The complex for the segment with Branes ,, and I, is a somewhat forbidding
direct sum of tensor products of SU(N) representations:

nr—k n +k+s+1 -1 np—k AR+k+s
<@k o Lo @ SER }> ® <@k20 S @ Ly l]nR+k> (4.128)

where the left and right sums come from the lower and upper vacua, respectively. Using
this block form the differential is schematically of the form

N 4 0 gk ®Ek
2 4.129
B, <hk ©5 0 ) (4.129)

The techniques explained in Section §7.10 below (see especially equations (7.172) et. seq.)
can probably be used to evaluate the cohomology of (4.128).
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4.6.3 Cyclic Isomorphisms Of The Theories

In Section §4.1.1 we gave a formal definition of an isomorphism of Theories. If we relax the
constraint that ¥ be small and positive we can illustrate that notion with some nontrivial
isomorphisms which will be extremely useful to us in Section §7.10 below.

If we consider the Theories 7:9N and 7;9N then there are isomorphisms between them.

427
N
For example
o Ty = T on (4.130)
N
satisfies
joT =7 F1mod N (4.131)

The map cp;rj :R;j — Ri_1-1isamap Z — Z or 7Y — 711 and consequently has degree
zero, except when ¢ = 0 or j = 0. If ¢ = 0 then

w0 Roj — BN-15-1 (4.132)
is a map ZW — Z for all j = 1,..., N — 1. This necessarily has degree —1. Similarly,
wio: Rip = Ri—1n-1 (4.133)

is a map Z — ZWM for all i = 1,..., N — 1. This necessarily has degree +1. Note that ¢;
has degree zero for a cyclic fan of vacua. It is natural to take ¢;; to be multiplication by
1, together with an appropriate degree shift. Since this map preserves cyclic ordering, and
biji all have the same value, the condition (4.27) is satisfied.

If we consider the Theories %SU(N) and %iU%N) then there are isomorphisms between
them. Once again
ot T o Y (4.134)
N
satisfies
jor =jTF1mod N (4.135)

For ¢;j, so long as 7 # 0, j # 0 we have

(1 1

¢ij:Aj_i_>A£' Z<j

" n o (4.136)
Soij:AN+j—i_>AN+j—i 1>7

and for ¢ = 0 or j = 0 the representations are cunningly chosen so that

Al A =1 N1
A ?1} _ (4.137)
wio: AN—i Ay,  Jj=1,...,N-1

Again, it makes sense to take all of these to be the identity map, up to the appropriate
degree shift.
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4.6.4 Relation To Physical Models

We now briefly explain how the above models arise in a physical context. The first class of
examples, 7;9N , is meant to correspond to the physics of the simple LG model with target
space X = C with Euclidean metric and superpotential

N +1 _ive OV
W=(——— —e! . 4.138
N <¢ ¢ N+1 (4.138)
The prefactor is introduced so that, with the relation z; = (W} the vacuum weights

coincide with those in (4.78). Indeed the vacua are the critical points of the superpotential
o = AR (Here ( is a phase introduced in Section §11. In those sections we fix a
superpotential and vary ¢.) The S-matrix and soliton spectrum have been worked out in
[23]. All the data agree with the theory T3V.

We refer to Section §11.2 for a general discussion of boundary conditions in L.G models.
For now, we can describe the specialization to this simple model. Following Section §11.2.4,
we want Im({~'W) — +o0o at large || for branes on a boundary of the positive half-plane
and Im({~'W) — —oo at large |¢| for branes on a boundary of the negative half-plane. The
sign of Im(¢~1W) at large |¢| is governed by that of — sin((N +1) arg $— N9). Accordingly,
the ¢-plane at infinity is subdivided into a sequence of 2IN + 2 angular sectors of width
7 With boundaries arg ¢ = Nlﬂﬂ + y\%ﬁﬁ, s € Z. Typical boundary conditions are
represented by open curves in the ¢ plane whose endpoints go to infinity in sectors labeled
by s € Z such that for a boundary of a positive half-plane we have:

4s — 2 n N 9 < b < 4s n N
I
ON+2" T N1 MY SoON T T N

Left boundary : ) (4.139)

and for the boundary of a negative half-plane we have:

1s + N ¥ < <Z><48Jr2 N
I
IN+2 T Ng1U e

Right boundary : 9 (4.140)

It is instructive to try to draw the € branes in the ¢-plane. In Section §7.10 we
construct a family of Branes for the positive half-plane %k such that %0 is the left Lefshetz
thimble 7 T and successive brane are obtained by rotation by %T in the space-time plane.
It is shown in Section §7.10 that for 2 < k < [§] we have B, = (’ZLH_I. Now equation (4.91)
only defines € for £ < N/2 so the rotation procedure extends the definition to larger
values of k. It turns out we extend € by a sequence of down-vacua thimbles, and Ek. by a
sequence of up-type thimbles. When this is done for the 7:9N Theory the rotation operation
is periodic and B N+l = %0. In order to draw figures of the Branes we should bear in
mind that the Chan-Paton spaces for LG branes are obtained from intersections with the
right Lefshetz thimbles. See equation (13.2) below. Using this one can deduce that the €
branes are Lagrangians stretching between sectors labeled s and s + 1 in (4.139), where s
depends on k.

Let us illustrate the procedure for N = 4. The stability sectors and a basis (for the
relevant relative homology group) of right Lefshetz thimbles is shown in Figure 36. For

For a definition see Section §11.2.5.
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Figure 36: This figure illustrates the stability sectors in the ¢-plane for the %N Theory for
N = 4 and small positive 1. Branes for left boundaries must asymptote to infinity in the red
regions. Branes for right boundaries must asymptote to infinity in the blue regions. These regions
are divided equally by the rays along which Lefshetz thimbles asymptote. The right thimbles are
shown in gold.

Figure 37: A system of elementary Branes for the TV Theory for N = 4 and small positive 9.
The Brane €¢; is the Brane B[2].

N = 4 the only € Brane defined by (4.91) has k = 1, and corresponds to %[2_1]. From
the intersection numbers we see that it has the shape of %2 in Figure 37. The Brane %1
is neither a left thimble, nor a €, Brane. The Branes %3 and %4 turn out to be thimbles
in this case. Finally, the Branes are related by 27/5 rotations in the ¢-plane. There is a
similar picture for Branes (~’:k on the right boundary of a negative half-plane obtained by
rotating by 7/10. In particular, ¢; stretches from arg ¢ = 7/10 at infinity to arg ¢ = 57/10
at infinity. We conjecture that the obvious generalization of 37 holds for all values of N.
It seems quite likely that the Branes described here are closely related to those studied in
(in the conformal theory) in [69] and in section 6.4 of [74].

One can now go on to consider the local operators between these Branes. This is
worked out in detail for several pairs of Branes in the Qif;f Theories in Section §5.7.

The complex of ground states on a segment is built from a vector space generated
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by intersections between the left and right branes. The intersection number, i.e. the
Witten index of the complex of ground states on the segment, is robust under continuous
deformation thanks to the boundary conditions at infinity. Note that €;, as depicted in
Figure 37 is equivalent to a sum of Lefshetz thimbles L% + Lg + Lg while 61 is analogously
equivalent to RS + R§ + Rg. The representation in terms of sums of thimbles gives the
complex (4.99), while the brane €; shown in Figure 37 and its analogue for ¢, have zero
intersection. These are consistent because (4.99) has no cohomology.

Using Remark 5 near equation (7.53) we can go on to compute the actual spaces of
BPS states more generally once we know both the space of local operators between Branes,
and how the Branes behave under rotation (in the (x,7) plane) by .

The second class of examples is meant to correspond to the A-model twist of the
affine Toda theory, i.e. the Landau-Ginzburg model whose target space is the subvariety
of X C (C*)V defined by

Y1 e YN =q (4141)

and
W=Y1+---+Yy (4.142)

In our case ¢ = e_i%@ The expected SU(N) global symmetry is not fully manifest in
this LG model. Clearly there is a symmetry by the Weyl group of SU(N), and the N
critical points are permuted by the center of SU(N). The fundamental group of X can
be identified with the root lattice of SU(N) and the solitons have a “winding number” of
log Y; which is independent of i and equal to k/N modulo integers for some k. Thus, the
winding numbers can be identified with the weight lattice of SU(N).

According to [48, 50] the B-model mirror of this A-model is the supersymmetric
CPN—!, with B-twist. This model has manifest SU(N) global symmetry. '8 The study
of this model goes back some time [17][86]. and the solitons of type (i,i + 1) are in the
fundamental representation of SU(N), while those of type (i,i + k) are boundstates of
k fundamental solitons. This justifies nicely our choice of the R;; used in (4.100) above.
The exact S-matrix for the CPY model was written in [60]. The Witten indices p;; were
computed in [15, 48].

A nice geometrical interpretation of the Branes should be available in the CPN—!
model in terms of homogeneous vector bundles. We propose that the thimbles may be
identified as

. . N
for the down-vacua, and
N—2j . N _ .
IN_j =A""ITTX ®O( — N) Egggz\f—l (4.144)

for the up-vacua. The main justification for this is that the space Q)-closed local operators
between these thimbles coincides with the results (5.92)-(5.94) found below using formal
techniques. The branes 91, are obtained from the down-vacua thimbles by rotations, which

"8Indeed, the mirror transformation is a T-duality along the (C*)" isometries.
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can be interpreted as B field shifts, and hence the integer n with the first Chern class on
the bundles.

We should note a few differences between the purely formal presentation of this section
and the physical models. First, in the physical models the fermion number of the 75 soliton

sector is 19

fij = {%} (4.145)
where, for a real number z, {z} € [0,1) is the fractional part of z. That is, x = [z] + {z}.
In general, it is possible to add an exact one-form to a conserved fermion number current
J¥ and thereby define a different consistent fermion number. In the LG model this means
that J — JF 4 df, and if the function f has values f(¢;) = f; at the critical points
of W then the fermion number [p «J F'is shifted according to fi; — fij — fi + f;. Since
we wish to apply the Koszul rule it is useful to make such a redefinition to get integral
fermion numbers. One choice which achieves this is f; = i//N. In that case we obtain the
fermion number assignments used in (4.79) and (4.100) above. Of course, this still leaves
the ambiguity further integral shifts of f;, but those modifications are dealt with in Section
84.4 above.
Another difference from the physical models is that we work over Z. We make a
canonical choice of interior amplitude 8 and it would be very gratifying to know if it
corresponds to that which applies to the physical models.

5. Categories Of Branes

5.1 The Vacuum A..-Category

In this section we would like to discuss the properties of Branes associated to a Theory T
and a half-plane H. Since we will be comparing branes with different Chan-Paton factors
we should recall the definition of R from Section §4.2. We denote by R;(E) and R?(E)
the Z-modules built as in (4.28) from some Chan Paton factors & and in this section R
will denote the “bare space” with trivial CP factors

RJ = leva ® e ® Rjn—lajn' (51)

In defining the morphisms of the vacuum category below we will make use of the space ﬁij
defined as the direct sum of R over all half-plane fans of the form J = {i,...,j}, that is:

Rij =Ry ® (&} Rix ® Rij) & (B, 1, Riny @ Riypy ® Rij) © - (5.2)

where the prime in the direct sum indicates that we only sum over half-plane fans in H.
20 This allows us to write the A,-algebra defined by (4.44) as

RO(E) = Bzyenli @ fiz‘j ® 7. (5.3)

¥Tncidentally, this gives an example where the adiabatic formula for the fermion number, (12.8) below,
which is often used in the literature, is in fact not correct.

2ONote that, as opposed to R;;, the expression Ew depends on a choice of half-plane H and is only defined
for half of the pairs (¢,7). It will also be convenient to define Ri = Z, concentrated in degree zero. Care
should be taken when using this notation to distinguish webs from extended webs.
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Until now, we always extended all our maps to give zero whenever some of the ar-
guments cannot be fit together. This is self-consistent, but it hides some structure which
is sometimes useful to make manifest. The natural way to discuss operations which only
make sense (or are only nontrivial) for certain pairs of arguments is to use a categorical
language. In the present case, we need an A, category:

Definition: Suppose we are given the data of a Theory 7 and a half-plane H. The
associated Vacuum Aso-category Yac has as objects the vacua i, j, - - - € V while the space
of morphisms is given by

ﬁij Zij € H
Hom(j,i) ={ Ry =7 i=j (5.4)
0 i£j and zij ¢ H
Vac

The As-compositions m™% are given by pg(ty) (defined as before, but without the con-
tractions of Chan Paton factors). See (5.8) below for a more precise statement.

We should make a number of remarks about this definition

1. Recall that z;; € H means that if H is translated so that the origin is on its boundary
then z;; is in the translated copy of H.

2. The category depends on the data 7 and H. We will generally suppress this depen-
dence in the notation but if we wish to stress the dependence or distinguish different
choices of data then we will indicate them in the argument and write some or all of
the data by writing Vac(7,H) and so forth.

3. Note that we defined Yac with the “bare” R;. We can “add” Chan-Paton factors to
define a new A..-category which we will denote as Yac(E) (when T, H are understood,
and as Yac(T,H,E) when they are not). The morphism spaces are determined by
replacing E-j =& ® ﬁi]‘ ® 5; in (5.4). To define the A, -multiplications we tensor
m¥% with the obvious contraction operations (£ ® £3) ® (E2 ® &) — (€1 ® &F).

4. Note that Hom(7,7) = Z means the complex concentrated in degree zero, consisting
of scalar multiples of the graded identity element Id;. The definition fits in well with
(5.8) if we use extended webs. Recall that the A.-multiplications involving Id; are
defined near (4.76).

5. There are three interlocking conventions for composition of morphisms, which we will
now spell out somewhat pedantically. First, one can compose morphisms successively
on the left or on the right. Second, one can read an equation from left to right, or
vice versa. Third, the time ordering implicit in successive operations might or might
not agree with the geometrical time ordering of increasing y in the (x,y) plane. In
equation (5.4), Hom(j, ) refers to the set of arrows which go from object j to object
1. It is useful to define

Hop(i,5) := Hom(j, 1) (5.5)
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where Hop is an abbreviation for Hom®PP. Equations with Hop should generally be
read from right to left. Including the Chan-Paton factors we define Hom-spaces by
using

Hop® (i, j) = & ® Hop(i,j) ® £; (5.6)

so that the A, .-multiplications
Hop? (ig, i1) ® Hop® (i1, i2) ® - - - @ Hop® (in_1, in) — Hop® (ig, in) (5.7)

are computed from
ps(ta)(r1, - .., 7n) € Hop® (g, in) (5.8)

with 75 € Hop? (is—1,1s). Successive morphisms are composed on the left and the
successive composition of arrows should be read from right to left. Now, if H is the
positive half-plane x > g with boundary on the left then this successive composition
of morphisms can be visualized as taking place forward in “time” y. However, by
the same token, if H is the negative half-plane © < zy with boundary on the right
then successive composition on the left and reading from right to left corresponds to
going backwards in time y. This leads to some awkwardness when we discuss web
representations and categories associated to strips and interfaces, since these involves
both positive and negative half-plane webs. (Of course, for the negative half-plane,
reading the composition of morphisms from left to right corresponds to going forward
in time, but reversing the time ordering corresponds to composition of morphisms
in the opposite category. ) We will adopt the convention that successive operations
on &rr of (4.52) act on the left and correspond to transitions forward in time. This
makes . an R ® (R%)°PP As-module. (That is, an R — RY bimodule.) Similarly,
i — €1 ®ER,; defines a Vac(Er) x Vac(Er)°PP module of A-categories, in the sense
of Definition 8.14 of [5].

Examples

1. Consider the top left taut p051tlve half-plane web in Figure 15. Choose arbitrary

‘Bac(

elements 1 € Rz j and 1o € R]k In this case the composition m r1,72) is simply

r @1y € Ry

2. Now consider the bottom left taut web in Figure 15. This taut web leads to a

Yac

contribution to m3'* which we can illustrate as follows. If 7 € R;, ; and 7o € R;;

in

then the contribution of this web to
m3*(r1,712) € Hop(ir, in) = Riy i, (5.9)
is computed as follows. The interior vertex has a cyclic fan of vacua
I ={in,j i1 iz, in_1}- (5.10)
Let Br be the component of 5 in R; for this cyclic fan. Then we consider

K14Ka3(r1 @ 72 @ Br) (5.11)
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where Kp3 contracts R;;, ® R;,; — Z and then K4 contracts R; ; ® R;;, — Z
leaving behind an element of

Riyiy® - ® Riy i, C Ry (5.12)

3. Similarly, the two taut webs on the right in Figure 15 contribute to my. The first at

order 3 with one contraction of K and the second at order 32 with three contractions
of K.

5.2 Branes And The Brane Category Bt

We are now ready to define an A, category of branes Brt, associated to a given choice of
Theory T and half-plane H. The objects of Bt are Branes, i.e. pairs B = (£, B) of some
choice of Chan Paton data & together with a compatible boundary amplitude B. Recall
that a boundary amplitude B is a degree one element

B € & jev&i @ Hop(i, j) ® & (5.13)

which satisfies the Maurer-Cartan equation in Bac(&):

> psta)(B,....B ) =0. (5.14)
n=1 n times

The space of morphisms from By = (£2,33), a Brane in Yac(£?) to By = (£, B1), a
Brane in Yac(E') is defined to be

Hop(%B1, B2) = @i jeve; ® Hop(i, j) ® (£7)" (5.15)
In order to define the composition of morphisms
01 € Hop(%Bo,B1), J2 € Hop(*B1,B2),...,0, € Hop(By,—_1,B,) (5.16)

It is useful to observe that the boundary amplitude B of a Brane 8 is, thanks to the
definition (5.15), a morphism in Hop(B,B). With this in mind it makes sense to define
the multiplication operations in 2Bt using the formula

1 1 1
M, = — . 1
n((Sl? 7671) m (1 _807517 1 _617627 75717 1 _Bn> (5 7)

Tac with the natural contraction on CP spaces. Note

where m is the tensor product of m
that M, (d1,...,d,) € Hop(Bo, B,,).

After some work (making repeated use of the fact that the B, solve the Maurer-
Cartan equation) one can show that the M, satisfy the A.-relations and hence Bt is an
Aso-category. Although this is well-known we provide a simple proof in Appendix B, below

equation (B.4).

Remarks:
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1. As in our notation for Uac, the As-category Bt implicitly depends on the Theory
T(V,z,R, ), as well as the half-plane H. When we wish to stress this dependence we
will write these as arguments. Note that Bt(7,7H) does not depend on any specific
choice of Chan-Paton spaces £.

2. We should note that the passage from Uac to Bt is quite standard in the theory
of homotopical algebra where a Brane is known as a “twisted complex.” See, for
examples, Section 31, p.43 of [81] or Definition 8.16, p.614 of [5]. Our category Bt
would be denoted Tw(2Uac) in the mathematics literature.

3. It will be useful to extend the Brane category to include the extended webs of Sections
2.44.5. If we use extended webs then the extended web representations (4.74) mean
that the morphisms now have a “scalar part” @Q; with Q? = 0. Now we define the
morphism spaces to be

Hop(B',B) = (9:8] @ &) @ (0, ené] @ Ry 2 £ ) (5.18)

and we again refer to the component in &;E/ @& as the “scalar part.” The scalar part
of § € Hop(B’',B) is just a collection of linear maps f; : £(B); — £(B’);. Those maps
can be composed or applied to (5.15) and hence we can define the multiplications
(5.17) by using the extended webs in the taut element ty in the definition (5.8) of
m¥%. We will generally work with this extended Brane category.

4. The category of vacua is naturally a full subcategory of the category of Branes: each
vacuum ¢ maps to “thimble Branes” ¥; (also called simply “thimbles”). The reason
for the name is explained in §11.2.5. The Chan-Paton spaces of T; are defined by
E(%;)j = d;iZ, in degree zero. It follows that Hop(¥;, T;) = Hop(i, j). Moreover, the
boundary amplitude B; of T; is taken to be zero (even if we used extended webs).
Thus the insertion of 1%% in (5.17) has no effect on the contractions and hence
M,, = mJ% on chains of morphisms between thimbles.

5. The thimbles form an “exceptional collection,” from which all other branes, by def-
inition, arise as twisted complexes. Other exceptional collections will exist in Br,
especially the ones obtained from mutations of the thimble collection. We will dis-
cuss these mutations briefly in Section §7.8 below.

6. Finally, we note that M? = 0 and hence each space of morphisms Hop($8B1,B5) is a
chain complex. In the physical applications the cohomology of the differential M; on
this complex is interpreted as BRST-invariant local operators which can be inserted
at the boundary of the half-plane H and change the boundary conditions. See the
end of Section §7.4.1, Remark 5 for further discussion.

5.3 Homotopy Equivalence Of Branes

Working in the framework of the extended Brane category we can define a notion of ho-
motopy equivalence which will be extremely useful in Sections §6-8.
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Because 6 — M;(0) for 6 € Hop(B',B) is a differential we can consider M;j-exact
and M;-closed morphisms. The composition M> is compatible with M;. We can use M;
and M> to define useful notions such as homotopy and homotopy equivalence, treating the
branes as an analogue of a chain complex.

We define two M;-closed morphisms 41 2 to be homotopic if they differ by an M;-exact
morphism, i.e.

51 ~ 52 — 51 — 52 = M1(53) (5.19)

for some d3. Similarly, we define two branes 8 and B’ to be homotopy equivalent, denoted,
B ~ B, (5.20)

if there are two Mj-closed morphisms 0 : B — B’ and ¢’ : B’ — B which are inverses up
to homotopy. That is:

Ms(6,8") ~ 1Id Ms(8',6) ~ Id. (5.21)

Recall that Id is the graded identity defined in (4.75). 2

If we have two morphisms d; and d2 in Hop(28', ) and Hop(B”, B’), respectively, with
scalar parts given by collections of maps fi; and f2;, the scalar part of the composition
Ms(61,92) is simply given by the composition of the scalar parts fo;f1;. Similarly, if the
scalar parts of the boundary amplitudes of B’ and B are Q); and @, respectively, and the
scalar part of a morphism § : 8 — B’ is f;, then the scalar part of M () is

Qifi £ fiQi (5.22)

Thus the scalar part of an Mj-closed morphism is a collection of chain maps between the
Chan Paton factors, homotopic morphisms have homotopic scalar parts and homotopy
equivalent branes have homotopy equivalent Chan Paton factors.

The following will prove to be a very useful criterion for homotopy equivalence between
branes 981 and B9 in our discussions in Sections §§6,7,8. (See, for examples equation (6.65)
and the discussion at the end of Section §7.4.1.) We consider the special case where the
two Branes have the same Chan-Paton data: £(81) = £(2B2), and where the homotopy
equivalence can be written as a morphism of the form Id + €, where € is a degree zero
element in Hop(B2,B1) with no scalar part. Note that Id € Hop(Bz,B1) makes sense
because the Chan-Paton factors are assumed to be the same. If we require such a morphism
between two branes 81 and 85 to be M;i-closed, we find the relation:

1 1
My (Id = —.1Id —_—
1Id + €)= ps(t) [y - Td + 6 5]
1 1
= pp(t) B2, 1d] + ps(t)[1d, Ba] + pp (te) [ By T 81] (5.23)
1 1
= Bi — Bz + ps(ty) 17— B 0T Bl] =0,

21 Physically, § and ¢’ correspond to boundary-changing local operators whose OPE is the identity operator
up to exact boundary operators. Homotopy equivalent branes essentially represent the same D-brane in a
topologically twisted physical model.
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where in the last line we used the condition that Bs has degree one and the third term
refers to unextended webs. Recall that we can regard B; and Bs to be themselves elements
of Hop(*B2,B1), so the equation (5.23) makes sense.

We must also guarantee the invertibility up to homotopy (5.21) of Id + e. This is
actually automatic in our setup. Indeed, we can solve Ms(Id + €,Id — ¢') = Id recursively
by

€ =e— Ms(e, ) (5.24)

The recursion will stabilize after a finite number of iterations thanks to the finiteness
properties of the webs involved in My. As Ms is associative up to homotopy, Id — € is also
a left inverse up to homotopy. More generally, if we consider a morphism f + € with scalar
part f and ¢ is an inverse of f up to homotopy then we can find ¢ so that g — ¢ is an
inverse of f + €, up to homotopy.

For examples of homotopy equivalent pair of branes, see Sections §7.6 and §7.10.

In all the constructions of homotopy equivalences in the rest of the paper, we will
actually produce both morphisms Id+e¢, Id—¢’ explicitly and will not rely on these finiteness
properties to argue for the existence of the inverse. Aside from being philosophically more
satisfying, this will be useful because we can then extend the results to cases of interest
with an infinite number of vacua (such as those relevant to knot homology and the 2d/4d
wall-crossing-formula).

5.4 Brane Categories And The Strip

Given a Theory T we can associate two Ay-categories to the strip geometry [z, z,] x R. We
have the category of Branes Bt, associated to the left boundary, controlled by the operation
ps(tr) and the category of Branes Brg associated to the right boundary, controlled by the
operation pg(tg).

Our strip bimodule operation pg(ts) defined in (4.62) above can be given several dif-

“module for an A..-category”

ferent useful interpretations. We will use the concept of a
as defined in 8.14 of [5]. In general if A is an A.-category with objects x, then a (left)
module over A consists of a choice of graded Z-module M(x,) for each object together

with a collection of maps
mM : Hop(zg, 21) @ - - - @ Hop(p_1, n) @ M(z,) = M(20) (5.25)

which are defined for n > 1, are of degree 2 — n, and satisfy the categorical analog of the
identities (3.52). As usual, a bimodule for a pair of A..-categories (A, B) is a module for
the Aso-category A x B°PP.

Our first interpretation is that pg(ts) can be used to define a bimodule for the pair of
vacuum categories (acr, Vacg). The objects of Vacy, x Vacy? are pairs of vacua (i, j)
and we take M(i,j) = §; jZ, with Z in degree zero.

As a second interpretation, we can define a bimodule for the pair of Brane categories
(Brr,Brr). The objects of Bry, x SBt%f)p are pairs of Branes and now we take

M(Br,Br) := ELr = @ievEL;i @ Ep; (5.26)

— 85 —



To define the module maps (5.25) in this case we take

mM(81, ..., 00;0:0,...,00) =

Pﬁ(fs)<1_18m,51,---,5ml _1BL,n;g; 7 —18370’ Lo ;"1—1837,“)' 27
where
01 € Hop(Br,o,Br1),---,0n € Hop(Brn—1,Br.n) (5.28)
81 € Hop(Bro, Br1), .- ,0n € Hop(Brn/—1,Brn)- (5.29)
The maps &, — m™(6y; -; - ) and M — mM( - - ;01) are particularly interesting for

us. Indeed, we have
mM (Ml(él); g ) = :I:dLRmM((51; g )j:mM((Sl; S )dLR (5.30)

and a similar equation for d( - ; - ; M1(d7)).

Thus Mj-closed morphisms map to chain maps for the chain complexes of approximate
ground states (£rr, drr), homotopic morphisms map to homotopic chain maps and homo-
topy equivalent Branes give rise to homotopy equivalent chain complexes. In particular,
homotopy equivalent Branes have isomorphic spaces of exact ground states on the segment.
This is a special case of a general principle: homotopy equivalent Branes are the “same”
Brane for most purposes.

We can also use these constructions to interpret the right-Branes as elements of a
standard category along the following lines. Given a right Brane Br we can define a
module for the As-category Uacy, by the assignment

M(i) = & (5.31)

Then the module maps (5.25) are just

1

5 (5.32)

M- Qrp,®g — p,@(ts)[ﬁ,..-,rn;g;
which thus defines a family (parametrized by Br) of As modules for Vacy, with ¢ — £
Notice that in this formula we have Chan-Paton factors on the right boundary argu-
ments, but not the left boundary arguments. The data (5.32) defines a set of maps

Rigiy ® Riyiy - Rin_yin = Ehio @ ERjin- (5.33)

This observation suggests the following definition of a mapping category: > The objects
will be sets of Chan-Paton data & = {&;};ey and the morphisms Hop(&, ') will be the set
of collections of linear maps

ﬁio,il ® Eil,ig T ﬁ’L'n—lyin — (gz/o)* ® gl (534)

n*

22The term “mapping category” is nonstandard. It appears to be closely related to the notion of a Koszul
dual to an As-category. See, for example, [68].
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The difference between the collection of maps (5.25) and the collection of maps of the
form (5.34) defining a generic morphism in the mapping category is that the latter need
not satisfy the Ay-relations. Let us denote a collection of such linear maps by m and the
value on a monomial of the form P = 7, ;, ® iy iy -+ Ti,_1,i, by m[P]. Two morphisms
m; € Hop(&, &) and my € Hop(E',E") are composed as

(myomy) [Pl = Y my[Pi]my[P] (5.35)
Pax(P)

where on the right-hand-side we contract the spaces (&) ® (£})* in the natural way. This
composition is associative, thus making the mapping category an ordinary category.

There is also a differential on the morphism spaces of the mapping category given by

m[P]= ) em[P,mY*L[Py], Py]. (5.36)
Pas(P)

It is compatible with the composition. Collections of maps annihilated by the differential
make the assignment i — &; into an As.-module for YVacy,.

Now, as noted above, for every Brane Br € *Brr we can define an object in the mapping
category, namely the Chan-Paton data of the Brane for the negative half-plane. Moreover,
if we regard the mapping category as a very degenerate version of an A..-category then we
can define an A -functor from BrP to the mapping category. The image of morphisms
01, - 0y is the collection of maps

1 1
mry, .., = pg(ts) [T, T T 015 - Oy ] (5.37)
1— 8370

s YMmy 1 _ BRJn
The usual convolution identity for strip webs gives the functor property.
This allows us to identify the right Branes as elements of a standard category, if needed.

5.5 Categorification Of 2d BPS Degeneracies

There is a very nice way to define the complexes fzij using matrices of chain complexes.
Suppose there are N vacua so we can identify V. = {1,..., N}. Introduce the elementary
N x N matrices e;; with a 1 in the ith row, j*" column and zero elsewhere. Then we can
define ]/%ij from the formal product

Z-1+ @, enie; = Q) (Z-1+ Rie) (5.38)

ZijGH

where 1 is the N x N unit matrix and in the tensor product we order the factors left to
right by the clockwise order of the argument of z;;. Phase-ordered products of this kind
involving operators, rather than complexes, have appeared in the work of Cecotti and Vafa
[15] and in the work of Kontsevich and Soibelman [61, 62] on wall-crossing. 2> Our work
here can be considered as a “categorification” of the wall-crossing formulae. This will be
discussed further in the sections on wall-crossing §7.7 and §8.

Z30f course, such phase ordered products have also appeared in many previous works on Stokes data.
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In the physical context one finds that R;; are complexes of approximate groundstates
and the Witten indices
Hij = TrRij(_]‘)F (5.39)

are known as the (two-dimensional) BPS degeneracies. With F' denote the integer fermion
number, coinciding with the integer degree we defined on R;;.

They were extensively studied in [23, 15]. Since fermion number behaves well under
tensor product we can take a trace (on the web representations) of (5.38) to obtain

1+ @z enliijei; = ® (1 + pijeqs)- (5.40)
ZUE’H
where
Mij i= Trﬁij(—l)F. (5.41)

The Cecotti-Vafa-Kontsevich-Soibelman wall-crossing formula states that certain contin-
uous deformations of Theories lead to jumps in the BPS degeneracies j;; while the fi;;
remain constant. In Section §8 we will discuss the categorified version of that statement.
Remark: In LG theories, [i;; can be computed by intersecting infinitesimally rotated
Lefschetz thimbles [15][48]. See Section §7.9 for a categorized version of that statement.

5.6 Continuous Deformations
In this section we elaborate a bit on the meaning of equation. (5.23) (repeated here)

1 1
B - B tr)|——; ;——| =0 5.42
+ pa(tr) [ e(s)i T (5.42)
This material will not be used later and the reader should feel free to skip it.
If we are given a brane B and some degree zero morphism e with no scalar part we
can solve the constraint recursively to find some new B’. It is interesting to verify that the

result of such recursion is indeed a boundary amplitude: we can compute

o)l ) =l gl + o)y B — B ) =
- _pﬁ(tz)[%g;pﬁ(fz)[l _13/56? 1 _1 55T _1 B =
= pg(tz)[l%g;Pﬁ(tI)[l _15,}? 1 _15/96? 1 _1 BT
+pp(tr)l5 _13/;6; 1_13"5("2)[%]’%] (>4

This relation proves recursively that pg(tz)[12g] = 0.
If we have a continuous family €(s), the corresponding family of branes B(s) is the
exponentiation of an exact deformation. Start from
Bs) + pp(t) [y B T €(5)s 5] + s (tn) s (5)i 5] = 0
B(s): Ce(s): e(s): _
TP TRy T T By YT B TN TR Y T B
(5.44)
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This equation is solved by B(s) = —pg(tz)[%B(s);é(s); %B(s)] We can exclude other

solutions recursively, by writing B(s) = r — pg(tz)[%w; é(s); ﬁ%s)] and plugging into
the second term in the equation. Conversely, the exponentiation of an exact deformation
is a family of isomorphisms. Of course, the notion of isomorphism is sensible even when
boundary amplitudes were defined, say, on Z.

5.7 Vacuum And Brane Categories For The Theories ’7:9N And %SU(N )

As an illustration of the above definitions we comment on Uac and Bt for the Theories
7I9N and %SU(N) described in Section 4.6. Again, we will work with very small, positive ¢.

Let us consider first the morphism spaces Hop(i,j) of Yac, for either theory. In
principle these could be worked out from equation (5.38), but it is easier to enumerate
the half-plane fans and work out the complexes in special cases. These divide into 4 cases
because (for small positive ) there are four distinct kinds of half-plane fans as enumerated
below Figure 30. Recall these depend on whether ¢, j are upper or lower vacua, determined

by the sign of the imaginary parts of z; and z;. Of course we always have Hop(i,7) = R;; = 7Z
in degree zero. On the other hand, when i # j we have:

1. {d...d}. If both i and j are lower vacua, then Hop(i, j) is non-empty only if i < j. If
1 < j the possible half-plane fans J between ¢ and j can be enumerated by all strictly
increasing sequences of integers beginning with 7 and ending with j. The phase ¥;;
of z;; is given very nearly (for ¥ — 07) by tan(d;;) = cot(ﬂ'%) so the product (5.38)
simplifies considerably and we may write

0<i<j<Z

where the product on the RHS is ordered left to right by increasing values of ¢ + j
(since we also have i < j the product is then well-defined). In terms of R;; we have

~

Rij 0§i§j<
0 0<j<i<

N
Hop(i, j) = { 2 (5.46)
2

2. {w...d}. Similarly, if i = N — k is an upper vacuum, so 1 < k < % and 0 < j < %
is a lower vacuum then

0 0<j<k
Hop(N — &, j) = {A - N (5.47)
Ry kj k<j<35

where for £ < j we have
RN k= ®)_ Ry ke @ Ry (5.48)

3. {d...u}. Now if 7 is a lower vacuum and j = N — k is upper then

0 E<i<®
Hop(i, N — k) = { ="'z (5.49)
Rin—r 0<i<k
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where for 7 < k

~ ~

Rin_ 1 =@} Riy ® Ryn—k (5.50)
4. {u...u}. We label a pair of up vacua by (N — k, N —t) with 1 < k,# < §. Then

0 t<k
Hop(N —k,N —t) =47 t=k (5.51)
EN—k,N—t E<l<s<t-1

where for k <t —1:

Ry_iN—t = BN_k,N—t ® Pr<rt<s<t—1BN_k e @ Ry s @ Rs N—¢. (5.52)

Now let us describe the multiplication operations on Lac, again for both theories.
Since the only taut webs which contribute to pg have one or two boundary vertices the
Ao-category Uac is in fact just a differential graded algebra. The differential mq arises
from Figure 31(b). The multiplication mg arises from Figures 31(a) and 31(c). In 31(a)
J1, Jo share a common d-type vacuum. In Figure 31(c) the intermediate vacuum is an
up-type vacuum, js € [%,N —1].

Now let us specialize the discussion to ’Bac(%N ). In this case the spaces R;; are very
simple and given by (4.79). The key spaces ﬁij for a pair of down vacua with i < j is -
as we have said above - a sum over all increasing sequences of integers beginning with ¢
and ending with j. Each sequence contributes a summand R; = Z[I/I=1 to ﬁw Denoting
generators of Hop(i, j) by ey, where J is a positive half-plane fan, m(ey) is a signed sum
of generators obtained by inserting a down-type vacuum into J in all possible ways. For
example, if J = {d;,...,ds} with 0 <d; < ds < % then

s—1 dn+1*1

mi(ed,...d,) :Z Z (_1)n716d1~~-dnddn+1~-ds (5.53)

n=1d=dp+1

The sign is determined by the usual patient commutation of Kg, 4, , through the first
(n — 1) R;j factors in R;y ® Ry, q ® Raq, ., ® R, ,,4,- Note that R4, 4, has degree zero
and can be brought from the far right into the relevant place in the product to effect the
contraction by K in the definition of pg. It is easy to check that mq is nilpotent. Similar
formulae hold for the other three types of half-plane fans J: The operation m; is a signed
sum of all fans where we insert one extra down vacuum.

Now consider the multiplication of e, and e, with
Jl = {j17"'7j8—17j8} J2 = {j87j8+17"'7jn} (554)
If the intermediate vacuum is down-type 0 < j; < % then

m2(eJ17eJ2) = eJl*JQ (555)

with
JI*JQ = {jl”"7j8—17j87.js+15"'7jn} (556)
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If the intermediate vacuum j, is an up-type vacuum, js € [N N — 1] then

2
ptr)(essen) = K, jo 1 Kj jo (e @ egy @ By jajers) = €IAT (5.57)

with

JINTy ={j1. . Js—1:Js41s- -5 Jn}- (5.58)

Next let us turn to the Brane category ‘Bt(BN ). We will limit ourselves to the descrip-
tion of some of the Hom-spaces and their cohomology using the differential M;. As noted
above, the M7 cohomology will have the physical interpretation as the space of Q-invariant
local operators changing boundary conditions of one Brane into another.

The easiest class of Branes to consider are of course the thimbles T; since

Hop(%:, %) = Hop(i, /) (5.59)

and in this case M,, = m>%. In particular we can study the cohomology of my. It is

easy to see that the cohomology is nonzero in general. This happens when the spaces
(5.46)-(5.51) consist of a single summand R;;. Then R;; has a definite degree so m; must
be identically zero, and hence the cohomology is the space R;; itself. Thus, for example,
Hop(i,4), Hop(i,i + 1), Hop(N — k, k), Hop(k — 1, N — k) and Hop(N — k, N — k — 1) have
m1 = 0 and are equal to their own cohomologies. On the other hand, in the other cases
we can construct a contracting homotopy so that the cohomology vanishes. Consider, for
example, the case where i < j are two down-type vacua and i + 1 < j. Then define

€ids--ds_1j do=1+1
I{(e’idQ"'ds—lj) = o v ) (560)
0 do>1+1

One can check that km; + mix = Id and hence the cohomology vanishes. Similarly, for
Hop(N — k, j) with j > k we can define a contracting homotopy operator

EN—kdsds—1j d2=FK
H(eN,kyd cedg ) = 5.61
2eds 1 {0 iy >k (5.61)

and so forth.

In conclusion: The cohomology of Hop(%;,%;) is nonzero if and only if the only half-
plane fan of the form J = {i,...,j} is in fact J = {i,j}. We leave the calculation of the
appropriate homotopy contractions to the enthusiastic reader.

As a test, we present the matrix of Poincaré polynomials for the Hop(%;, ;) for N =
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10:

Lyyly+1) yly+1)? yy+1° yly+ 1) y(y+1)° yly+1)> y(y+1) y
01 'y yy+1) yy+1)?yly+1)°yly+1)? yy+1) y 0O
00 1 y  yly+1) yy+1)? yy+1) oy 0 0
00 0 1 Y yly+1) Y 0 0 0
00 0 0 1 y 0 0 0 0 (5.62)
00 0 0 0 1 0 0 0 0
00 0 0 1 y+1 1 0 0 0
00 0 1 y+1 (y+1)?2 y+1 1 0 0
00 1 y+1 (y+1)? (y+12 y+1)* y+1 1 0
01 y+1 (w+1* (+1)* w+D* +1)* Y+1)? y+1 1
Setting y = —1 we recover the Witten indices of Hop(%;, ), i.e. the fi;;:

1-10 0 0 0 0 0 0 —1

01 -10000 0-10

00 1 -100 0-10 0

00 0 1 -10-1020 0

00 00 1-100 0 0 (5.63)

00 0 O0O0T1O0UO0O0 O

00 001 01 00 O

00 01 00010 0

00 1 00 O0O0O0 1 0

01 00 0O0O0UO0O0 1

This supports our statement. Equation (5.63), and similar examples below follow a pattern
that leads to a conjectural formula for the general case. We leave it as a challenge to the
reader to give a proof of these formulae.

Next we can look at the morphisms between the Branes € defined in Section §4.6 and
the thimbles. Using the formula (4.91) for the Chan-Paton spaces of €5 we have

Hop(€, ¥;) = Hop(N — k, j)! @ Hop(N — k — 1, 5) @ Hop(k, 5) (5.64)

Consider the multiplications M, for this pair of Branes. Since the only webs which con-
tribute to ty are those shown in Figure 31 the only nonzero multiplications m>% are m
and ms and hence in the category of Branes likewise only M; and M, can be nonzero.
Moreover M coincides with mo. However, because €, has nontrivial boundary amplitudes
B(<€)) with components By_; N—k—1, Br,N—k—1, and By_j there will be an important

difference between mi; and M;. In particular,

N, 1 1
Mi(8) = m™ (T gy 0 T B(%;)

ac 1 5.65

— T (T(ij)’(s) ( )

= ml(é) + mZ(B(Qk)v 5)
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Now, in order to analyze the M;-cohomology of (5.64) recall that € are only defined
when k is a down-type vacuum. Then, when j is a down-type vacuum we can use (5.46)
et. seq. above to find the morphism spaces:

ﬁ%,]_,w- &) EN—k—l,j b ﬁk,j E+1<j< %
Hop(&,T;) =S Ry, , @ Z 0<k=j<X (5.66)
0 0<j<k<¥

If k = j then Hop(€y, Tx) = ZW @ Z and under this isomorphism M;(z @ y) =y @ 0.
The cohomology is therefore zero. If k +1 < j and we write the three components of § as

0 = 0Nk DOkj DON-k-1,j = (ON—kj> Ok j> ON—k—1,5) (5.67)

and then we have

Mi(0N-#,j,0,0) = (m1(én—.5),0,0)
M (0, 05, 0) = (m2(BN—k k; Ok,5), m1(0k,5), 0)
= (hgma(en—ik, Ok,j), m1(dk,5),0)
M;(0,0,0n—g—1,5) = (M2(BN—k,N—k—1,O0N—-k—1,5), M2(Br, N—k—1, ON—k—1,3)s M1 (ON—k—1,5))
= (fama(eN—k,N—k—1,0N—k—1,5), Gkma(€r N—k—1,ON—k—1,5), M1 (ON—k—1,5))
(5.68)

The ordering is chosen so that the upper-triangular structure is clear. It is a good exercise
to show that M? = 0 (one must use fr = hxgi).
Now we claim that there is a homotopy contraction of M7 of the form

R K12 K13

0 K Kog (5.69)
00 &

For this to be a homotopy contraction we need (we use the property that hj is multiplication
by 1 here):

k12(m1(O,j)) + mi1(k12(0k,;)) + k(malen—kk, Ok,;)) + malen—kk, £(0k ) =0  (5.70)

with similar equations for k13 and ko23. One can solve this using

—eN—kyds,..; de=k+1
K12(ekdy ds,....;) = S (5.71)
0 else

Thus, there are never boundary-condition-changing operators from € to down-type thim-
bles.

Turning now to the case of thimbles for up-type vacua we write, for 1 <t < %,

Hop(€j, Ty_¢) = Hop(N — k, N — )l @ Hop(N — k — 1, N — t) @ Hop(k, N — t) (5.72)
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Using (5.46) et. seq. above we find that this vanishes when k& > t. When ¢ = k only the
first summand, namely,
Hop(N — k, N — k)1 = 7z (5.73)

is nonzero so the complex is concentrated in a single degree, therefore M; = 0 and the
cohomology is nontrivial. For £ < ¢ — 1 all three summands are nonzero and we expect
that a nontrivial analysis like that above for down-type thimbles shows there are no other
cases with nonzero cohomology.

In conclusion we have given considerable evidence for the claim that Hop(&,T;)
only has nontrivial cohomology when j = N — k, in which case the cohomology is one-
dimensional.

As a test, we provide the matrix of Poincaré polynomials for Hop(€, ;) for N = 10:

Oy+1(y+1)°y+1)° (y+1)* (y+1° (y+D* (y+1)° (y+1)%y
0 0 y+1 W+ @+1° @+ w+1)> @+ v 0 (5.74)
0 0 0 y+1 (+1)*@y+1)° (y+1)* y 0 0 '
0 0 0 0 y+1 (y+1)?2% gy 0 0 0
We expect that a very similar story holds for
Hop(%;, &) = Hop(i, N — k)M @ Hop(i, N — k — 1) @ Hop(i, k). (5.75)

It is straightforward to check that for ¢ = k there are only two nonzero summands and
the complex is isomorphic to Z!! & Z with M, (r®y) =y D0, and hence the cohomology
vanishes. The other easy case is i = N — k — 1. Then only the middle summand is nonzero
so we get nonzero cohomology. We expect that for the other values, i # k, N —k —1, a
detailed analysis like that we did above for the other order would show that for the the
cohomology vanishes, but we have not confirmed this. In any case, we expect that the only
nonzero cohomology appears for Hop(¥n_k_1,Ck), in which case it is one-dimensional.
Again, the cohomology is limited to half-plane fans of length 2.

As a test, we provide the matrix of Poincaré polynomials for Hop(%;, €) for N = 10:

(y+1)2 y+1 0 0 o0 0o o 1 W

W+ (y+1)> y+1 0 0 0 o 1 @HEEHP -

W+ (y+13 y+1)2 y+1 0 0 1 LoD? LD’ ) (5.76)
2 y 3 y 4 y 5

(y + 1)5 (y + 1) (y + 1)3 (y+ 1)2 y+11 (y'zl) (y';l) ( '21) (ZH;)

Finally, we could look at the morphisms Hop(€, ¢;). Each Brane has Chan-Paton
spaces with nonzero support at three vacua and hence we now get nine summands:

Hop (€, €;) = Hop(N — k, N —t) @ Hop(N — k — 1, N — t)lI" @ Hop(k, N — t)[-!]
®Hop(N —k,N —t— 1) @Hop(N —k —1,N —t — 1) ® Hop(k, N —t — 1)

@ Hop(N — k,t)!) @ Hop(N — k — 1,¢) & Hop(k, t)
(5.77)
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and the differential is
Mi(6) = mi(5) + ma(B(Cx), ) + ma(d, B(C)). (5.78)

A systematic analysis of the cohomology would be tedious. So we will limit ourselves to
the cases t < k. If t < k — 1 then Hop(€, €;) = 0. If ¢t = k — 1 then the morphism space
is concentrated in one degree and is Hop(N — k, N — k)[l]. Therefore the cohomology is
nonzero in this case. For ¢ = k we must carry out a nontrivial computation. There are six
nonvanishing morphism spaces

Hop(N — k,N — k) @Hop(N —k —1,N —k — 1) @ Hop(k, k)

1 1 (5.79)
@ Hop(N — k,N — k — D! @ Hop(k, N — k — 1) @ Hop(N — k, k)
This space has rank 7 because
Hop(N —k,N — k — 1)[1] = RE\lf]—k,N—kfl ® Rg\lf]fk,k,kafl (5.80)
has rank 2. A little computation shows that
ON—k,N—k 0
ON—k—1,N—k—1 0
5k,k 0
My: | On-gN-ik-1 | ON—k,N—k = ON—k—1,N—k—1 (5.81)
ON—k e, N—k—1 Ok, N—k—1 +ON—kk — ON—k N—k—1
Ok, N—k—1 Ok — ON—k—1,N—k—1
ON—k ON—k,N—k — Ok

A short computation then shows that the cohomology is rank one and generated by
(1,1,1,0,0,0,0).

In a similar way we conjecture the absence of cohomology when ¢ > k. As a test, we
provide the matrix of Poincaré polynomials for Hop(€y, €;) for N = 10:

Yy y'+3y+3 W W (5.82)
0 Y y? +3y+3 W '
0 0 Y y? 4+ 3y +3

Now let us consider briefly the %SU(N) theories of Section §4.6. The formulae (5.46)-
(5.51) apply to this case as well. In this way we find the following morphism spaces:
For two lower vacua, 0 <17 < j < % we have:

Hop(i,/) =Y. > A} (5.83)

n>13%" | ds=j—i s=1

If i = N — k is an upper vacuum and j a lower vacuum, we need j > k for a nonzero
morphism space. In this case we have:

HOp(N - ]{7,]) = Aj+k D Z Z A2k—1+d1 & ® Agj (584)
n>1 22:1 ds=7—k+1 s=2
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If ¢ is a lower vacuum, and j = N — k an upper vacuum, similar considerations apply with
1 < k:
) 1] [1
Hop(i, N~ k) =AY, o> Y ®A To Al e (5.85)
n>13"" | dy=k—i s=1

Finally if we have two upper vacua an ¢ > k then

n—1
Hop(N — k,N —t) = AN4k—t ©® Z Z Ask—14d, ® ® A[l AE\IT] 2t+d,, (5.86)
n>13" dy=t—k+1 s=1

In all four cases (5.83)-(5.86) the sums are over partitions with ds > 0.

Let us turn now to the differential m; in the vacuum category anc(TSU( ). We use
the contraction (4.101) and the interior amplitude (4.102) with b;;, = b for all i < j < k.
For Hop(i,j) in (5.83) my is a signed sum of operations on each of the tensor factors in
the product. On a factor of the form Ry /4 = AEll] with d > 0 it acts as an intertwiner:

my: Ag — @lerdg:dAdl &® Ad2 (5.87)

Note that for each decomposition d = di + dy there is a canonical intertwiner Ilg, 4, :
Ag, ® Ag, — Aq given by the wedge product. The components m&dhd?) of my in (5.87) are

such that p
4, 4, © mgdl’dQ)es = kb (d )8563 (5.88)
1

(Recall that eg = es\:\% where S’ is the complementary multi-index to S.) In formulae

d—1
€9,€5,€5
mi(es) = kbeg Z Z %e& ® eg, (5.89)
d1=1 ShQ(S)Z‘Sﬂ:dl

To describe the multiplication mg in the vacuum category we need to distinguish
between the two cases where the intermediate vacuum is down-type, as in Figure 31(a)
or up-type, as in Figure 31(c). In the first case we simply take a tensor product. In the
second case we must use the contraction. Here we are taking a product

my : Hop(i, N — k) ® Hop(N — k, j) — Hop(i, j) (5.90)

so we must combine the final factors in equation (5.85) with the initial factors in equation
(5.84). The main step is captured by the map R; n_p ® Ry_j; — Ri; withi < j < N —k,
namely
1
ANV @ Ay — Al (5.91)

This is simply taking the dual of the wedge product of the duals (up to a factor of bx?).
(N ))

compute the space of boundary-changing operators between thimbles, H*(Hop(%;, ¥;), My).

Turning now to the Brane category ‘Bt(%SU we can use the above complexes to

In the TSU(N theories these will be representations of SU(N). We conjecture the following

Conjecture
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a.) If 7,7 are lower vacua with i < j then

H*(Hop(T;,%;), My) = 877 (5.92)

b.) If i = N — k is an upper vacuum and j a lower vacuum with j > k
H*(Hop(Sy—1,Tj), My) = L1, ) (5.93)

c.) If i is a lower vacuum, and j = N — k an upper vacuum with i < k:
H*(Hop(%i, Tn—k), M1) = L%:ig]kJFl,k_i (5.94)

The above conjecture is easily checked for the simple cases in which Hop is concentrated
in a single degree, but in general appears to be an extremely challenging computation. We
will deduce equation (5.92) using the rotational interfaces of Section §7. See equation
(7.172) below.

One could contemplate computing the morphisms spaces involving the Branes 9, de-
fined by the Chan-Paton factors (4.117) and amplitudes (4.119) et. seq. We leave this
exercise to the truly energetic reader (with lots of time to spare). Since these Branes are
generated from thimbles by rotational Interfaces (see equation (7.161) et. seq.) it is con-
ceivable that arguments along the lines of (7.172) lead to a derivation of these cohomology
spaces. It would also be interesting to see if these results can be checked using the o-model
or Fukaya-Seidel viewpoint described in Sections §§11-15.

6. Interfaces

6.1 Interface Webs
6.1.1 Definition And Basic Properties

We now consider webs in the presence of an “Interface,” a notion we will define precisely
just below equation (6.7). Roughly speaking, an Interface is a domain wall separating two
Theories. For simplicity we take the wall to be localized on the line D described by x = x¢
in the (z,y) plane. 2* We now consider two sets of vacuum data, (V~, z7), associated
with the negative half-plane z < 2 and (VT 27) associated with the positive half-plane
x > x9. The data (V*, 2%, 2¢) will be collectively denoted by Z. As in the half-plane case,
we assume that none of the zl-j][- are parallel to D.

Definition:
a.) An interface web is a union of half-plane webs (u™,u™), with u~ a negative half-
plane web and u™ a positive half-plane web, where the half-planes share a common bound-

ary D at @ = xp. The webs are determined by the vacuum data (V*, z%), respectively.
25

24More generally one could rotate our construction in the plane.
Z5We stress that at this point u~ and ut are webs, not deformation types of webs.
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b.) An interface fan is the union of a fan for the negative half-plane data and a fan
for the positive half-plane data. It will be denoted J = (J*, J~) where one of J* (but not
both) is allowed to be the empty set.

Remarks:

1. Let 0 denote a typical interface web. 26 We divide up the set of vertices of 9 into
the set of wall vertices V5(?) located on D and interior vertices Vi(9) in either
half-plane with cardinalities V(2) and V;*(9), respectively. The interior edges are
subsets of the negative or positive half-planes, cannot lie in D, and do not go to
infinity. The sets of interior edges are denoted £¥(?) and have cardinality E*(0).

2. We will consider V() to be an ordered set. Our convention is that reading left to
right we order the vertices from future to past, as we would for a left boundary of a
positive half-plane.

3. An interface web has an interface fan at infinity Joo (). If 0 = (u™,u™) then Jo(9) =
{Joo(uh); Joo(u™)}. Similarly, if v € Vy(d) we can define local interface fans J, ().

4. Using a standard reflection trick we could make a precise correspondence between
interface webs and half-plane webs for the “disjoint union” of the vacuum data (a
term we will not try to make precise). Note that any half-plane web could be seen as
an interface web with trivial vacuum data on one side of D. As we will see, interface
webs behave very much like half-plane webs.

5. We can speak of a deformation type of an interface web 0. In order to avoid con-
fusion, let us stress that the deformation type ? of an interface web is not just a
pair of deformation types of negative and positive half-plane webs. The reason is
that when vertices of the negative and positive half-plane webs coincide deformations
must maintain this identification. When they do not coincide, deformations must
preserve the relative order. See, for example, Figure 38. In particular note that one
cannot unambiguously combine deformation types of negative and positive half-plane
webs into a deformation type of an interface web. Thus if we identify d with (u™,u™)
we must bear in mind that u* represent webs, not deformation types, so there is fur-
ther data specifying how the webs are combined, in particular, how their boundary
vertices are ordered and/or identified to form the set of wall vertices of 9. When the
vacuum data are in general position, the moduli space D(0) of interface webs of a
fixed deformation type has dimension

a) = (207 () ~ B-(0)) + (20,7 (2) - B*(2)) + Vo (0). (6.1)
For nongeneric vacuum data there can be exceptional webs with dim D(d) > d(9).

6. We define interface webs to be rigid, taut, and sliding if d(d) = 1,2, 3, respectively,
just as for half-plane webs. Similarly, we define oriented deformation type and con-
sider the free abelian group Wz generated by oriented deformation types of interface

26The gothic “d,” which looks like 9, is for “domain wall,” although in the course of our work that term
has been deprecated in favor of “interface.”
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webs. The taut webs have a canonical orientation (towards larger webs) and we de-
note the sum of taut canonically oriented interface webs by t, "+ or, usually, just t—F
when the data 7 is understood. We can also denote by W;E the group of plane webs
associated to the data in the positive and negative half-planes respectively.

Figure 38: The three interface webs shown here have different deformation types. The webs (a)
and (b) are taut, while (c) is rigid. In all three webs J(0) = {41, 42, 43; j1, j2, 3, ja}. In Figure (b)
the top vertex has J,(0) = {i1,42,3; ja}-

There are natural convolution operations inserting elements of W;[, Wz at interior
vertices in the appropriate half-planes or at wall vertices respectively and we have the
natural

Theorem: Let t; " be the interface taut element and t;,t the plane taut elements associated
to the data in the two half-planes. It is useful to define the formal sum t, = t; +t,. We
have a familiar-looking convolution identity:

G T Rt = 0. (6.2)
The proof is closely modeled on that of the half-plane case (2.30).

6.1.2 Tensor Algebra Structures

Turning now to the tensor algebras of webs, we also have natural operations associated to
the insertion of appropriate webs at all interior vertices on either half plane and/or at the
wall vertices. As usual, the operations involving interior vertices define complicated Loo-
type structures. The basic operation Ty(d) on TWz, denoted Ty(d)[01,...,0,] is defined
as usual by replacing all wall vertices of 9 on D with appropriate interface webs with
Ju,(0) = Joo(0s). To repeat, the ordering of vertices v, is toward decreasing y. This
behaves as it did for half-plane webs and in particular applying the reasoning of (3.26) et.
seq. the operator Ty (t; ’+) : TWz — Wz defines the structure of an A, algebra on Wr.
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Figure 39: Conventions for Chan-Paton factors localized on interfaces. If representation spaces
are attached to the rays then this figure would represent a typical summand in Hom(jm,j1, j15)-
We order such vertices from left to right using the conventions of positive half-plane webs.

6.1.3 Web Representations, Interfaces, And Interface Categories

We now consider the algebraic structures that arise when we are given a pair of representa-
tions of the vacuum data (V*, 2%). The discussion closely parallels that for the half-plane
theory.

We define a representation of interface webs to be a pair of representations

Ry = (R AR D, (R VAR D) (6.3)

for the vacuum data V*. Similarly, we define Chan-Paton data for an interface to be an
assignment (¢,7') — &; where the Chan-Paton factors & are graded Z-modules. We
picture this with a vacuum i on the negative half plane and ¢ on the positive half plane
with the Chan-Paton factor located on the boundary D. Our convention will be that the
wall vertices on D of interface fans J = {j],...4.;j1,--.,Jm} will be represented by the
graded Z-module:

Ry(£) =&, @R} , ® @R}, . Q& ;@R ; ® @R

! 1dh J1,dn J1.32 Jm—1,Jm"

(6.4)

This is illustrated in Figure 39. As usual we define the direct sum over all domain wall
fans to be:

RO(&) := @ R;(E). (6.5)

It is straightforward to define a map p(d) : TR™~ @ TRY(£) ® TR+ — RY(£) with
arguments associated respectively to the interior vertices in the negative half plane, wall
vertices, and positive half plane interior vertices. Given a Theory 7~ on the negative half
plane and a Theory 7+ on the positive half-plane we can define ps(2) : TR?(€) — R?(&)
by

+
pg(D)[r?, o ,7”2] = plg(D)[eB ;r‘?, ... ,7’2; P ] (6.6)
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where 5% are the interior amplitudes of 7+ and 8 = (87;3%). Familiar reasoning shows
that this defines an A..-algebra structure on RY(E).

In analogy to the half-plane case we can now define an interface amplitude to be an
element By € R?(E), for some &, which solves the Maurer-Cartan equations

> ool (B5") = paltr)l;—5) =0 (67)

n=1

Definition: An Interface is a choice of D, a pair of Theories T+, a choice of Chan-Paton
data for the interface, and an interface amplitude.

We generally denote an Interface by a capital Gothic letter, such as J. The Chan-Paton
data is £(J) and the interface amplitude is B(J). Occasionally we will simply denote an
Interface by its interface amplitude B.

As in the half-plane case, given data (V*, 2%, zq) and Chan-Paton spaces £ we can
introduce a vacuum category Lac(7 ~, 7T+, ) with morphisms

i @ ]?i;'fj, ®EL @ ]?5]_1 Re(zy 1) > 0 and Re(z;;) > 0
Hom® (jj',it) =< Z i=j and i'=7 (6.8)

0 else

See Figure 39 for a typical summand. The superscripts + remind us that the R’s are
defined with respect to positive and negative half-planes, respectively. As before, if we just
take & = 7Z for all i,i’ then we get the “bare” Interface vacuum category Bac(7T —,T ).

Now, taking all Chan-Paton spaces into account we can define an A..-category of
Interfaces, denoted Bt(7—, T ), following closely the definitions of Bt(7) in Section §5.2.
The objects are Interfaces and the space of morphisms from the Interface Js to the Interface
J; is the natural generalization of (5.15):

Hop(J1,T2) := ®ir j7E(T1)ir @ Hop(it', j") @ (E(T2);5)" (6.9)

where Hop(ii', jj') refers to the morphisms (6.8) of the “bare” category with &; = Z for
all 4,4'. The A-multiplications are given by the natural generalization of equation (5.17).
There is no difficulty defining the formalism for extended webs so, as in the discussion
of (5.19) et. seq., we can use compositions M; and My to define notions of homotopic
morphisms and of homotopic Interfaces.

6.1.4 Identity And Isomorphism Interfaces

There is a very simple, universal, and instructive example of an interface between a Theory
and itself: the identity interface Jd. We can pick as Chan-Paton factors &;; = 9;;Z. With
such a choice of CP factors amplitudes are valued in

RY(&) = @, e+ R, © R, (6.10)

Zij

- 101 —



Figure 40: Examples of taut interface webs which contribute to the Maurer-Cartan equation for
the identity interface J0 between a Theory and itself.

Recall that the notation ]/%ij implies a choice of half-plane. We use the positive half-plane for
the left factor and the negative half-plane for the right factor. To define the interface we take
B(30) to have nonzero component only in summands of the form R;; ® Rj; corresponding
to the fan {i,7;j,7}. The vertex looks like a straight line of a fixed slope running through
the domain wall. The specific component of B(J0) in R;; ® Rj; will be —K L where K, !
is defined as follows:

The element K, i le R;; ® Rj; uniquely characterized by the property that the map

Rij — Rij ® Rji @ Rij — Rij (6.11)

defined by
T_>Ki31®7"_>(1®Kji)(Ki;1®r) (6.12)
is simply the identity transformation r — r. 27 It is worth expanding K;; Lin terms of a
basis. We introduce bases {v,} and {vy/} for R;; and Rj;, respectively, where vq, vy are

assumed to have definite degree. Then Kyo = Kji(vor,va) and Kuo = Kij(va, Vo) are
related by Ky = Ky since K is symmetric. The element K i;I defined above is

Ki;1 _ (_1)deg(va)Kaa’va ® Vg, (613)

2"Warning: If we map ' € Riibyr —=r'® Kigl and then contract on the first two factors the result is
= N D
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where K%' is the matrix inverse of K,,. That is K K, 3= (55“5. Note well that under
the natural isomorphism R;; ® Rj; — Rj; ® R;; we have Kigl — —Kj_il. Hence, in this
sense, K Z-El is antisymmetric, a fact that will be useful in Sections §§7 and 9. Thus, the
component of B(J?) in Rj; ® R;j, where ji is the fan in the negative half-plane, is just K;l

Now that we have defined J0 let us verify that the interface amplitude indeed satisfies
the Maurer-Cartan equation. The only non-zero contributions to pg(fz)(ﬁ) arise from
taut webs with a single bulk vertex in either the positive or negative half-plane, but not
both, as shown in Figure 40. The interior vertex is saturated by the interior amplitude
B. These vertices form pairs obtained by “transporting” the vertex across the wall D.
These pairs of taut webs cancel out together in verifying the Maurer-Cartan equation for
J0. In slightly more detail, suppose that I = {ij,...,4,} is a cyclic fan so that the vacuum
amplitude 8 has component f; € Ry. Since (by assumption) none of the z; for i,j € V
is pure imaginary we can choose to start the fan so that z;, 4,,...,2;,,_, ., point into the
positive half-plane and z;,, ..., - - 2i,,; point into the negative half-plane. The taut web
with the vertex in the negative half-plane contributes (up to a sign, determined by equation
(4.33))

Kisiy - Kiyy_1im (Kz_l’lw Q- @K !

Tm—1,tm

® ,3,) (6.14)

to the Maurer-Cartan equation, where the K~!’s come from Bz while the taut web with
the same vertex in the positive half-plane contributes (up to a sign, determined by equation
(4.33))

K; K (K,—l ® -0 KL ®BI) . (6.15)

m+1,tm Tm41,m i1,in

Both of the webs in Figure 40 are taut and hence canonically oriented. If x is the coordinate
of the interaction vertex then the one on the left has o,(u) = —[dz] and the one on the
right has o,(u) = +[dz]. We claim all the other sign factors cancel out and hence the
two expressions in fact sum to zero. Essentially, this follows from the fact that the edge
vector fields associated to Kj, ;,,, get contracted with the one-forms for the wall vertex
associated to K ijinﬂ, and the relative order of the vector fields and one forms mimic the
relative order of the K and K ! symbols.

From this description it is clear that the existence of this vertex strongly uses the
fact that the left and right interior amplitudes are assumed to be equal. This property of
the MC equation anticipates a theme which will recur later in the paper: the existence of
interfaces with given properties can encode relations between two theories. See Section §8
for an implementation of this idea.

There is a very useful generalization of the identity Interface. Suppose there is an
isomorphism ¢ : TW — T2 as defined in Section §4.1.1. Then we can construct an
almost-canonical invertible Interface

J0% € Be(TW, 7)) (6.16)
which we will call an isomorphism Interface. The Chan-Paton factors are defined by

E(T0%)ij = 6,21 (6.17)
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where e; is a degree-shift which will be fixed, up to a common shift e; — e; + s, below.
(This ambiguity is the reason we say the interface is only “almost” canonical.)
In order to define the amplitudes we define a set of canonical elements

K% e RV gR?

(4] ] Jesip (6'18)

labeled by pairs of distinct vacua. This element can be defined by requiring commutativity
of the diagram

QK
RV R o B @ BY. (6.19)
Pij lKi(jl)®1
(2)
Rw,jw

This is equivalent to the condition

R® K0 o) ) (6.20)
Jpsip Ji p,jp Jpsip :
L e
RW

J

thanks to (4.26).

In order to give an explicit formula for K@;Lw we choose bases v,(fj ) for the RS) and
5
ij
relative to a basis are defined by v,p = paswg. Then the composition of linear trans-

similarly for R;;’. We write linear transformations v — vp;; so that the matrix elements

formations ¢1¢o is represented by the standard matrix product (¢1)ay(¢2)ys.- With this
understood we have the formula

—].7 ((17’3) _1, , .. . 7.
K;; Y = (—1)deg(v )(Kij #)e Bvéw) Q véww) (6.21)
with
- 1)\ —
(Kijl,ip)a,ﬁ — (KZ(])) l,a;y(spij)%ﬁ (622)

Now the boundary amplitudes for J0¥ are valued in

Eiip ® R, ® E15, @ RY (6.23)
and these are taken to be B = K;Lsﬂ up to degree shifts. The degree shifts are used to
ensure that B has degree one. Pictorially we have a bivalent vertex on the domain wall
with a straight line going through it from one half-plane to the other, just as in Figure 40.

The demonstration that these boundary amplitudes satisfy the MC equation is closely
analogous to that of J0.
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6.1.5 Trivial Theories

Once we speak of interfaces it is useful to introduce a formal concept of a trivial theory
Tiriv.  This is a Theory whose vacuum data is a set V with a single element v. The
corresponding vacuum weight z is irrelevant. There are no planar webs. There is a unique,
trivial web representation, as there are no R;;. Of course, ﬁvm = 7. However, there are
extended half-plane webs: They are simply a collection of vertices on the boundary of the
half-plane. The Chan-Paton data consists simply of a graded Z-module £. The boundary
amplitude consists entirely of its scalar part B € £RE*, which can be viewed as an operator
Q@ € Hom(E) of degree one. The taut web is the case of two boundary vertices so the MC
equation simply says that @2 = 0. Thus, giving a Brane for the trivial Theory is equivalent
to giving a chain complex over Z.

Now, an Interface between the trivial Theory 7~ = Tiiv and T is a Brane for the
theory 7 on the positive half-plane. An Interface between the trivial Theory and itself is
therefore, once again, a chain complex over Z.

6.1.6 Tensor Products Of A, .-Algebras

We remark in passing that our representations of interface webs lead to a nice mathematical
construction of tensor products of A.-algebras. In general the problem of defining a tensor
product structure on A..-algebras is nontrivial and has been discussed, for examples, in
[4, 70, 67]. In general there is a moduli space of possible tensor products. From our present
viewpoint, at least for a pair of Ay-algebras of the form Yac(7—,E7), Vac(T,ET) we can
choose our interface Chan-Paton spaces to be tensor products & = £ ® 5; and then
our construction defines a canonical tensor product structure on R?(€) = (R?(£7))°PP @
RB(EJF). This is a distinguished A,.-algebra structure on the tensor product, given the
vacuum weights.

6.2 Composite Webs And Composition Of Interfaces

The crucial property of Interfaces, which goes beyond the properties of Branes, is that they
can be composed. We will discuss here the composition of two Interfaces. The composition
of an Interface and a Brane is a special case of that. Physically, we are defining a notion
of operator product expansion of supersymmetric interfaces.

The composition of Interfaces is based on a generalization of the strip geometry. Choose
x~ < xt and define a tripartite geometry G5 to be the union of the negative half-plane
x <z, the strip x~ <z < 2", and the positive half-plane 2™ < z. To these three regions
we associate the three vacuum data (V7,27), (VY 2Y) and (V*,2%), respectively. See
Figure 41.

By definition a composite web for this tripartite geometry is a triplet ¢ = (u™,5,u™) of
half-plane and strip webs on G5 which are based on the appropriate vacuum data in each
connected component. (The definition can clearly be generalized to regions with multiple
strips with data (V=,27), (V% 29), ... (V" 2"),(VT,2T).) Once again, the moduli space
of deformation types is not just the product D(c) # D(u~) x D(s) x D(ut) because the
deformations follow the rules for interface webs between (V—,27) and (V?, 2°) and between
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Figure 41: An example of a composite web, together with conventions for Chan-Paton fac-
tors. In this web the fan of vacua at infinity has Joo(c) = {ji,... 30015 dm} and Joo(c) =
{541,403 915 - -, jm}. Reading from left to right the indices are in clockwise order.

(V0 29), and (V*, 2*). 28 In general we denote the free abelian group generated by oriented
deformation types of composite webs as Wo[V—, V0, ... V? V] (with the vacuum weights
understood). As for strip webs, the geometry has no scale invariance, and thus reduced
moduli spaces are quotiented by time translations only. Thus the definitions of taut and
sliding composite webs are analogous to those for strip webs:

Definition: Assuming that at least two of the Theories (7,7, 7 ) are nontrivial, com-
posite webs with d(c) = 1 are called taut (or rigid) and composite webs with d(¢) = 2 are
called sliding.

For composite webs there are two senses in which we can speak of the fans of vacua at
infinity. If ¢ = (u™,s,u™) then we could define

Joo(€) 1= {Joo (uF): Joo (™)} (6.24)

Notice that this has the same structure as boundary vertex fans for an interface web
between vacua V— and V*, a fact which will be useful presently. Sometimes it can be

280nce again, u™,s,u" are webs, not deformation types. Given three such deformation types there are
several ways to combine them into a deformation type of a composite web.
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useful to include the past and future vacua j~(s) and j*(s) of s, respectively. Then we
define

Joo(€) 1= {57(8); Joo (uh); 7 (8); Jos (u7)} (6.25)
See for example Figure 41.

We will now describe the convolution identity for W, the free abelian group generated
by the oriented deformation types of composite webs. Here a novel feature arises and the
identity itself involves a tensor operation. As usual we consider the possible boundaries of
deformation types of sliding composite webs. We encounter again the same phenomenon
as for strip webs: some components of the moduli space of taut composite webs are not
segments, but half lines. While the boundaries at finite distance are accounted for by
convolutions, we need a different operation to account for boundaries at infinity.

For strip webs, the new operation was time convolution: a large strip sliding web takes
the form of two taut strip webs separated by a long stretch of time. For composite webs,
we can do something similar, but there is an important difference: as a web becomes large
in size, the restriction to the central strip will consist of two or more components of finite
extent and well separated in time, but the components in the left and right half-planes
may simply grow to arbitrarily large size. See Figure 42 for an example.

We can make this statement precise by separating the “bound” vertices whose distance
from the boundaries stabilizes as the web keeps growing from the “scaling” vertices whose
distance from the boundaries scales linearly with the distance from the boundaries. The
bound vertices form clumps consisting of vertices whose distance in time remains bounded
as the web grows. We can take a sliding web of some large size L, and re-scale all coordi-
nates by a factor of L. The intermediate strip is now of very small width and the composite
web is well approximated by an interface web 0 between 7~ and 7 whose interior ver-
tices correspond to the scaling vertices of the original composite web and whose boundary
vertices correspond to each of the clumps of bound vertices of the original composite web.

We can put these heuristic pictures on a firm footing by considering a tensor operation
where a composite web is obtained from an interface web 0 by convolving composite webs
into the wall-vertices of the interface web 0. To be more precise, suppose 0 is an interface
web between (V7—,z7) and (V*,27). We can define an operation

Ty(2) : TWe — We (6.26)

whose nonzero values on monomials ¢; ® - -+ ® ¢, are obtained by inserting the ¢, (in the
correct time order 2% ) into the wall vertices v? of ? provided Jp(0) = Jo(cq) and provided
that the past strip vacuum of ¢, agrees with the future strip vacuum of ¢,41. We orient
the resulting web in the standard way, wedging the reduced orientations of the arguments
in the same order as the arguments themselves. It is easy to check that the dimensions of
the deformation spaces of the webs are related by

n

d(To(0)[e1, .., cn)) = dd) + > (dlca) — 1). (6.27)

a=1

9By convention we use the order set by the positive half-plane webs. Therefore reading from left to right
corresponds to vertices with decreasing y.
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T

Figure 42: The taut interface web on the left can be convolved with three taut (=rigid) composite
webs at the three green wall vertices to form the sliding composite web on the right. This represents
one type of degeneration in the convolution identity for the taut composite web. The region at
infinity is represented by the limit in which the red vertex moves off to infinity in the positive
half-plane.

If we take into account the positions of the walls it is most natural to take the position
20 of the wall for d to be somewhere in the open interval = < 2% < z*, and all the
composite webs ¢, have the same positions (z~,2"). Since we are defining an operation
on deformation types the precise choice of 2% does not matter.

According to (6.27) if all the composite webs are taut, so d(¢,) = 1, and if the interface
web 0 is taut, so d(d) = 2, then Ty(d)[c1, ..., c,] has d = 2 and is hence a sliding composite
web. In this way the generic sliding composite web is associated to a taut interface web,
with insertions of an arbitrary number of taut composite webs. We thus claim that the
regions at infinity of the reduced moduli space of sliding composite webs are well described
by

Tyt [1 ! tj (6.28)

where t. is the taut element for composite webs and t—T is the taut element for interface
webs between (V~,27) and (V*,27). Tt is worth noting that the time convolution of two
composite webs is a special case of this operation. It arises from the taut interface webs
with precisely two wall vertices. For another example see Figure 42. Note that this is
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qualitatively different from all the previous convolution operations we have encountered
because the “more primitive” structure plays the role of the “container web.”

To write down the full convolution identity for the taut composite webs we should also
take into account other degenerations at finite distance in the reduced moduli space. To
do this let

tp =t + )+t (6.29)

be the formal sum of plane web taut elements for the three vacuum data. Similarly, let
tr =0 4 OF (6.30)

where t9 is the taut element associated to the interface webs between vacuum data
(V=,2z7) and (VY,29), while t>* is the taut element associated to the interface webs be-
tween vacuum data (V? 20) and (V*,2%). The convolution identity for composite webs
is 1

11—+t

Following the discussion of Section 3.2.2 we can identify this equation as the Maurer-

te* by + o x bz + Tp(t )]

] = 0. (6.31)

Cartan equation for an A algebra structure on We with operations Ty(t™), plus an
extra differential *t,; + *tz.

We now consider a triplet of Theories (7,77, 7T) associated to the three regions
of Go. Given Intefaces 370 € Be(7T,7°) and 3% € Be(T% T) we want to define a
product Interface, 30X 3%+ € Be(7T -, 7).

We first determine the Chan-Paton factors of 370 X 3%+, The choice of Theories
(T—,7° 77) implies a choice of three representations (R~, R?, R*) of vacuum data. The
Interfaces 379 and J3%* have Chan-Paton spaces 51._.’,9 and 52};,, respectively. Define the

K
Chan-Paton data for the product Interface between vacua 7~ and 7' as

E@ ORI = Et = @pens, ) @ ENT, (6.32)

7

Note that £ := @ievai/eijgi;/—‘r is a generalization of the approximate ground states
on the strip of equation (4.52).

Now, in order to define the interface amplitudes of 37° X J3%* we need some more
preliminaries. Viewing EZ.;,’JF as Chan-Paton factors for an interface between 7~ and T
we can formulate the spaces R?(£7 1) using equation (6.4). For a composite web ¢ we
follow the usual procedure and define

ps(c) : TR2(E~Y) @ TR(E%T) — RO(ET), (6.33)

where £ is given by (6.32), by inserting 8 = (37, 8%, 87) into the interior vertices of ¢,
so that

-0 0.0, - 0 _ 00, +
pa(c)[ry ,...,rn’o;rlJ“,...,r?;f] ::p(c)[eﬁ iT1 ,...,TTL?O;eﬁ;r1+,...,r,07;+;66]
e RO(E~T).
(6.34)
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Figure 43: A simple taut web is illustrated here. It leads to the contractions described in the
example below.

Example: As an example consider the taut composite web ¢ shown in Figure 43. The
action of pg(c) is zero on every component of TR?(£~0) @ TR?(£%%) except on

—,0 —,0\* — 0, 0, *
<gj,j// ® Rg”,i” ® (gi,i”) ® Rld) ® <(€j/,:;, ® R;C,i/ ® (Ei,,j;,) ® RiO”,j”) (635)

The superscripts on the R’s indicates which Theory we are speaking of, and there is no
sum on any of the indices. The action of pg(c) on this summand uses the contraction

KJQN’Z'N . R‘?H’iﬂ X RZQ//J'// —7Z (636)

together with the Koszul rule to map an element of (6.35) to
_70 07+ + _70 0,"1‘ * —
(8]-7]-// ® gj",j’) & Rj/,i/ & (51-71-// & (C/’i//J/) & R’LJ (637)

Now note that (6.37) is a summand of R?(£77F).

There is a special case of (6.34) we must deal with separately, namely when n = 0 or
m = 0. The reason is that we can have composite webs with no vertices one one of the
two interfaces. See for example the taut web in Figure 44. For such webs pg(c) will map

ps(c) : TR2(E™Y) — R2(ET), (6.38)
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(W+, 27}

Figure 44: A taut web with no vertices on the 79,7+ boundary.

by taking pg(c)[r1,. .., ;0] to have a value only in the component:

-0 0+ \ o B -0 0,4\ o P— ~ (=0 o D -0 n— 0,4 0,4
(gj,i" ® g’i”,’i’) ®R’j’_,i/®(5’i,i” ® 87;//71‘/) ® RZJ - (gj,i" ® R2/7i// ® (gi,i” )* ® RZ,j) ® (87;//72‘/ ® (gi”,i’)*>

(6.39)

with a value given by
pg(t)[rl, .. ,Tn] & Idiﬂﬂ'/ (640)
where pg(c)[r1,...,ry) is just the contraction for an interface web between 7~ and 7°. We

make a similar definition with webs that have no vertices on the (7, 7°) boundary.
Now we can define the interface amplitude of 379X 3%+, Suppose that 370 and J%+
have interface amplitudes B—" and B%*, respectively. We claim that

~— ~ 1 1
B(J 0 g J0,+) = pg(te) |:1 — 87’0; - BO,Jr] (6.41)

satisfies the Maurer Cartan equation for an interface amplitude between the theories 7~
and 7+ with Chan-Paton spaces (6.32). To prove this claim we first note that

pp(t™") T B(j_l,o = 30,+)} = pg (Ta(f_’+) L _1 tCD [1 _13_,0» 1 _2+,0:| (6.42)

This forbidding identity has a simple meaning. On the right hand side we are computing

the amplitude of composite webs produced by inserting t. in all possible ways in t—. On
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the left hand side we compute the amplitude for the individual t. sub webs first, and then
insert that in t—F. Finally, we apply the convolution identity (6.31) and use the fact that
3 is an interior amplitude and B—" and B%* are interface amplitudes, thus establishing
that (6.41) is an interface amplitude.

It follows from the the above discussion that Interfaces can be composed. In fact,
the product X can be extended to define an A, bi-functor from the Cartesian product
of Interface categories Bt(T~,T?%) x Be(T, TF) to the Interface category Br(T—,T ).
That means that if we have

1. A sequence of interface amplitudes J, 090 % i Be(T—,T°) together with mor-

phisms d1, ..., d, between them, and
2. similarly, we have interface amplitudes 38’+, e ,32’,+ in Be(T°,T1), together with
morphisms 7, ...,0!, between them,

then we can produce an element:
v(81,...,60:8,,...,0.,) € Hop (35’0 R3O, 30K 3?;,*) (6.43)

such that the A..-relations are satisfied separately in the two sets of arguments. The
element v(01,...,0p;07,...,0.,) is defined by pg(t.):

1 1 1 1
t 775"..’5 ; 7/7"'75//7
Pty g O T g o e g

nl

(6.44)

This extends the composition of Interfaces to a full A, bi-functor. (We have not written
out the full details of a proof that this is in fact a bi-functor.)

Figure 45: The (extended) taut web shown here contributes to v(Id; ().

If we specialize the above discussion to n =1 and n’ = 0 or n = 0 and n’ = 1 then we
obtain an interesting interplay with notions of homotopy equivalent branes and interfaces.
In particular, even though 370 X J3%* is not a bilinear operation, we claim that if Jo 0
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is homotopy equivalent to ’31_’0 then J, O & 30+ s homotopy equivalent to 31_’0 & 30+,
There is a completely parallel result for homotopy equivalences of 3%+ holding 3~ fixed.
To prove this we note that we have identities like the commutativity (up to sign) of the
diagram:

Hop(J,°,37%) —>  Hop(J;° ® 3%+, 37" ® 301) (6.45)

lMl,O lMl_7+

Hop(J,",377%) = Hop(3, ' ® 3%+, 3,0 R 30+)
where v is the map obtained by specializing (6.44) to n = 1 and n’ = 0. Of course there is
a similar identity for n = 0 and n’ = 1. This follows by applying the representation of the
identity (6.31) to the sequence of arguments

— ]. 1 0 1 +
B~ . LB .oB
€ ’ ) 57 —0°¢ T 02 €
1-By" =B T1=BY

(6.46)

where 6 € Hop(J,’ 0 I 9). 1t follows from (6.45) that v maps an Mj-closed or exact
morphism between J” 0 and 31—,0 to an Mj-closed or exact morphism between J, 0 g 50+
and 3?0 X 3%+, Now note that if Id is the graded identity element of equation (4.75) then
v(Id; ) = Id. To prove this note that the only taut webs which can contribute to

1 1 1
I .
palte)li =g 1 755 T ot

are those with a single vertex on the boundary between 7~ and 77, and a single vacuum 4"

(6.47)

in the region 2~ <z <z, as shown in Figure 45. Now, using the definitions (6.38)-(6.40)
we can check that the sum over such taut webs gives v(Id; () = Id. Similarly, v(0;1d) = Id
comes from taut webs with a single vertex on the 7°, 71 boundary.
Now, since v is an As-functor, if 6, ¢" define a homotopy equivalence between J; 0 and
J; ¥ then 30
My(v(8),v(8')) = v(Ma(6,0")) £+ v(Mi(9),8") + v(8, M1 (8")) &+ Mi(v(4,0"))
— V(M (8,87)) % My (v(6, )
= v(Id + M1 (8")) & My (v(6,"))
=1d + My (v(8") £ v(5,9"))

(6.48)

In the first line we used the definition of an A..-functor. In the second line we used the
hypothesis that ¢§,d" are closed, in the third line we used the hypothesis that they define
a homotopy equivalence. This finally completes the proof that homotopy equivalence is
nicely compatible with X.

In the special case where 7~ is the trivial Theory, we have a useful result: each
Interface in Be(T°, TT) gives us an Ay, functor from Br(TY) to Br(7T ). This will be
important for us later in Section §7 so let us spell it out a bit more. If 3% is a fixed
Interface we define an A,-functor by declaring that on objects

Fro4(B) := BRIOT (6.49)

30Tn this equation we got lazy about the signs.
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and if d,...,d, is a composable set of morphisms between Branes By, ..., B, in Br(T°)
then

ij,-«— ((50, e 75n) =0 S HOP(F30,+ (%0), f30,+ (%n)) (650)
is given by

1 1 1
0= pﬁ(tC)[?Bo75la 76n1 — Bn’ 1 7BO,+]

and we claim, moreover, that the A.-relations defining an A..-functor are satisfied:

SN ppe(6) (Faos (P Foor ()

(6.51)

k Pag(P)
. (6.52)
= Z €Py,Py,Ps 30+ (Pl’pﬁo(tﬂ)(PQ)a PS)
Pas(P)
where P = {01,...,0,}, Fyo.+(0) = 0, €p, p,.p, is an appropriate sign, and we note that

t~+ =], is the taut element of the Theory 7 in the positive half-plane while t—0 = J,
is the taut element of the Theory 7V in the positive half-plane.

Moreover, suppose that ¢ € Hop(ﬁ(l)’Jr, 38’+

) is a morphism between Interfaces. Then
we claim that there is an Ay -natural transformation 7(¢)) between the corresponding

functors .7-}0,+ and .7:30,+. That is, for every 9B € ‘Bt('TO) we can define
1 2

T(Y)s € Hop(]-'j(l),Jr (SB),]:jg,Jr (B)) (6.53)
so that, if d1,...,d, is a composable sequence of morphisms between Branes By,...,B,
in 7°, then

Fo+(B )% 0+ (Bp) (6.54)

79 n 3% n :
ifjg,+(50,...,5n) J{f327+(50,...,5n)
T(Y)s,

.7:33,4— (By) —— 20+ (Bo)

is a commutative diagram. The formula for 7(¢)y is just

T(Y)s = pa(te) (6.55)

NS SR
1-B1-B)"" 180"

where B is the boundary amplitude of B and B?’Jr, Bg’+ are the interface amplitudes of
3(1)’+, Jg’+, respectively. Moreover, a natural transformation 7 between an Interface and
itself is homotopic to the identity if, for every B, 7 = Id + M;(6). Two A-functors
can be regarded as homotopy equivalent if they are related by two natural transformations
whose composition is homotopic to the identity. Now

Ma(T(¥1)m, T(Y2)m) = T(Ma(¥1,92))8 + -+, (6.56)

where the extra terms in --- involve M. This simply follows from the observation that
7(¢)s = v(0;4) (compare equation (6.44)) and is part of the statement that v is an A.o-
functor in its second set of arguments. Hence a homotopy equivalence between Interfaces

3(1)’+ and Jg’+ leads to a homotopy equivalence of the corresponding As.-functors.
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If both 7~ and 7+ are trivial, the above results reduce to the previous results for
the strip. For example, equation (2.40) is a special case of equation (6.31): The only
nontrivial taut element in t—7 consists of two boundary vertices, and the composition
operation then gives concatenation of strip-webs. As noted previously, the Chan-Paton
space (6.32) becomes the space of approximate ground states (4.52). Moreover equation
(6.33) is equivalent to equation (4.53), when we bring £rr from the LHS to £f ; on the
RHS of the latter equation. The differential dyr on the complex of approximate ground
states can be thought as a solution of a trivial MC equation, where only the composition
of the Chan-Paton factors remain interesting.

Figure 46: Tlustrating the A,.-multiplications on the local operators on an Interface. Figure (a)
shows a number of local operators between different Interfaces. The vertical purple arrows indicate
that they are to be multiplied. The result is a single local operator between the initial and final
Interfaces, as illustrated in Figure (b).

Remarks:

1. In principle we should keep track of the positions 279 and %% of the original Inter-
faces as well as the position 7T of the final product Interface. Given the translation
invariance and homotopy equivalence we can be a bit sloppy about this, but it is
relevant to the sense in which the product is associative. We take that issue up in
the next Section §6.3.

2. It might help to restate some of the above formal expressions in more physical terms.
First of all, the basic As-product on local operators on Interfaces is illustrated in
Figure 46. Physically the product 39X 3% is a kind of operator product of super-
symmetric interfaces. In the physical models there is no “Casimir force” between the
Interfaces, even with the insertions of (a suitable class of) local operators. Therefore
they can be adiabatically brought together as illustrated in Figure 47 to produce a
new Interface with a single local operator, as illustrated in Figure 48. An illustration
of the statement that v is an A-functor (for fixed 07,...,d/,) is shown in Figure 49
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~— 0 0.+
J 0 J (]
t -
7-1)

T- i T+
> U
f

35 0 59

Figure 47: Illustrating the bifunctor v. Here the green squares illustrate 4 local operator inser-
tions &1, &2, b3, 04 between Interfaces from Theory 7~ to Theory 7°. Similarly, the green triangles
represent 3 local operator insertions 81,85, d% between Interfaces from Theory 79 to Theory T+.
The maroon arrows indicate that the two interfaces with their local operator insertions are being
moved together (adiabatically).

rl mrl T

Jp " A

Figure 48: The result of the process described in Figure 47 is a single local operator, described
by the green star, between the products of the initial and final Interfaces. This is the operator
V((Sla 527 5?” 64; Ila 657 6%)

and Figure 50. Of course, an analogous statement can also be made holding 41, ..., d,
fixed.
6.3 Composition Of Three Interfaces

We can now consider a geometry G with three interfaces, set at = —L, x = nL, z = L,
—1 < n < 1, with vacuum data (V% 2%), a« € {—,0,1,4}, in the negative half plane, the
two strips and the positive half plane respectively. The composite webs in this geometry
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Figure 49: This figure represents one side of the equation stating that v is a bifunctor. We first
take the “operator product” of the ordered set P, of local operators on Interfaces between 7~ and
79, as indicated by the vertical purple arrows, and then apply the Interface product, as indicated
by the horizontal maroon arrows. We sum over all decompositions of the local operators on the left
Interface into P; 11 P, 1T Ps.

P

3 R
l ) IT+
> T

( |

Ty

'"’n Al n{

y ¢

Figure 50: This figure represents the other side of the equation stating that v is a bifunctor. We
consider all ordered decompositions @ IT - - - IT Q, of local operators on the left Interface (keeping

1,-..,00, fixed). We apply the Interface product separately to these collections to produce the
Interfaces and local operators indicated by % (Q1),. .., % (Q). Then we take the product of these
local operators, as indicated by the vertical purple arrows.

have essentially the same properties as in the case with two interfaces, with a convolution
identity of the same general form.

Following through the same derivation, we arrive at the statement that given four
Theories 7, 70, T, T+ we obtain a triple A, functor from Be(7T—,T°) x Be(TY, T1) x
Be(TH,TH) to Be(T—,T"), composing three consecutive Interfaces J=0, 301 b+ to a
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single Interface we can denote as
~—t+ . (~—,0~0,1~1,
3, = (3703, (6.57)

It has boundary amplitude

_ 1 1 1
B(jn ’+) = pﬁ(tC) (1 — 87’07 1 80’17 1— Bl’+> (658)

where t. is the taut composite element in G1.

Thus we get a family of triple compositions, parameterized by 77, and we may obviously
wonder how would they compare to the repeated compositions (J7° X 3%1) X JL+ and
770X (3% X JbF). We want to argue that there is an homotopy equivalence between
any pair of interfaces (J793%131F), and (3793%131 ") and that moreover there are well-
defined limits such that:

(37090190 = (0RO R
(370301504, ) =370 (30 ® L) (6.59)

It then follows that (379X 3%) K31+ and 30 K (3% X 317) themselves are homotopy
equivalent.

6.3.1 Limits

We can start from the analysis of the 7 — —1 limit of the triple composition. We need to
study the fate of a composite taut web in G4 when 7 is sent to —1. The taut element itself
may jump in the process. As there are only finitely many possible taut web topologies, as
we make 7 sufficiently close to —1, the taut element will ultimately stabilize.

After the taut element has stabilized, we can analyze the problem in the same way as
we did for composite webs. As the left strip shrinks, some vertices will remain at finite
distances from the boundaries, while the distance from the left boundary of some other
“bound” vertices will scale as 1+17. The bound vertices will form clumps at finite locations
along the left boundary. The whole web is well-approximated by a composite taut web
in the Gy geometry with vacua V=, V!, V*, with boundary vertices on the left boundary
replaced by tiny taut webs in a local Gy geometry with vacua V=, VO, V1,

If ¢ is any composite web in the G2 geometry with vacua V=, V1, V' soc € W[V~ VE V]
then we can define an operation

Ty(c) : TWe [V, VO Vi = We [V, Vo0, vl v (6.60)

whose nonzero values on monomials ¢; ® - -+ ® ¢, are obtained by inserting the ¢, into the
left boundary vertices vZ of ¢ provided J,»(c) = Joo(cq) and provided that the past strip
vacuum of ¢, agrees with the future strip vacuum of ¢,+;. We orient the resulting web in
the standard way, wedging the reduced orientations of the arguments in the same order as
the arguments themselves.
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Figure 51: In the limit that 7 — —1 the taut composite web on the left degenerates to that on
the right. We can view this as a contribution of Tp(t™ ") [t +701] to 01+,

Thus with these definitions, if t;’o’l’Jr is the taut element in GJ and t—!+ and t—0!
the taut elements for the two G5 geometries respectively,

1
] _50717"‘ — _71’+
i 600 = Tyl () (6.61)
See, for example, Figure 51.
Now we can compute
(B=OBMBIH), 4 = py(lim g0 L L (66
(RS 1-B0 1-B01"1—BL+ ‘
from the representations of webs and interface amplitudes. We can write
1 1 1 1
T t_717+ . . —
pIB( 8[ ](1_t_’0’1))[1_8_’0’1—6071’1_61’—1—]
1 1
— L+ :
ps(E1) - , ] (6.63)
1— pg(t=ON) [73=0: 7o1] 1 — BY+
Thus
(j*,OjO,ljl,Jr)n_)_l — (3770 X /3071) X jl,Jr (664)

A similar analysis holds for n — 1.
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At this point, we are left with the task of proving the homotopy equivalence of the
triple compositions for different values 7, r of . The Chan-Paton factors are independent
of n. If we define J,; = (37030%1501),

,.; then, according to (5.23), we need to find
§p € RO(E~) such that

~ 1 1
B — By + pslt ’*)[1_Bf;5h;1_3}=0 (6.65)
p

where

®ENT (6.66)

11,04

77+ .— L. 770 071
& i =B i, ®E

1—, —, 10,01

As the interface amplitudes B, y € Hop(J,,Js) are computed directly from the corre-

1+

sponding composite taut elements t;’]?’ " we will first try to find a similar identity for the

difference between these two taut elements.

6.3.2 Homotopies

How can we compare the taut elements for different values of 7 One way would be to
vary 1 continuously, and study the special values at which the taut element jumps. This is
a somewhat subtle but interesting analysis, and we will come back to it at the very end of
the section. Here we will use a different, more effective strategy, which produces precisely
the desired result.

We can encode the problem in a simple geometric setup: a time-dependent setup where
n depends very slowly on the time direction. We want 7(y) to vary slowly enough that the
deviation from the vertical of the slope of the boundary between the VY and V! at any y

does not affect the local interface taut element between V° and V!. In particular the slope
0
]
and zil, J for any i, 7,4, 7'. We also want the variation of 1 to be restricted to some compact

should remain close enough to vertical so that it never crosses the slopes of the weights z

region y € [yp, yy¢] with fixed values 7, and 7y in the past and the future, respectively. We
will call such functions n(y) tame.

As soon as these conditions are met, we can consider composite webs in the time-
dependent geometry. 3! The definitions for composite webs from Section §6.2 have straight-
forward generalizations, with one important exception noted in the next paragraph. The
only slightly new point is that the wall vertices between 7° and 7' do not sit at a definite
value of z since the boundary between these theories is y-dependent. Nevertheless, one can
define deformation types of time-dependent composite webs. The only new point is that
wall vertices between 70 and 7! must slide along the wall 2 = n(y)L. If a composite web
¢ has n wall-vertices on the boundary between 7° and 7! and 01,...,9, are n interface
webs between TV and 7! then the convolution T'[¢](?1, .. .,0,) makes sense as a composite
web in the time-dependent geometry. Moreover, we claim that if 7(y) satisfies the above
conditions then the deformation type of T[c](01,...,0,) only depends on the deformation
types of ¢ and 0y,...,0,. To prove this we note that there are only a finite number of
possible webs ¢,01,...,0,. But then note that the homotopy which straightens out the

31 Actually, we could consider the positions of all three interfaces to be time-dependent. The resulting
discussion would be similar to what we give here.
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Figure 52: A smooth adiabatic variation of 7 as a function of ¢ can relate the products of interfaces
at different values of 7.

boundary between 79, 77 to a vertical line in the neighbourhood of each interface web will
change the edge lengths by an amount which can be made arbitrarily small by making the
slope of the boundary arbitrarily close to vertical.

The one new point in the definitions for composite webs in time-dependent geometries
is that we must change the definitions of rigid, taut and sliding webs from what we used
in Section 6.2. Webs in the time-dependent geometry with no moduli are rigid or taut,
and webs with a single modulus are called sliding. An example of a sliding web in a time-
dependent geometry is a rigid composite web for n = 1y whose support lies in y > y; or,
similarly, a rigid composite web for 7 = 1, whose support lies in y < y,,.

We can now repeat our usual exercise: We define t[n(y)] to be the taut (= rigid) element
in We in the time-dependent geometry determined by 7(y) and find its convolution identity
by examining the end-points of the moduli spaces of sliding webs in this time-dependent
geometry. We encounter standard boundaries at finite distance: some edge inequalities
get saturated, some subset of vertices collapse to a point in the interior or at any of the
interfaces. These endpoints are enumerated by convolutions of appropriate taut elements.

Boundaries at infinite distance are also rather standard. Much as for the time-
independent geometry we can consider directions along which a web grows to large size.
These boundaries are accounted for by a standard tensor operation, inserting taut com-
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posite webs at the boundary vertices of a taut interface web. In order for the result to
have only one modulus in the time-dependent geometry, exactly one of the composite webs
must be localized in the compact region where n varies. The others will be sliding along
the regions of constant n in the past or future. Thus these endpoints are enumerated by
the usual Ty(t—T) operation with t—" being the taut element for interface webs between
V~ and VT, acting on a collection of taut webs in the far past or future, together with a
single rigid/taut web stuck somewhere in the region y, <y < y .

The only new terms are very simple: a single taut web for the Gg” geometry inserted
far in the past, or a taut web for the Ggf geometry inserted far in the future. We are now
ready to write the convolution identity for the taut element t[n(y)] in the time-dependent
geometry. Let t,; = t, + tg + tll) + t;{ denote the sum of the planar taut elements for
the four theories. Similarly, let ty denote the sum of the taut interface elements for the
three boundaries between pairs of theories: t5 = t79 + %! + ¢+ and let tf;”f be the taut
composite elements for the initial and final Gg” 7 geometries. If t/ is understood to be made
of webs with all edges and vertices in the region y > y; and likewise t¢ has all lines and
vertices in the region y < y,, then we can consider these as elements of the web group of
the time-dependent geometry. With this understanding we have the convolution identity

1 1

tn(y)] * o + t(y)] + to +t — &€ + Ta(t<+)[m; Ol

]=0. (6.67)
The t/ — £ could be absorbed into the Ty(t™) term if we include the empty web (no
vertices nor edges) into t[n(y)].
Now we combine equation (6.67) together with a representation of the composite webs

and apply the result to

- 1 0 1 1 1 +
B~ NG PRGN . oP

'1-B0° 1 © 1 pie©

. (6.68)

The first two terms of (6.67) give zero. The next two terms give B — B, using the definition
(6.58), and, using identities analogous to (6.42), the last term in (6.67) gives

o) [Tl T (6.:69)

with
Sy = pa(n()Dls—p=gi T T— g (6.70)

finally leading to the desired relation (6.65). Recall from (5.23) that (6.65) implies that
the morphism Id + d[n(y)] (or just §[n(y)] if we include the empty web into t[n(y)]) from
By, to By is Mi-closed.

Next, we need to show that Id + d[n(y)] has a closed inverse up to homotopy. In
principle, we could cheat a bit. The morphism §[n(y)] can have a non-trivial scalar part,
from composite webs with no external edges. As the vacua are naturally ordered, in the
sense that for any pair of vacua only one of the two can be to the future of the other, this
scalar contribution is upper triangular and thus the scalar part of Id + §[n(y)] is invertible.
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We could build the required inverse recursively, as described in Section 5.2. However, there
is a much better way to proceed.

In order to prepare some tools which will be useful later, we will instead prove directly
that the closed morphism Id + §[n(y)] associated to the n(y) deformation and the closed
morphism Id + §[n(—y)] associated to the time-reversed deformation are inverse of each
other up to homotopy.

The first observation is that if we have two continuous deformations 71 (y) and 72 (y),
with the same value 71, = 12,7 in the past of 71 and in the future of 72, we can build a
“shifted time composition” 7y o 12 where 7 is placed at some large time T after no. If T
is sufficiently large, it is easy to see that

Id + 6[m or mo] = Ma(Id + 6[m], Id + 6[n2]) (6.71)

where Mj is computed in the Interface category Bt(7 —,T ), and d[n; o 2], 6[m], and
d[ne] are computed in different time-dependent geometries.

In order to establish (6.71) we observe that the most general rigid web in the composite
geometry can be approximated by a large interface web with a boundary vertex resolved
into a rigid web in the region of 7y variation, a boundary vertex resolved into a rigid web
in the region of 1y variation and any number of boundary vertices resolved to rigid webs
in the regions of constant 7. Thus we have:

(6.72)

B 1
tin o ma] = t{m] + tna] + To(t ’+)[1717f; tml; 75 tel;
- L C

1—t¢ 1—@1’]

where ti’f is the taut composite element for the value 7,  and we recall that ti’p = tg’f . This
equation is to be thought of as valued in the web group of the time-dependent geometry
described by m; or 2. Now, again using identities similar to (6.42) we learn that (6.72)
implies (6.71). Thus, the desired result

3~ T (6.73)

will follow by proving that
Id + é[n(y) or n(—y)] ~ Id. (6.74)

We will prove (6.74) in the next Section.

6.3.3 Homotopies Of Homotopies

The required identity (6.74) will follow from a more general result: Suppose that 7;(y) and
n2(y) define two tame time-dependent geometries such that 11 (y) = n2(y) = 1y for y > ys
and n1(y) = n2(y) = np for y < y,. Suppose moreover that 7(y; s) is a homotopy between
these functions. Then we claim that

8[m(y)] ~ d[n2(y)] (6.75)

are homotopic morphisms in Bt(7~, 7). When writing 7(y; s) we take s € R and assume
that %n(y; s) has compact support in some interval (si, s2) with n(y;s) = n1(y) for s < s;
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and n(y; s) = n2(y) for s > so. We will also assume that the homotopy 7(y; s) is tame for
all fixed s and is furthermore generic.

We will establish (6.75) by studying how the taut element t[n(y; s)] jumps as we vary
s. Some of the ideas we introduce here will be very useful in Section §8 on wall-crossing as
well as in Sections §10.7 and §15 on Landau-Ginzburg models.

The basic idea is to allow deformations in the geometry Gs[s] := Gg(';s) determined by
n(y; ) in our notion of “deformation type”. We will call this enlarged notion “deformation
type up to homotopy” or just h-type, for brevity. Thus, we allow the usual translations and
dilation of internal edges at fixed s, but also we allow the parameter s to be adjusted. For
readers who demand more precision we will spell this out more formally. Less fastidious
readers can skip to the examples below equation (6.77) below.

Define a continuous family of webs w(s], labeled by s_ < s < s to be a family of webs
such that

1. For each fixed s € [s_, s4], w[s] is a web in the geometry G3]s].

2. As s varies the vertices of 1[s] in the plane vary continuously, no edge shrinks to zero
length, and no boundary vertices collide.

For a fixed s € R let Web[G3([s]|] denote the set of all webs in the geometry Gsls].
According to the definition in Section §2.1, a deformation type of a web in G3[s] is a subset
D(w) C Web[G3]s]], defined by an equivalence relation under translation and dilation of
internal edges. We now consider the union

WEB := Uy Web[G3|s]] (6.76)

and define a deformation type up to homotopy (or, just an h-type, for brevity) to be an
equivalence class of webs D" ¢ WEB with the following two equivalence relations:

1. If wo,, to, € Web[G3][s]] for the same value of s then, if they define the same deforma-
tion type within Web[G3([s]], they are equivalent.

2. If there exists a continuous family of webs w[s], s_ < s < sy interpolating be-
tween to_ and w., then the web ro_ € Web[G3[s_]] is equivalent to the web to, €
Web[G3[s+]].

As usual, we will let D" (1) denote the set of deformation types up to homotopy of
any given web to € Web[G3]s]] for some s.

Of course, there is a projection 7 : WEB — R given by the s-coordinate so an h-type
D" will be fibered over a connected subset of some interval [s_,s.] € R. See, Figure 59
below. The fiber of the projection m : D" — [s_,s,] above some s € [s_,s,] will be a
subset of R2Vi(®)+Va(w) given by the data of the vertices of the web. We can therefore
regard D" () c R2Vi(0)+Vo(w)+1  This motivates us to define the expected h-dimension (or
just h-dimension, for brevity) by

d"(r0) := 2V;() + Vp(r) 4+ 1 — E(t). (6.77)
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The set D" () is orientable. Oriented h-types are denoted by w”. If o € Web|G3[s]] for
some s then we let t” denote the induced h-type with orientation o(to") = o(t0) A ds. It
can happen that the projection of D" under 7 is a single point s, € R. In this case we take
the orientation to be o(tv") = ds. Oriented h-types again generate a free abelian group
wh.

We now consider the convolution identity in W". As usual we examine the moduli
space of sliding h-types, i.e. those with d”(wv) = 1. What are the possible boundary
regions? Provided that 7n(y; s) is tame and generic these can be listed as follows:

Figure 53: At fixed s the web shown here has expected and true dimension zero: There are four
boundary vertices and four internal edges. If the edge constraints can be satisfied then the equations
are all independent. At fixed values of s the web cannot be deformed at all. If it exists it will only
exist for a finite set of possible y-coordinates of the left vertex. However, if it exists, for tame and
generic homotopies 7(y, s) if we deform s we can deform the web so that it will generically define
a deformation type up to homotopy of expected and true dimension d" = 1. This is a typical
contribution to both t"[n; (y)] and t"[n2(y)].

1. First, for s < s1 or s > so any of the summands in t"[n(y; s)] are sliding. Recall that
we assume 7)(y; s) has nontrivial y-dependence, so the taut elements are the same as
the rigid elements. That is, they have d = 0. For fixed s the moduli space of such
deformation types is either empty or a finite set. (It could be identified, for example,
with the finite set of y values of the vertex on the left boundary.) On the other hand,
the image under 7 of such an h-type is a semi-infinite interval containing (—oo, 1] or
[s2,+00). The boundaries at infinity of these webs contributes t*[n;(y)] — t*[n2(y)]
to the convolution identity, where "[n; (y)], *[72(y)] denote sums of oriented h-types
of webs. For a typical example, see Figure 53. We are interested in the difference
"1 (y)] — t"[n2(y)]. It can be nonzero because some webs can appear and disappear
by shrinking to zero and then violating edge constraints, or by blowing up to infinity.

2. It can happen that, at some special values of s, exceptional webs exist. See, for
example Figures 54 and 55. Now at those special values of s, d(tv) = —1 and d" () =
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Figure 54: This web will only exist at special values of s. It has dimension 2V; + Vg — F =
2+ 4 —7=—1 at fixed s and h-dimension d" = 0.

Figure 55: This web will only exist at special values of s. It has dimension Vg — E=5—-6 = —1
at fixed s and h-dimension d" = 0.

0. Such webs will exist only at isolated values s,. Such exceptional configurations can
be convolved with taut elements t, or ty to produce h-types of h-dimension one. The
case of a convolution with ty is illustrated in Figure 56. This h-type projects under
7 to a single point in the s-line. If we denote by e” the h-types of all the exceptional
webs of h-dimension 0 then this represents a contribution of ¢” x5 to the convolution
identity.

3. By contrast in Figure 57 we show an h-type of h-dimension 1 which will project to
an interval in the s-line. The boundary of this h-type contributes to one of the terms
e/ « ty in the convolution identity.

4. Finally, there are boundary regions at infinity: a very large exceptional sliding web,
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Figure 56: Here we show a typical example of a contribution ¢” * t5 to the convolution identity.
The sliding h-type on the left projects to a single value s, € R.

Figure 57: The web shown here has expected dimension d = 0 at fixed s and h-dimension d" = 1.
If it exists it will project to an interval of the s-line. At the boundary of the interval the inner
triangle shrinks and the figure degenerates to an exceptional web which only exists at a fixed value
s.. The nearby sliding h-types represent contributions to ¢/ * tp in the convolution identity.

h 1].

which can be described as usual by the tensor operation Ta(t**)[ﬁ; e

5. There can also be contributions to the moduli space of sliding h-types which are
circles with no boundary. This is illustrated in Figure 58. Altogether, the moduli
space of sliding hA-types can be schematically pictured as shown in Figure 59.

Putting these various boundaries together we can write the resulting convolution iden-
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Figure 58: The web shown here has expected dimension d = 0 at fixed s and h-dimension d" = 1.
As s varies the two “causal diamonds” can merge and exchange places, leading to a component of
the moduli space of sliding webs which is a circle.

Figure 59: A schematic picture of the set of sliding h-types. The horizontal axis at the bottom is
the s-line but no meaning is assigned to the vertical direction.
tity as 32

Lo 1
1—¢f 11—t

()] = ()] + " t + ¢ 5ty + Ty(t7)] ]=0 (6.78)

where, again, ¢” includes the sum of oriented h-types of all possible exceptional webs
encountered along the deformation.

If we apply a web representation to equation (6.78), and again use identities of the

32We will not try to give a formal definition of a convolution W" x W — W" and so forth for all possible
webs.
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form (6.42) to evaluate pg(T'(t 7)) then

STm)] = 3T + M (o) = o)) =0 (679

This finally concludes our proof of equation (6.75).

W)

Figure 60: If the homotopy 7(y; $) is not tame then configurations can occur which do not fit into
our convolution identity. On the left we have sliding webs. On the right we have an exceptional
web with d" = 0. It could be decorated to make a sliding h-type.

Remarks

1. We stress that the assumption that we have a tame homotopy is crucial to our
argument above. Otherwise configurations such as those shown in Figure 60 can
occur which do not fit into our convolution identity.

2. All these results are easily generalizable to the composition of any number of inter-
faces.

3. Notice that we could have attempted the approach based on deformation type up
to homotopy in order to compare the triple compositions for different values of 7,
by considering instead a variation 7(s) which is not encoded as a time-dependent
configuration, but as a family of G3 geometries. The problem with such an approach
is that the corresponding convolution identity would look like

1 .1

/ 1 t tf—fp T t—7+ .ol
¢ xty, e g+t — 8+ Ty( )[1—tc(s)’e’1—tc(s)

=0 (6.80)

where the tensor operation involving some exceptional web in ¢’ picks the taut element
tc(s) for the value of s at which the exceptional web exists. This convolution identity
is clearly less useful than 6.67.
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4. We have found that Theories and Interfaces produce a very interesting mathematical
structure which should, perhaps, be called an A,-2-category. The objects (“zero-
morphisms”) are Theories. The space of (one-)morphisms between two Theories 7~
and T, is just the category of Interfaces: Hom(7 ~,7 ") = B¢(7 ,7"). The mor-
phisms between two objects of this category ﬁf’+ and Jy " are the two-morphisms.
Rather than associativity we have As.-type axioms for the composition of morphisms.

6.4 Invertible Interfaces And Equivalences Of Theories

The existence of the identity J0 interface allows us to make an obvious definition: an
interface J € Br(T ,T ") has a right inverse J € Be(T7T+,7 ) if I® T = Jo. This is an
extremely strong condition. For example it implies that the Chan-Paton spaces satisfy

Y & RET =6,4T (6.81)
eVt
To give a nontrivial example of inverses, suppose that we have isomorphisms go(m) :
TW 5 7@ and o33 : 73 — 76) Then define 1% := (12,23 We claim that
32" R e = g (6.82)
The key identity needed to establish this claim is that
(2) —1,0(12) —1,p(23) _—1,p13)
gt ja2) (Kﬁ : ®Kjw(1€>,w“2>> =K (6.83)

With some patience this can be proven using (6.22) and (4.26).

We will need a more flexible notion of invertibility of Interfaces. It turns out to be much
more useful to define a right-inverse up to homotopy if J X 7 is homotopy equivalent to the
identity interface J0. Similar definitions hold for left inverses. Because of associativity up
to homotopy, a left inverse and a right inverse up to homotopy are equal up to homotopy.

Definition: We will refer to an interface which has right and left inverse up to homo-
topy as an invertible interface.

A good example of invertible Interfaces which are only invertible up to homotopy are
the rotation Interfaces R[Jy, J,] discussed at length in Section 7.

The existence of an invertible Interface between two Theories 7~ and 7+ implies a
strong relation between the Theories. It defines a functor between the categories of Branes
or Interfaces which is invertible up to natural transformations. Concretely, it allows one
to identify the spaces of exact ground states between branes of one theory and the other:
sandwiching the interface and its inverse between two branes and using associativity we
get a quasi-isomorphism between the complex of ground states for the two branes and the
complex of ground states for their image in the other theory. In Section §8 we will pursue
this idea further to define a notion of equivalence of Theories.

7. Categorical Transport: Simple Examples

In the previous Section §6 we have constructed an A,.-2-category of Interfaces. The argu-
ments used in the construction employed (geometric) homotopies of the interface geometries
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and their relation to (algebraic) homotopy equivalences of Interfaces. A crucial result was
that the composition of consecutive Interfaces along the z-axis is associative up to ho-
motopy equivalence. We can therefore consider compositions of several Interfaces, closely
spaced along the z-axis. The resulting composition is well-defined up to homotopy equiv-
alence. This suggests consideration of a third kind of homotopy, namely homotopies of
the data used to define Theories and Interfaces. Thus, without trying to make the notion
too precise at the moment, we can imagine continuous families of vacuum weights z;, con-
tractions Kj;;, interior amplitudes 8 and so forth. Moreover, we could generalize the set
of vacua V to be a discrete (possibly branched) cover over some space of parameters. In
the same spirit we could generalize web representations R;; to bundles of Z-modules, etc.
Let us denote the relevant parameter spaces for these data generically as C. The results of
Section §6 thus suggest that given a continuous path p from some interval [ss, s,] C R to
C there might be a way to “map” the Theory T* at sy to the Theory 7" at s, so that the
Branes for the positive half-plane with data p(sg) are “coherently mapped” to Branes for
the positive half-plane with data p(s,).

To be slightly more precise, for a continuous map @ as above, suppose we have a
definite law for constructing 7" given 7. Then we are aiming to define an A.o-functor

F(p) : Be(THH) = Be(T", H) (7.1)

where H is, say, the positive half-plane. The functor F(p) is meant to be a categorical
version of parallel transport. Thus, it should be an A..-equivalence of categories, and
moreover, if p; and po are two paths which can be composed then there should be an
invertible natural transformation between F(gp; o g2) and the composition of the Aso-
functors F(p1) and F(p2). Of course, if p is the constant path then F(gp) should be
the identity functor. We will refer to such a family of functors as a categorical parallel
transport law, or just categorical transport for brevity. We aim to show, furthermore, that
the “connection” defining this transport law is in fact a flat connection. That is, if @; is
homotopic to po in an appropriate space of parameters C then there is an invertible natural
transformation between F(p;) and F(p2).

Given the above motivation our general strategy for constructing the functors F(p) will
be to regard the variation p(s) as a spatially dependent variation of parameters allowing
us to construct families of Interfaces J[p| which satisfy homotopy properties analogous to
F(p). In particular, we require two key properties:

1. Parallel transport: 1f o1 and oo are composable paths then there must be a homotopy
equivalence of Interfaces:

1] B T[] ~ Tlp1 0 pol. (7.2)

2. Flatness: If o1 ~ g9 are homotopy equivalent, in a suitable sense, then correspond-
ingly there must be a homotopy equivalence of Interfaces:

I[p1] ~ Jp2]. (7.3)
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Given a family of Interfaces satisfying (7.2) and (7.3) we can then invoke the con-
struction of equations (6.49), (6.50), and (6.51) to produce the corresponding flat parallel
transport A..-functors.

In this Section and in Section §8 we will make some of these general ideas much more
precise for certain variations of the data used to define Theories and Interfaces. For further
discussion see the introduction to Section §8.

7.1 Curved Webs And Vacuum Homotopy

One of the most important physical examples of the variations of parameters described
above are variations of vacuum weights. Thus we consider paths of weights p : R — CY — A,
where A is the large diagonal. If ¢ is continuous and nonconstant only within some finite
interval we will call it a vacuum homotopy. Such a collection of maps z; : R — C for
i € V can be used to define a set of spatially-dependent vacuum weights z;(x). If the
maps are continuously differentiable and suitably generic then in the context of Landau-
Ginzburg theories such collections of maps can be used to define interesting supersymmetric
interfaces. This is described in more detail in Section §17 below.

The notion of webs for spatially-dependent weights z;(x) still makes sense: They are
again graphs in R? but now the edges are allowed to be smooth non-self-intersecting curves.
The connected components of the complement of the graph are labeled by vacua and edges
separate regions labeled by pairs of distinct vacua. If z;(x) are all continuously differentiable
in the neighborhood of a point zy then we can orient the ij edges in a strip centered on
zo and the tangent vector to an edge at a point (z,y) in this strip, with ¢ on the left and
j on the right, is parallel to z;;(x) := zj(x) — z;(x). Such webs are called curved webs.
33 In fact, when discussing homotopies of paths it is useful to generalize still further and
consider spacetime dependent weights z;(x,y) with the natural generalized definition of
curved webs. We will see many examples of such curved webs below. See, for examples,
the figures in Section §7.4.1.

In the remainder of Section 7 we will discuss a very simple class of curved webs such
that

zi(z) = e V@) (7.4)

where ¥ : R — R is a smooth function with compact support for 9. We will call these
spinning weights because they are all related by a uniform (albeit z-dependent) rotation.
If we wish to distinguish their webs from general curved webs we call them spinning webs.
We will already find quite a rich set of phenomena in this case.

One advantage of the spinning webs is that we can consider the interior amplitude
Br to be z-independent. In a general composite web with several interfaces the interior
amplitude can vary discontinuously across the interfaces. However, the particular family
of “spinning” vacuum weights (7.4) have the property that the set of cyclic fans I does not
change with x. Therefore there is a natural choice of interior amplitude where we take 51

33We will assume that zi(x) are sufficiently generic that edges have transverse intersections, except at
special points called “binding points,” defined below.
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to be z-independent. In the remainder of Section §7 we make that choice. In Section §8
we consider more general situations.

There is another very nice way to motivate the study of spinning vacuum weights and
describe that in the next two subsections.

7.2 Rotation Interfaces

Given a choice of a Theory T and a half-plane H, we have defined a category of Branes
Be[T,H]. It is natural to wonder how this category depends on the choice of H for fixed 7.
Certainly it is literally unchanged if we apply a translation to H. On the other hand, there
is an interesting change if we apply a rotation to H. It is useful to denote the phase of the
normal to the boundary pointing into H as ¥ and the corresponding half-plane (defined up
to translation) as Hy. The corresponding category of Branes will be denoted Bty. The
notion of half-plane webs is ill-defined for those special values of ¥} such that the boundary
of the half-plane aligns with z;; for some 7,j € V. We define an S;;-ray to be the ray in
the complex plane 3* through the angle €% such that the canonically oriented boundary
has direction —z;;. In formulae, the S;;-ray is the ray through e%i such that

Re (e_wij zij) =0 & Im (e_wij zij) > 0. (7.5)

Thus we have a well-defined notion of Bty when e'?

is in the complement of the union,
over all pairs (7, 7) of distinct vacua, of the S;;-rays.

We would like to define an A..-equivalence of the categories of Branes Bty for different
values of ¢. The Branes associated to the Hy half-plane for some Theory 7 with vacuum
data (V, z) can be re-interpreted as Branes associated to the positive half-plane for a Theory

TV, To define TV we choose the same set of vacua V, but now the weights are rotated:
¢ —id
zj ==e Wz (7.6)

The interior amplitude S and the web representation R can be taken to be the same. In
other words, Bry[T]| = Bry[T?] and we can focus on relations between Branes for rotated
Theories in the positive half plane. The A..-equivalences we seek will be given by the
functors associated (via equations (6.49) et. seq.) to a family of invertible Interfaces
R[Yy,9,] between any pair of rotated Theories 77 and 7. Here we must regard 1,
and ¥, as belonging to the real numbers. Although the Theories 77 only depend on
¥ mod27 there are interesting monodromy phenomena associated with interpolations that
have |, — ¥,| > 27. (See Section §7.4.4 below.)

The definition of PR[Jy, ¥,| appears in equation (7.50) at the end of Section §7.4.4 and
uses the key definition (7.46) below. We now give some motivation for the somewhat
elaborate definitions which follow.

As discussed above, we want our Interfaces to behave as a categorical version of par-
allel transport: the composition JR[, J3] K R[Pe, V3] should be homotopy equivalent to

34The terminology is motivated by the relation to the theory of spectral networks [31, 33, 34]. The
relation to spectral networks is discussed in more detail in Section §18.2 below.
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R[V1, 93], and R[Y, ] should be the identity interface J0. Once the problem is approached
from the point of view of the composition of interfaces, the variation of ¢ becomes naturally
tied to the space direction. In order to define an interface [y, ;] we could then hope
that there is a simple definition when 9, and ¢, are infinitesimally close and then imagine
subdividing the interval [, ;] into a very large number of small sub-intervals [J, 911],
and use the definition of the infinitesimal interfaces. This line of reasoning naturally leads
to the idea that given any continuous interpolation ¥(z) with ¥(z) = ¥y for x < —L and
Y(z) = 9, for x > L there is a corresponding Interface J[J(x)]. In Section §7.4.2 we will
indeed define such an interface. (See equation (7.46) below.) We will need to define Chan-
Paton factors and amplitudes. The main tool is to use representations of spinning webs.
We will also use curved webs with space-time dependent weights to show that homotopy
equivalent interpolations will give us homotopy equivalent interfaces.

Before giving the complete set of rules to deal with such curved webs, we gain some
intuition by looking at a special case which can be reduced to standard webs with straight
edges. Choosing real lifts so that ¥y > 9, and |9y — ;| < 7 we can consider the smooth
interpolation J(x) = —z (where the sign is chosen for future convenience) defined on the
interval —y < x < —4¢),.. The advantage of this is that if we apply the exponential map
u + iv := e Y taking the strip —y < x < —9J, in the x + iy plane to a wedge, denoted
H[9¢,¥,], in the u+iv plane, then curves z(s)+iy(s) with tangent & (z(s)+iy(s)) = () z;;
in the « + iy plane are mapped to curves u(s) -+ iv(s) satisfying < (u(s) + iv(s)) = —iz;.
These will be straight rays (or line segments) parallel to —iz;; inside the wedge H[U, 9]
Therefore, a curved web on the strip will map to a web with straight edges in the wedge
H[e, Iy ). B

Now, given a left Brane B8 for 7Y¢ and a right Brane B for 7V, we can define a
complex of approximate ground states by sandwiching an QR[Jy, J,] Interface between the
two Branes, i.e. by looking at the composition (%m[ﬂg,ﬂr]‘%)n computed with a G3 ge-
ometry as in Section §6.3. Recall that an Interface between a trivial Theory and itself is
just a chain complex. We could equally well consider the chain complex of approximate
groundstates (recall the definition from Section §4.3) for the strip with B X 9R[Jy, 9] on
the left and 9B on the right or that with B on the left and %[, 9,] ¥ B on the right. All
of these chain complexes are homotopy equivalent. Our main heuristic is that these chain
complexes should also be computed by a natural generalization of the complex of approx-
imate groundstates associated to webs in the wedge geometry. In the next Section §7.3
we will describe that generalization, and then the requirement that there be a homotopy
equivalence to the chain complexes (BRI, ﬂr]%)n will help us figure out how to compute
the Chan-Paton factors for R[Jy, ¥, ].

7.3 Wedge Webs

A wedge geometry consists of the conical region H[Jy, ¥,] of R? included between the two
rays ¥y and ¥, 9y > 9., clockwise from ;. A wedge web is a web with vertices which may
lie in the interior, on the two boundary rays or at the origin of the wedge. The interior
vertices of a wedge web are associated to standard interior fans and the left and right
boundary vertices to half-plane fans for Hy, and H,,y, respectively. The possible vertex
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at the origin is associated to a wedge fan, a sequence of vacua compatible with edges lying
in the wedge. The same type of wedge fan labels the external edges of the web, i.e. the
fan at infinity. It is convenient to include the trivial wedge fan, with a single vacuum and
no edges.

We can define as usual deformation types of wedge webs v, moduli spaces of defor-
mations, orientations, etc. We can define the convolution and tensor operations taking a
wedge web as a container and inserting appropriate plane or half-plane webs or another
wedge web at the vertex at the origin, as long as the fans match.

The wedge geometry has a scaling symmetry and thus a taut wedge web has a single
modulus associated to the scale transformations, oriented towards larger webs. The wedge
taut element t,, satisfies the usual type of convolution identity

tw bty + bty kt Ftyxtge+tyxtg, =0 (7.7)

In the first term we are convolving summands from t,, into summands from t,, at the origin
of the wedge.

Given a choice of Theory T and of Chan Paton factors &;, g'l at the two boundary
rays, we can define in a standard way a representation of wedge webs. We can associate to
a wedge fan {i1,...,i,} a vector space &, ® R;, i, ® -+ R, 4, ® g;'; and collect all these

in

vector spaces into a single

s e, 0y ox
Ry [E,€] = @syyemp 0,16 © R @ E; (7.8)
with
DY, 9
Z-1+ @uenpow B e = Q) (214 Rijeyy) (7.9)
2§ EH[I,0r]

As usual, given a wedge web v we have an associated multilinear map:
pa(v) : TROYE) @ RUVr[€,€) @ TROT[E] — RVVr[E€ €] (7.10)

The convolution identity tells us that pg(t,) defines an A, bimodule, satisfying the
same type of A, axioms as the strip-web operation pg(ts) did, but with a larger vector
space RYeOr £, E‘] instead of the £ g we found for the strip. In particular, for any pair of
Branes B and B in the Bry, and Bry, 1, categories we have a chain complex Ripr €, €]

with differential
1 1

= pg(ty)|——,9, ——=]. 7.11

g — pal( )[1_891_81 (7.11)

This complex should be thought of as describing local operators placed at the tip of the
wedge.

If we want the chain complex RYeOr £, &] ] to be homotopy equivalent to (Bi)‘i[ﬂg, 19T]Z§> ,
n
as suggested by the exponential map, we are led to the idea that the Chan Paton factors

of the interface R[Jy, J,] should coincide with the ﬁfj‘“ﬁ". The exponential map relates the
straight edges of a wedge web which go to the origin or to infinity in the wedge geometry
to external edges of the curvilinear web which go to infinity in the Euclidean time direction
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y, either sitting in the far past or far future at values of « such that €7ii(*) lies on an Sij
ray for the Theory 7.

This suggests that the Chan Paton factors for the R[J,, ¥,] interface should be built
from individual factors of R;; associated to such “vertical” external edges. With this hint
we are now ready to propose the full set of rules for spinning webs.

7.4 Construction Of Interfaces For Spinning Vacuum Weights

Let us now return to the general case of spinning vacuum weights of the form (7.4), deter-
mined by a generic, smooth function 9 : R — R so that 19 has compact support.

In what follows we choose some L so that the support of ¢ is in (—L,L). We set
Y x) = 9 for © < —L and 9(x) = ¢, for x > L. Moreover, we assume that none of the
i

complex numbers e*“%zij, e "rz;; is pure imaginary for ¢ # j. Our goal is to define an

Interface

I[9(x)] € Be(T7, Tr) (7.12)

with the flat parallel transport properties spelled out in equations (7.2) and (7.3). To
implement (7.3) we define 9! () ~ 9¥2(x) to be homotopic if the functions e 7*(®) ¢ = 1,2,
define homotopic maps from the real line into the circle.

Figure 61: Near a future stable binding point xg of type ij the edges separating vacuum i from
J asymptote to the dashed green line x = ¢ in the future. Figures (a) and (b) show two possible
behaviors of such lines. The phase e*w(x)z,;j rotates through the positive imaginary axis in the
counterclockwise direction.

7.4.1 Past And Future Stable Binding Points

Let us first describe some special properties of the spinning webs. They share some char-
acteristics of plane webs, of interface webs for data (V7,27) = (V,2%) and (V*,21) =
(V, zﬂT), and also of composite and strip webs. In general, curved webs will be denoted by
3. All of the vertices v in 3 will be equipped with a cyclic fan of vacua I,,(3) drawn from V,
just as for plane webs. Nevertheless, there are two very different kinds of external edges.
To see this let us consider what the external edges of the web might look like. The external
edges with support in the regions z > L or x < —L extend to x — 400 or z — —oo and
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Figure 62: Near a past stable binding point zy of type ij the edges separating vacuum 4 from
j asymptote to the dashed green line x = z( in the past. Figures (a) and (b) show two possible
behaviors of such lines. The phase e*w(x)zij rotates through the positive imaginary axis in the
clockwise direction.

define positive and negative half-plane fans J* and J~, respectively. On the other hand,
a novel aspect of curved webs is that there can also be vertical external edges supported
in the region —L < x < L. We now describe this important phenomenon in some detail.
At any fixed x we can apply the line principle to a vertical line through =, and hence
the edges will be graphs of functions over certain intervals. We define an “edge of type ij”
to be an edge that separates vacua ¢ and j. (There is no distinction between an edge of
type ij and type ji.) Locally, there is a parametrization of the edge with tangent vector
oriented so that vacuum i is on the left and j is on the right. With this parametrization
%(mij(s) +1yij(s)) = e (@) z;; and hence locally the edge is the graph of a function y;;(z)

satisfying
Wi _ tan(ay — 0 7.13
Wi tan(oy — 0(2) (7.13)
where the phase «;; is defined by z;; := |2;j|€!®. Note that aj; = a;; +m. This differential

equation is singular at those values of = for which a;; —¥(x) € § +7Z. Suppose that when
x is near xog we have

(x — x)

a;j —(x) = T4 + O((x — 20)?) 4 270 (7.14)

2

for some n € %Z and some nonzero real number k. 3° Then near zy we must have

yij(x) = —klog |z — xg| + const + - - - (7.15)

The local behavior of edges separating vacuum ¢ from j in the neighborhood of x = zg
(but not at x = x¢) is governed by four cases according to whether n in (7.14) is integer

or half-integer and the sign of . It is useful to make the following definition: 36

35We are using here the assumption that ©(z) is suitably generic.

360Once again the terminology here is motivated by the theory of spectral networks [31, 33, 34]. As
discussed in Section §17 and §18.2 below, the “binding points” represent places where supersymmetric
domain walls in 1 + 1 dimensional theories (or, more generally, on surface defects) can form boundstates
with two-dimensional BPS particles.
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Definition: Given vacuum weights of the form (7.4) we define a point g € R to be a
binding point of type ij if O satisfies (7.14) with some integer n. It is called a future stable
binding point if k > 0 and a past stable binding point if kK < 0. We denote the set of future
stable binding points of type ij by A;; and the set of past stable binding points of type ij
by Yi;. If 2o is a (future- or past- stable) binding point of type ij we call the line z =
in the (z,y)-plane a (future- or past- stable) binding wall of type ij.

Remarks:

1. Note well that the set Y;; U A;; of all binding points of type 7j can be characterized
as precisely those positions zo on the real line where €?(*0) defines an Sij-ray. (Recall
the definition of S;j-rays in (7.5).)

2. The differential equation for y;; is also singular when n is a half-integer n € % +7Z in
(7.14). In this case x¢ is a binding point of type ji.

3. The sign of the derivative 9¥'(z¢) determines whether the point is past or future
stable. As x increases past xg, the complex number z;;(x) goes through the positive
imaginary axis in the counter-clockwise direction for a future stable binding point,

and in the clockwise direction for a past stable binding point.

(i) Y

Figure 63: When a vertex for a line separating vacua (i, j) has an z-coordinate which is a binding
point z of type j then it can be “frozen”. In Figure (a) the vertex cannot move off the binding
wall x = x¢ if ¢ is a future-stable binding point, since the figure cannot smoothly deform to Figure
61. In Figure (b) the vertex cannot move off the binding wall = x¢ if x¢ is a past-stable binding
point, since the figure cannot smoothly deform to Figure 62. On the other hand, in Figure (a) the
vertex is not frozen if z( is past stable and in Figure (b) the vertex is not frozen if the xq is future
stable.

Putting these remarks together we see that edges of type ij have a behavior in the
neighborhood of a binding point xg of type ij of the form shown in Figure 61 for future
stable binding points and shown in Figure 62 for past stable binding points.

It is also possible for an 7j-edge to sit within the vertical line x = x¢. This is illustrated
in Figures 63 and 64. As explained in the caption of Figure 63 a vertex can be frozen in

- 138 —



Figure 64: A vertical internal edge at an ij binding point. The internal edge can be deformed
away from the binding wall x = z.

the sense that it cannot be translated in the x direction. Such vertices are connected to
frozen external edges. We therefore split the vertices of 3 into free and frozen subsets
V(3) = Viee(3) U Virozen(3)- In an analogous way the external edges can be divided up as
£51(5) = E81(3) U €5, ).

Now we can define the fan at infinity I(3) for a curved web 3. As we have said,
edges extending outside —L < x < L define negative- and positive- half-plane fans J—, J T,
respectively. Suppose these two fans are J= = {j1,...,j4m} and J* = {j],..., 7.} as in
Figure 39. Then the vacua in the regions encountered moving from x = —L to x = +L

will stabilize, for sufficiently large positive y, to a set

j+:{jm7fla-~-7f57ji} (716)
while the vacua encountered moving from z = +L to x = — L will stabilize, for sufficiently
large negative y, to a set

j_ :{j;wil?"'aitajl}- (717)

Therefore, reading left to right, the vacua encountered in a clockwise traversal at infinity
are

Io(3) ={T",J", T, T} (7.18)

We are now ready to define the oriented deformation type of a curved web. Given a
curved web 3 we can deform it by varying the positions of the vertices subject to the edge
constraints and subject to the condition that the web does not change topology, i.e., that
no edge collapses to zero length. Free vertices contribute two degrees of freedom but frozen
vertices only contribute one (it can be taken as the y coordinate of the vertex). Thus the
expected dimension of the deformation space of a generic curved web j is

d(3) = 2Viree(3) + Viroren (3) — E™ (3). (7.19)

This can also be written as:

d(3) =2V (5) = E™(3) — Efen(3). (7.20)

frozen
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since each frozen vertex is uniquely associated with a frozen edge. As usual, we are as-
suming ¥(z) is sufficiently generic when we make this definition. There will sometimes be
exceptional webs ¢ where some of the edge constraints are ineffective and the dimension of
the deformation space is larger than d(e). In addition to this, the above discussion assumed
that the set of vertices V(3) is nonempty. Actually, we can have curved webs with no ver-
tices at all, and in fact these will play an important role below. (See, for examples, Figure
65 and Figures 69- 73 below.) In that case the expected dimension is the true dimension
of the deformation space and is simply the number of components of the web.

Unlike the deformation spaces we have considered until now the moduli spaces D(3)
do not have piecewise linear boundaries. Nevertheless, they are cells, and for generic j
they will have a dimension d(3). We can give them an orientation to define an oriented
deformation type 3 and consider the free abelian group Weury generated by the oriented
deformation types of curved webs. When we form the tensor algebra TWy, we give 3 the
degree d(3).

Curved webs have a translation symmetry in the y-direction but no scaling symmetry.
In this sense they are very much like strip webs and composite webs, and indeed can be
thought of as a continuous version of composite webs where many closely spaced interfaces
have been joined together. We therefore adopt the definitions of Section §6.2 and define 3
to be rigid or taut if d(3) = 1 and to be sliding if d(3) = 2. The canonical orientation for
the taut webs is dy where y is a measure of the y position of the web. We denote the taut
element in Weyv by t

3
.

Figure 65: An example of a taut curved web consisting of a single free edge of type ij. This

contributes two external free edges. In this and similar figures the light blue shaded region indicates
the support of ¥'(x).
Examples

1. If there is no binding point of type ij then an edge of type ij can stretch from r = —oo
to x = +o0o0 with no vertices. This is a taut curved web 3. See Figure 65.

2. If there is a future stable binding point of type ¢j then an edge of type ij can come in
from the negative half-plane or from the positive half plane, as shown in Figure 61.
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Figure 66: An example of a curved sliding web. If z = x is a future stable binding wall of type
17 then the vertex can move across the line.

Figure 67: An example of a curved taut web in the case that x = z( is a past stable binding wall

of type ij. The edge of type ij is a frozen external edge; the only degree of freedom corresponds to
moving the vertex vertically along the ij binding wall, and hence the web is taut. Similarly, if an
ij edge extends vertically to —oo at a future stable binding point then the external edge is frozen
and the web is a taut web.

A curved with with a single component, as shown in either Figure 61(a) or Figure
61(b) is a taut curved web.

3. Similarly if there is a past stable binding point of type ij then an edge of type ij can
come in from the negative or positive half-plane, as shown in Figure 62. A curved
with with a single component, as shown in either Figure 62(a) or Figure 62(b) is a
taut curved web.

4. Any vertex of the Theories 77¢ or TV defines a sliding web. See Figure 66.
5. However, if a vertex of the Theories 77 or TV has an edge of type 4j then it might

also define a taut curved web located on binding walls of type ¢j. The case of a past
stable binding wall is shown in Figure 67.
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6. Finally, it is possible to have a completely rigid curved web with no moduli at all.
These correspond to entire lines of type ij, parallel to the y-axis and located at ij
binding points. They will play some role in Section 9 below.

Let us now discuss what kinds of convolution are possible with curved webs. Every
web tv for the vacuum data (V, 2%¢) can be continued to a web for any (V, 27®) simply
by a rotation, until it becomes a web for (V,z%"). If 3 is a curved web it makes sense
to consider the convolution 3 *, v, declaring the convolution to be nonzero when the fan
coincide and rotating v by the appropriate angle before inserting it at v.

Now suppose that 9 is an interface web between 77 and 7Y and 31,...,3, are a
collection of curved webs. Then we can define a curved web T9(0)[31,- - , 3n] € Weurv- We
think of the interface as placed somewhere in the region —L < x < L and we replaced
each of the wall vertices in 0 with the sequence of curved webs 31,--- .3y, defining the
convolution to be zero when the curved webs do not fit in properly with the set of wall
vertices of 0. In particular the operation is zero unless the left and right half-fans of the 3,
are compatible with the fan for the corresponding vertex of 9. Moreover it is zero unless the
(transpose of the) past fan J~(3,) coincides with the future fan J*(34+1), including the
specific location for each vertical external edge. The vertical external edges of consecutive
arguments can be connected into a single internal edge. It is important to observe that one
always connects frozen vertical edges of some curved web with un-frozen vertical edges of
another curved web.

One can show that the moduli space of deformations of Ty(d)[31,- - ,3n] is locally the
product of the deformation space of 9 times the product of reduced moduli spaces of the
3q¢- In particular,

d(To(0)[s1,-+ ,3n]) = d(@) + Y (d(30) — 1) (7.21)
a=1

just like equation (6.27). Thus, the operation is defined on the oriented deformation types
of these webs.

Now we can write the convolution identity for the taut element t in Weyry. Let t,; =
t7¢ + ' be the formal sum of taut elements for the Theories 77 and 7V" respectively.
Similarly, let 7 be the taut interface element between 77¢ and 7Y, Then, examining the
ends of the moduli spaces of sliding webs, as usual, produces

Ex by + Ta(tz)[ﬁ] ~0 (7.22)

This is to be compared with equation (6.31). The difference is that all vertices of t are now
interior.

7.4.2 Defining Chan-Paton Spaces And Amplitudes

Let us now consider a representation of webs R. The usual definition of representations of
webs only makes use of the set of vacua V and not the weights, so it essentially carries over
immediately to the case of curved webs, up to an important subtlety concerning frozen
external edges. Frozen external edges impose an extra edge constraint on the deformation
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space of a curved web 3 and thus a good definition of p(3) should include some extra degree
—1 map K¢, to be defined momentarily, for each frozen external edge é:

P31, -5l o(w)
1yeeyTn| = .
eceps, ) 9 ecs) 22| © Toeviw) drody,
| Peceps 9 Ke Decem Ke 0 @l (7.23)

We would like to define some interface Chan-Paton data &; j» so that p(3), for 3 a web
with I (3) of the form (7.18) can be understood as a map

p()  Bvevi Ri) = Ejgt @ B, 5 ® (E51,3,)" @ Ry, (7.24)

whose output is an interface vertex for some Interface in Be(7 7, TV).
The definitions of &£; ;7 and p(3) should be compatible with the convolution operation

Ta(a)bb T 7371]:

P(To@)31, -+ ,an))(S) = D € p(®)[S1:0(G1)[S2]- -, p(0)[Sns1]; Sns2]  (7.25)
Shn+2(S)

That means that the contraction of vertical external edges on the left hand side of this
equation should match the contraction of 8; J and &; ;» on the right hand side. We need an
independent summand in &; | 4 for any possible 71 (3) in order to encode the representation
data attached to vertical edges and, dually, a summand in (;, ;. )* for any possible J~(3)
in order to encode the representation data attached to past vertical edges.

We define the relevant Chan-Paton data using a construction very similar to the prod-
uct rule construction of ﬁij in equation (5.38) above:

For each binding point xg of type ij introduce a matrix with chain-complex entries. It
depends on whether z( is future-stable or past stable:

Sifj(a:o) =71+ Rije;j Future stable ij binding point (7.26)

Shi(xo) == Z -1+ Rjei; Past stable ij binding point. (7.27)

We will refer to Si;(zo) as a categorified S;j-factor, or just as an S;j-factor, for short. The
future and past stable S-factors are related by Sfj = (Sfi)t’”’*.

We define

©jpeveigey =@ @ Sij(xo) (7.28)
i#£j TOEY 5 Uyj

where the tensor product on the RHS of (7.28) is ordered from left to right by increasing
values of zg and S;;(zo) is the future- or past-stable factor as appropriate to the binding
point. (Note that the rule (7.28) reduces to the product for wedges (7.9) if ¥(x) = —x.)

Given this definition, we can associate each 77 (3) to a summand in &; j given as an
ordered tensor product with a factor of R;; for every vertical external unfrozen ¢j edge and
a factor of R7; for every vertical external frozen ij edge. These two choices differ by one
unit of degree, which matches the extra edge constraint for frozen edges and is crucial in
defining a degree one boundary amplitude from the taut curved element t below.
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Dually, we can associate each J~(3) to a summand in (&, j»)* given again as an
ordered tensor product with a factor of R;; for every vertical external unfrozen ij edge and
a factor of R}, for every vertical external frozen ij edge. To see this take the dual and
transpose of the RHS of (7.28). This takes the transpose of the matrix units e;; and takes
Rij — R;‘j. The factors are now ordered with decreasing values of xyg. Now use the relation
SP = (ST

We have encoded the full fan at infinity I (3) for any curved web 3 into a summand
of the interface factor R;(€) of equation (6.4).

Recall that K;; : R;j ® Rj; — Z is a perfect pairing and since K;; has degree —1 we
can define a degree —1 isomorphism of Z-graded modules:

by Kij(ri;)(-) := K;j(rij,-). In terms of the notation in equation (6.13) we have

Kij(va) =Y Kaa v (7.30)
CM/

We identify the map K, in 7.23 associated to a frozen ij external edge ¢ with f(ij.

In order to complete our definition of p(3), we only need to define carefully the vector
field 0z associated to the corresponding external edge constraint, in such a way that the
compatibility condition 7.25 holds true. We define 0; to be a translation of the frozen vertex
in the positive = direction. When we contract two vertical external edges at a future-stable
binding point, this coincides with the 0. vector field for the resulting internal edge. This
agrees with the absence of relative sign in Kij(rij) -1j; = K;;(ri,75). On the other hand,
when we contract two vertical external edges at a past-stable binding point, this has the
opposite orientation to the 0, vector field for the resulting internal edge. This agrees with
the relative Sign in T4+ Ki]’ (’r‘ij) = _Kij (Tij’ Tji)-

Now that we have defined the Chan-Paton spaces (7.28) for the Interface we turn to
the definition of the interface amplitude. This will be defined by using taut curved webs.
Recall from Section §7.1 that we are taking the interior amplitude 8 to be constant. In
particular we take the same interior amplitudes 87 for 7Y and for 79 . 37 With this
understood, for any curved web 3 we can define the operator pg(3) following the usual
insertion of e®. We will be particularly interested in the special element p%(;)) given by
inserting [ into every interior vertex of 3.

P%() = p(3)[e”] (7.31)

which is valued in (7.24), and has degree 2V (3) — E™(3) — ESXt _(3). It follows from (7.20)

frozen

that if 3 is a taut web then (7.31) indeed has degree 1, as befits an interface amplitude.

Example: An example, which will be useful to us later, is given in Figure 67. Here a
vertex of the theory 77¢ has been rotated so that the ij edge goes to the future at a past

3"Note that the interior amplitude is not defined as a solution of an L., Maurer-Cartan equation
p(t)(e”) = 0, where t is the curved taut element!
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stable binding point of type ij. Suppose the cyclic fan of the vertex is I. It can be written
as

I={j,....k,....iy=J % J" (7.32)
where J* = {j,...,k} is a positive half-plane fan for 77" and J~ = {k,...,i} is a negative
half-plane fan for 77¢ and the amalgamation J* % J~ is regarded as a cyclic fan. Now, the
interior amplitude (5 is a degree two element of R; and (after a cyclic transformation) it
will be convenient to regard this as

Br € Rij® (Rj+ @ Ry-). (7.33)

We wish to interpret pg(g,) as an interface amplitude valued in R;(€). The Chan-Paton
data for p%(g,) are defined by (7.28) and the relevant factors for this web are &; = R},
(coming from (7.27)) and &), = Z. Therefore the interface amplitude must be valued in

p3(G) €EEj R Ry ®E O Ry~ = Ry @ (Ry+ @ Ry-). (7.34)

We identify the interface amplitude as

p3(3) = (K ® 1)(B1) (7.35)

for this particular taut web 3. Note that it indeed has degree 1. We do not need any extra
sign on the right hand side, as iy, (dz A dy) = dy.

1 1

Figure 68: The taut curved web of Figure 65 leads to a nonzero interface amplitude for the rigid
interface web shown here.

Figure 69: The taut curved web of Figure 61 (a) leads to a nonzero interface amplitude for the
rigid interface web shown here.
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Figure 70: The taut curved web of Figure 61(b) leads to a nonzero interface amplitude for the
rigid interface web shown here.

Figure 71: The taut curved web of Figure 62(a) leads to a nonzero interface amplitude for the
rigid interface web shown here.

Figure 72: The taut curved web of Figure 62(b) leads to a nonzero interface amplitude for the
rigid interface web shown here.

The above discussion has assumed that the taut curved web 3 has vertices. However,
as we have already noted, it is possible to have taut curved webs with no vertices. These re-
quire special consideration when defining p% (3) (again, considered as an interface amplitude
for 3[Y(z)]). We must consider a few cases here.

1. The most basic case is for taut webs of the form shown in Figure 65. In the case of
Figure 65 there are no binding walls so the Chan-Paton data defined by (7.28) give
simply & ¢ = 0y ¢Z for all k,£ € V. The taut curved web of Figure 65 contributes
to p%(g,) as an amplitude associated with the rigid interface web shown in Figure
68. The interface amplitude associated with such a web must be valued in Rj; ® R;;
(where we put the negative half-plane factor first) and we take it to be

p3(3) == K" (7.36)

This choice can be shown to be required by demanding the composition property of
Interfaces (7.2) or by the Maurer-Cartan equation for the S-wall Interfaces discussed
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v

!

Figure 73: A taut curved web with no vertices between future stable ij and ji binding points.

Figure 74: The amplitude associated with the taut curved web of Figure 73 is defined by the
interface product shown here.

in Section §7.6 below. Note that the interface amplitudes for Jo are a special case of
this equation.

2. In addition the future- and past-stable taut curved webs shown in Figures 61 and 62
lead to basic amplitudes shown in Figures 69-72. By insisting that the amplitudes
define solutions of the Maurer-Cartan equation for the future- and past-stable S-wall
interfaces chjp described in Section §7.6 below we derive the following:

e The amplitude of Figure 69, B;J] €& ®Rji = Rij ® Rj; is
ij _ -1
B = -K; (7.37)
e The amplitude of Figure 70, Bff €& ® Ry = Rij ® Rj; is
. .
B = K (7.38)
e The amplitude of Figure 71, ijj € Rij ® &y = Rij @ Ry is

Bl = (1)K = K0 @ v (7.30)
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e The amplitude of Figure 72, Bﬁ; € Ry ® & = Rij @ Rj; 1s
B = —(-1)F K = K vo @ vo (7.40)

3. There can also be taut curved webs trapped between two binding points. These
should be defined so that the composition property (7.2) holds with an equality. One
example, which will be of significance later in Section §9, is shown in Figure 73. The

7

result is an amplitude B € End(&;;) where the Chan-Paton space &;; is derived from

ZR;\(Z 0
25 (29) .

and hence &; = Z ® R;j ® Rj;. We can define BZ from the interface product X of an
Interface J; of Figure 70 with an Interface Js of Figure 69 (with ¢ and j switched). The
relevant diagram is shown in Figure 74. The contraction in this diagram involves:

multiplying

Kji: (€(31)i; ® Rji) © (Rij ® E(T2)5i) — &i5(31) ® E(T2)ji = Rij @ Ry (7.42)

and the value is

Kiu((K;h) @ (=K;") = K} (7.43)

We view the amplitude BY as a map
7= E(T31)i @ ET2)ii = E(T1)i; @ E(T2)ji = Rij @ Rj; (7.44)

taking 1 to K i 1 and annihilating R;; ® Rj;. It is indeed a degree one differential on
E(TJ1 W J3);, as required by the Maurer-Cartan equation.

4. As we noted above, there can be completely rigid curved webs with no moduli (these
are vertical lines at binding points). These can be “added” to generic curved webs
at otherwise empty binding points to get new webs with the same number of moduli.
They contribute to ps(-) an extra tensor factor acting as the identity on the corre-
sponding R;; or R;fi factors in &; ;. It is important to include these contributions in
the total curved taut element t.

We have now completely defined p% (t). The operator pg(3) is compatible by construc-
tion with convolutions and the tensor operation Ty, and thus the convolution identity gives

us
1

1—p%(1)
In other words, we have the key observation that p%(t) is an interface amplitude and,
together with (7.28), it defines an Interface

ps(tz)] J=0 (7.45)

I[9(x)] € Be(TV, 7). (7.46)

associated to a function 9(x) defining spinning vacuum weights (7.4).
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As a special case, note that if J(x) = ¥ is constant then J[J(x)] = J0 is the identity
Interface in Br(77, 7). Since, by assumption e_wzij is never imaginary the Chan-Paton
factors are indeed given by &;; = 0;;Z. The amplitude pg (t) is defined by (7.36), which is
also the definition of the amplitudes for Jo.

The above construction can be generalized to discuss curved webs in the presence of in-
terfaces by making ¥(z) piecewise differentiable and placing interfaces at positions x where
¥(x) has a discontinuity. For example, suppose we have Interfaces 3~V € Br(T—, T%)
at xy and 39t € Be(TY,7T1) at z,. Then we can consider curved webs in the strip
xy < x < x, given by ¥(z) interpolating between ¥, and .. We could repeat our above
discussion and define an interface web J%"P[¢(z)] € Br(7~, 7). On the other hand, we
could instead extend ¥(x) to a function on the real line to define J[¥(z)] as in equation (7.46)
above. Then, using a G3-geometry as in Section 6.3 we can consider (J~Y¢3[d)(x)]3"F),
as in (6.58). We claim these Interfaces are all homotopy equivalent. An appropriate space-
time dependent geometry can realize an homotopy equivalence with any setup where the
interpolation happens throughout the whole region in between the locations of 3~7¢ and
JU7F. This leads, in particular, to the connection to the wedge geometries sketched above.

7.4.3 Verification Of Flat Parallel Transport

Now that we have defined J[J(x)] let us verify the two key properties (7.2) and (7.3) for
defining flat parallel transport.

First, the composition property (7.2) is straightforward. Suppose ¥!(z) smoothly
interpolates from ¥~ to ¥ and 9?(z) smoothly interpolates from 9° to ¥*. Then, on the one
hand, we have defined Interfaces J[0(z)] € Be(T? ,T?) and I[92(x)] € Be(T?, T9")
which can be composed as in equation (6.41). On the other hand, the functions can be
concatenated to define a smooth interpolation 9! o ¥?(x) from ¥~ to 9 and we wish to
show:

I ()] B 3[0% ()] ~ T[9* 0 9?(z)] (7.47)

where ~ means homotopy equivalence. The definition (7.28) as an ordered product along
the real line shows that the Interfaces on the left- and right-hand sides of (7.47) have iden-
tical Chan-Paton spaces. As for the amplitude, if we cut a taut curved web (contributing
the the interface amplitude of J[¥!' o ¥?(x)]) into two pieces along a vertical line x = x,
then there is a corresponding taut composite web used in the definition of the interface
amplitude of J[¢!(x)] ® J[¥?(x)] and the two amplitudes match. Next, as we have seen,
in the case of taut curved webs with no vertices the amplitudes are defined in terms of
elementary ones so that the composition property holds. In fact, often, one can replace
the homotopy equivalence in (7.47) by an equality sign. In general, we should write a
homotopy equivalence because X is only associative up to homotopy equivalence.

Thanks to the composition property the general Interface J[¢(z)] can be decomposed
as a product of elementary Interfaces. We discuss these elementary Interfaces in detail in
Sections §§7.5 and 7.6 below.

Next, we need to study the behaviour of J[¥(x)] under homotopy of J(x). Accordingly,
let ¥(x,y) be an homotopy interpolating between two functions ¥ (x) at very large positive
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y and 9J,(x) at very large negative y with the same endpoints ¥,,. Again, our choice of
argument is intentional: we interpret the homotopy as an actual space-time dependent
configuration.

We can define curved webs with space-time dependent weights e (%) z; in an obvious
way. Their properties are somewhat similar to the ones we looked at to prove associativity
of composition of interfaces in Section §6.3. Looking at sliding webs, we get the convolution

identity closely analogous to equation (6.67)

1

1
b x b+ =+ Ty(tr) =i ti T

=0 (7.48)

where 7/ are the taut elements for curved webs with the past and future spinning weights
e W0p(@) 5, o1 (2) 5 respectively, and tg; is now the space-time dependent taut element
(not including the empty web). The notations t, and tz are as in (7.22).

Applying a web representation, we find an identity of the form of equation (5.23) and
therefore using the discussion of that result we conclude that 6[¢(z,y)] := p%(tst) defines a
closed morphism Id + §[¥(x, y)| between J[J¢(x)] and I[Vp(x)].

Next, we need to show that the closed morphisms Id + §[¢(z, y)] and Id + §[¢(z, —y)]
are inverse up to homotopy. We can use the same strategy as for the proof of asso-
ciativity of composition of interfaces up to homotopy: show that given a continuous in-
terpolation ¥(z,y, s) between two homotopies 9! (z,y) and ¥?(z,y) the closed morphism
Id + §[9(x,y, s)] varies by an exact amount. This follows from a convolution identity for
curved web homotopies similar to the ones we have already discussed above.

To summarize, we have proven that given two homotopic maps ¥!(x) and ¥?(x) with
the same endpoints the corresponding Interfaces J[9*(z)] and J[9?(z)] are homotopy equiv-
alent.

7.4.4 Rigid Rotations And Monodromy

We can now deliver on a promise made in Section §7.2 and define a canonical Interface
R[Y¢, V7] between Theories TV and TV, Namely, choose lifts of 94,9, to R so that ¥, > 4,
and |9y — ;| < 7. Then, as in Section §7.2 we can use

Yy < -1
V) =4 -z —Vy<z<—0, (7.49)
. T > —1y
to define
Ry, 0] := T[I(x)]. (7.50)
Now, it follows from (7.47) that
R[V1, V2] K R[Vg, V3] = K[, V9] (7.51)

as desired.

— 150 —



If we try to extend the above discussion to intervals larger than 27 then we encounter
the interesting phenomenon of monodromy. Consider the function

Uy T < —1,
I(z) =< —x 0y <z < —Vu+2m (7.52)
Y — 21 x> —1

The invertible interface J[(x)] in this case defines an Ay-functor from Br(T7*) to itself.
Note that there is precisely one binding wall of type ij for each pair distinct pair of vacua
(7,7). This can be viewed as a monodromy transformation on the category of Branes.
Indeed, we can see that the Interface for rigid rotation through an angle 27 is not equiv-
alent to the identity Interface using the discussion of equations (7.41)-(7.44) above. The
cohomology of &;; is the quotient of R;; ® R;; by the one dimensional line spanned by K L
and is in general nontrivial. See Section §7.9 below for further discussion.

7.4.5 The Relation Of Ground States To Local Operators

The rigid rotation Interfaces can be used to describe the precise relation between the
complex of ground states on an interval and the complex of local operators on a half-plane.

Let us return to the motivation in Sections §7.2 and 7.3. There is a very useful special
case of the exponential map, namely when the wedge has opening angle 7. In this case
we find that if B1,Bs € Br(7?) then Hop(B,By) with differential M is literally the
same as the complex of approximate groundstates on the interval with left-Brane 23; and
right-Brane B[] := B9 K R[Y, 9 + 7], with differential (4.59). Indeed, note that on an
interval of 7 for every unordered pair of vacua there will be precisely one binding wall. (It
is important to define the rotation Interface so that ¢ increases, and hence all the binding
walls are past-stable.) The Chan-Paton factors of SR[J,¢ + x| provide all the relevant
half-plane fans and we conclude that

H*(Hop(B1,B5), My) = H*(Epp(B1, Ba[r]), drp). (7.53)

This result will be very useful in Section §7.10 below. Physically, it states that the space
of BPS states between branes on an interval is isomorphic to the local boundary-changing
operators on a half-plane. For more discussion of the relation to local observables see
Section §16 below.

7.5 Locally Trivial Categorical Transport

Let us consider a function ¥(x) interpolating from ¥, to 9, with ¢, = ¢, = ¥,.. We
assume, moreover that there is a homotopy ¥(z,y) to the constant function ¥(z) = 9.
such that ¥(z,y) has no binding points (as a function of z at fixed y, for all y). Applying
the discussion of (7.48) et. seq. we conclude that J[J(x)] is homotopy equivalent to the
identify interface J9 on T V=.

More generally when the function ¥(x) has no binding points we say that J[J(z)]
defines a locally trivial categorical transport. The Interface and its associated A.o-functor
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Figure 75: Two contributions to the Maurer-Cartan equation for an interface defined by locally
trivial transport, such as that induced by taut webs of the form of Figure 75.

(via equation (6.49) ) are particularly simple in this case. Since there are no binding walls
equation (7.28) says that the Chan-Paton factors are identical to those of the identity
interface J0, namely &;; = 0; ;Z.

We will say that J(x) and its associated Interface J[¢(z)] are simple if the only curved
taut webs look like those in Figure 65 (one for each pair of distinct vacua (7,j)). The
interface amplitudes for such a simple Interface are then those given by equation (7.36).
The demonstration that the Maurer-Cartan equation is satisfied, that is, the demonstra-
tion that (7.45) holds in this case, is very similar to that used to show that the identity
Interface J0 between a theory and itself satisfies the Maurer-Cartan equation. Indeed, we
should compare Figure 40 with Figure 75. The main difference is that when we move an
interior vertex across the interface it gets rotated in order to be compatible with Figure 68.
Algebraically, the demonstration that the Maurer-Cartan equation is satisfied is identical
to the case of J0. Nevertheless, we should not identify it with J0 because it is in general
an Interface between different theories 77¢ and 7.

In general if ¥(z) has no binding points but is not simple then the Chan-Paton factors
are still given by &;; = d; ;Z but in principal there could be exceptional taut webs leading
to different interface amplitudes. In this case we can divide up the region of support into
a union of small regions [z;, x;11] so that ¥(x) is simple in each region. Then, invoking
equation (7.47) we learn that locally trivial transport is always homotopy equivalent to
simple locally trivial transport.

Using the discussion of (6.49) et. seq. we see that a locally trivial Interface J[¥(z)]
defines an A-functor Fy(,) : Be(T7) — Be(TY"). However, thanks to the very simple
Chan-Paton data, it preserves the vacuum subcategory whose objects are just the thimbles
%;. That is, we can think of locally trivial transport as induced from a simpler functor
Fo@) : Bac(T) — Bac(T).

Note well that in the above discussion we have strongly used the fact that there are
no binding walls. If, on the other hand, the rotation of some edge from eV« zij to e 1r Zij
passes through the positive imaginary axis then one of the vertices of 77¢ cannot be
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transported through the region of support of ¢ (x) to produce the corresponding vertex of
T?. The Maurer-Cartan equation (7.45) for the simple interface amplitudes (7.36) will fail
in this case. The next subsection §7.6 explains in detail how the correct Interface J[J(x)]
corrects the simple amplitudes to produce a solution of the Maurer-Cartan equation.

7.6 S-Wall Interfaces

As we mentioned above, thanks to the composition property (7.47) the general Interface
J[¥(x)] can be decomposed into elementary factors. These consist of locally trivial parallel
transport together with the “S-wall Interfaces” that are described in detail in this Section.
The S-wall Interfaces are defined (up to homotopy equivalence) by functions ¥(z) which

interpolate from v;; = € to ¥;; F €, where eV defines an S;j-ray and e is a sufficiently small

positive number. 38

To be concrete, we define an Interface ij (up to homotopy equivalence) by choosing
Y(x) to interpolate from ¥;; —e to ¥;;+€ on some interval (xo—J, xo+39). Here ¢ is a positive
number (and not a morphism!) and, for definiteness, we choose a linear interpolation with

e < 0. The region of support of ¢'(x) contains a past stable binding point x¢ of type ij

and no other binding points. The vacuum weights e )z, all rotate clockwise through

—id(x)

an angle 2¢ and e z;;j rotates clockwise through the positive imaginary axis.

Similarly, we will define an Interface Glfj (up to homotopy equivalence) by choosing
Y(x) to interpolate from 1J;; + € to ¥;; — € on some interval (zg — d,z¢ + J). The region of

support of ¥/ (x) contains a future stable binding point xg of type ij and no other binding

—i¥(x)

points. The vacuum weights e 2 all rotate counter-clockwise through an angle 2e and

e_w(m)zij rotates counter-clockwise through the positive imaginary axis.

The name S-wall Interfaces is apt because the path in the complex plane e‘iﬂ(x)zij

crosses an Sj;-ray (see equation (7.5)).
According to the definition (7.28) the Chan-Paton data for these Interfaces are given

by
E(GP ) = It 7.54
( ”)kl {(5;6’[2 else ( )
E@Hu=4" 7.55
( ”)kl {5k,lZ else ( )

The interface amplitudes have already been described in Section §7.4.2 above. We
summarize the nonzero amplitudes in Figure 76 for ij and in Figure 77 for 6{]

It is instructive to check explicitly the claim that the interface amplitude satisfies
the Maurer-Cartan equation (7.45). We will do so for ij,
similar. For webs not involving ¢j lines the check is identical to the verification of the

and the check for G{j is very

Maurer-Cartan equation for the identity Interface. However, there are some new taut webs
that arise because &;; is nonzero and because there are new vertices involving 7j lines.

3¥Note that while the variation in 9;; is small we have said nothing about how large the region of support
of ¥'(z) is. This can be changed, up to homotopy equivalence, and could be taken to be very large or very
small.
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Figure 76: This figure shows the nonzero components of the interface amplitude for &G ;- For every
pair of vacua (k,£) there is an amplitude of the form shown in the top middle. The acute angle
between the lines in the negative and positive half-planes is 2¢. The left and right figures show new
amplitudes relative to the locally trivial case. The acute angle here is e. The amplitudes for all the
above three cases are given up to sign by K !, suitably interpreted. See equations (7.36), (7.39),
and (7.40) for the precise formulae. The lower middle figure is a new amplitude associated to any
interior vertex with an ij edge pointing to the future. If 57 is the interior amplitude associated
with that vertex then the corresponding interface amplitude is (K ® 1)(8;).

First consider interior vertices with an external ¢j line that goes to the future. When
this vertex is “moved” through the Interface the lines rotate and we obtain taut interface
webs such as those shown in Figure 78. The amplitude for Figure 78(a) is valued in
&i ® Rf, ® &, ® Ry, while that for Figure 78(b) is valued in &;; @ R}, @ &, ® R;;. The
extra rotation, compared to the identity Interface, has led to amplitudes valued in different
spaces which therefore cannot cancel. However, thanks to the “new” interface amplitudes
for ij there are also two new taut webs shown in Figure 79(a) and Figure 79(b). The
amplitude for Figure 78(a) cancels that for Figure 79(a) and similarly the amplitude for
Figure 78(b) cancels that for Figure 79(b). In fact, demanding this cancellation gives the
derivation of the basic amplitudes (7.39) and (7.40) above.

Next, consider interior vertices of 77¢ with an external ij line that goes to the past.
Some new taut webs constructed with such a vertex in either half-plane are shown in Figure
80 (for the case of a trivalent vertex). Working patiently and carefully with all the sign
conventions we have explained one can check that these two amplitudes do indeed cancel.

Finally, recall that in the identity for the taut planar element t,; * t,; = 0 the terms
canceled in pairs. For each such pair involving a vertex with an ij edge we can construct
two taut webs. For example, consider the component of the Maurer-Cartan equation shown
in Figure 81. This is an identity for the interior amplitudes ;. There is a corresponding
pair of taut interface webs shown in Figure 82. Since the vertices with ¢5 lines in Figure 82
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Figure 77: This figure shows the nonzero components of the interface amplitude for & fj analogous
to those for &7;.

Figure 78: These two contributions to the MC equation for ij are analogous to canceling con-
tributions for J0 but cannot cancel in this case because now the amplitudes are valued in different

spaces, as explained in the text.

are defined by K () the A, Maurer-Cartan equation for the Interface will be satisfied if
5 satisfies the corresponding L., Maurer-Cartan equation. This completes the verification
of the Maurer-Cartan equation for the Interface GZ.

The general arguments we gave in Section §7.4.3 imply that if we compose past and
future S-wall Interfaces the result is homotopy equivalent to the identity Interface. Never-
theless, it is instructive to examine this homotopy equivalence in some detail and we turn
to this next. Let

T = ijte T = 7'192'9'*6 (7.56)

fr _ =/ P + 7+ ~pf _ &P f o
ﬁp—Gij&GUG‘Bt(T ,T) AL —Gij&GUG’Bt(T JT7) (7.57)
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Figure 79: Contributions (a) and (b) to the MC equation for &7; cancel those of Figure 78(a) and
Figure 78(b), respectively.

Figure 81: A cancelling pair in the Maurer-Cartan equation for the Theory 77—,

Then we claim that
VP~ & T (7.58)

The Chan-Paton data of the Interfaces 3P and JP7 are the same and are easily com-
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Figure 82: A component of the L., MC equation of Figure 81 has a corresponding component for
the Ao MC equation for &7; shown here.

ey

Figure 83: The two composite webs shown here lead to differentials on the &;; Chan-Paton space

of G{j X ij and ij X GZJ;, respectively. In each case there is a chain homotopy of the identity
morphism to zero so that the cohomology of &;; vanishes.

puted from equations (6.32), (7.54), and (7.55), with the result

ghogl (k1) =(.j)

(7.59)
O 12 else.

E(QP) = (P )y = {

Here we have denoted 52-]; = E(G{j)ij = Rij and & = £(6]));; = Rj;. The first check
of a homotopy equivalence to the identity Interface is that the cohomology of the Chan-
Paton space of type 75 should vanish. In fact, the interface product X leads to a nontrivial
differential associated with the taut composite webs shown in Figure 83. We explain this
in detail for 3/P. The taut composite web of Figure 83(a) gives an amplitude valued in

£(317);; ® £(377);; = End(£(377),5). (7.60)

Now the endomorphisms of & (37 P);; can be organized into block matrices using the sum-
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mands R;; and R;-‘Z- so that elements are valued in the block matrix:

< End(R;;) Hom(R;;, R}%)) (7.61)

Hom(R;fi, Rij) End(R;‘l)

With this understood, the amplitude defined by Figure 83(a) is

B = ((_1)8“Kf1 8) (7.62)
ij

Note that (—1)FKZ-;1 = K9, ®uy € Hom(R};, R;j) really has degree +1 since the matrix

elements are only nonzero when deg(v,) + deg(vy) = +1. 3
Now, to exhibit a homotopy equivalence 37 ~ 39 we need to produce four morphisms:

61 € Hop(3/P,70)
85 € Hop(J30,377
2 p( ) (7.63)
b5 € Hop(3/7,3/P)
d4 € Hop(J0,70)
such that
Mg(él, (52) = Idjfp + M1(53) (7.64)
MQ((SQ, (51) = Idy, + M, (54) (765)

First of all, we take (61)}% = (62)f% = 1 for all k € V. Now, because J/? has a CP
space
Eij =&l @& = R e Ry (7.66)

the identity morphism Idys, has a component of type (ij,47), namely, the identity trans-
formation Idg,; € Hom(&;;) that is impossible to produce from M3(d1,d2). It is impossible
to produce Idg,; simply because if 01 € Hop(3/7, J07+) has an 4j line in the future then
it must have a jj line in the past but if do € Hop(307+,3fp) has an ¢5 line in the past it
must have an 47 line in its future. Therefore, no composition of 4; and do can product an
element of Hom(&;;). Therefore the (ij,7j) component of Idys, must come from M (d3).
We choose d3 to have only one nonzero component, valued in End(&;;), and given by

. _1\F ..
(03);7 = (8 ( 1)0 K”) (7.67)

where we interpret (—1)F Kj; = (—1)%' Kyav), @0}, € Efj ® (5{;)* Then, when computing
M (03) we meet
p(tz)(B,83) + p(tz)(ds, B). (7.68)

39Tt is a nice and rather subtle exercise to check that the product Interface does indeed satisfy the MC
equation.
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Using Bg above, and taking proper care of signs 4 one finds that the first summand in

(7.68) gives Id o/ and the second gives Idgr so the sum gives the desired identity morphism
ij ij
on &£ (3fp)ij. Thus, 3 provides an explicit chain homotopy equivalence of the identity
morphism on &;; to the zero morphism.
Since 3 is nonzero there are induced vertices of type (ii,4j) and (ij, jj) in M7(d3) but
these can be cancelled against M(d1,d2) by choosing

(02)}5 = +1dgy (7.69)
o
(01) = ~Tdgn (7.70)

Now we must check that the other vertices of B(J3/7) do not lead to new components of
M (63) or new components of My (d1,0d2) or Ma(d2,d1) which would complicate the homo-
topy equivalence. There are several potential contractions which would considerably com-
plicate the discussion, but happily they all give zero because, after careful examination,
they all involve contractions of (53;)* with Sf’j or (Szpj)* with (SZ-’;), and these contractions
vanish. Now is easy to check that

M2(52,51) = IdeT+ (7.71)

so we can take d4 = 0.

4 foa) A s

o
"

Cd
~
~
L4

[y ——

oy (h)

Figure 84: The dashed curves show the behavior of binding points under a homotopy between
97P(z) and the constant. In (a) the homotopy ¥(z,y) has the property that for y < —§ it is just the
constant V(x,y) = —e and for y > ¢ it is ¥(z,y) = 9/P(z). As y decreases from 6 to 0, the binding
points approach each other and annihilate. In (b) we show the location of the binding points for
the time-reversed homotopy 9(x, —y).

Finally, it is instructive to see how the general argument of Section §7.4.3 produces the
above explicit homotopy equivalence of 3/7 with the identity Interface. Let 9¥/P(x) define
a vacuum homotopy corresponding to 3/P. Thus, on some interval, zij(x) rotates from
ie™¢ to iet€ and then back to ie™i¢, where € > 0. Let 9(x,y) be a homotopy of ¥/7(x) to

“Define the sign of the dual so that v} - vg = 6a.5.
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Figure 85: The taut (= rigid) web on the left produces a space-time curved web which contributes
to the component (d;)7; in the morphism describing the homotopy equivalence of 3/7 and Jo-+.

U VammtN i 4 1 1
IR .
: :-'xr o : : e
o i v
I I AT .
] 1 o —
to =N
\ [\
\~|—l L .‘“: : 'k
] 1
(o) ()

Figure 86: A vacuum homotopy 5(90,3}) used to compute Ms(d2,d1) leads to past and future
binding points shown in Figure (a). We do not expect any exceptional webs when we consider
a homotopy 5(m,y; s) to the constant function. On the other hand, a vacuum homotopy ¥(z,y)
used to compute My(d1,02) leads to past and future binding points shown in Figure (b). In the
corresponding homotopy 19(3:, y; s) to the constant the two dashed curves must start far apart, then
merge and turn into two parallel dashed lines. At some point s = s, there will be an exceptional
web, illustrated in Figure 87 leading to the morphism ds.

the constant path, so that, for y > § we have ¥(x,y) = 9/P(z) and for y < —§ we have
Y(z,y) = e. For example, as y decreases from J to —d, the path z;;(z) could rotate more
and more slowly so that at —§ it becomes constant. See Figure 84 for an illustration of
how the future and past ij binding points evolve. Note that at some intermediate time,
say y = 0 the vacuum weight z;;(z;y), as a function of z fails to rotate past the positive
imaginary axis. Then the past and future binding points annihilate.

As described in Section §7.4.3, the morphism ¢; can be constructed from p% (tst) where
ts is the taut element in the space-time curved webs described by ¥(z,y). In particular, the
nontrivial component of equation (7.70) arises from the taut (= rigid) web shown in Figure
85. One can similarly derive the nontrivial component (7.69) for d. Finally, when we
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Figure 87: When the concatenation time o is positive it is impossible to draw an ij line such as
that shown here. In the homotopy 9(z,y; s) there will be a critical value of s where an ij line of
the type shown here will exist. This is an exceptional web ¢ that leads to the morphism Js.

compute Ma(d1,02) and Ma(d2, 1) we should use equation (6.71), valid for concatenations
op with a large time interval T'. In the case of Ms(d2, 1) we have a spacetime configuration
with binding points evolving as in Figure 86(a). This can be homotoped to the constant
function without producing any exceptional webs. On the other hand, when computing
M>(81,05) we use Figure 86(b). In the homotopy ¥(z,y;€) to the function 9/P(z) the
dahsed line of binding points merges and then turns into two parallel dashed lines. When
the concatenation time 7' is positive it is impossible to draw an ij line, and when the two
components are too close it is again impossible to draw an ij line. At a critical value s,
there will be an exceptional web ¢ such as that shown in Figure 87 leading to d3 = p%(e),
and producing an amplitude of the type (7.67).

7.7 Categorification Of Framed Wall-Crossing

As we have mentioned, the Interfaces ij’-f may be regarded as a categorification of the
“S-factors” which play an important role in the theory of spectral networks [31, 33, 34, 75].
The relation to spectral networks is discussed in more detail in Section §18.2 below. In
order to recover wall-crossing formulae for framed BPS states we replace R;; by its Witten
index /1;; to obtain two-dimensional soliton BPS counts. For an Interface 3—F we define
the framed BPS degeneracies to be the Witten indices of the Chan-Paton factors

Qi) = Treg-n),, (D7 (7.72)

To compare with [31, 33, 34, 75], note that the role of the line defect is played by J—>F and
the IR charge, usually denoted ~;; is here simply the pair ij'.

To illustrate the relation to wall-crossing let us consider a vacuum homotopy that
crosses and S;j-wall. For z; < xo define J[z1, x2] to be J[Y(z; z1, x2)] where

Iw;w1,202) = ¢ 9(z) o1 <2 <o (7.73)
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The family of interfaces satisfies J[z1,z3] ~ J[z1, 2] K J[ze, 23] for 1 < 22 < z3. In
particular, if x;; is a binding point of type ij then

3[3:1, Ti; + (5] ~ 3[1171, Tij — 5] X j[.%w — 9, T + (5] = j[IL‘l, Tij — (5] X G‘Z’f (774)

where we choose GZ’-f depending on whether z;; is past or future stable, respectively. This
is the categorified S-wall-crossing formula.

If we consider the Chan-Paton data to be a matrix of complexes then we have the
homotopy equivalence of matrices of chain complexes:

E(w1, 5 + 6]) ~ E(Iwr, w35 — 0))E(SL) (7.75)

To relate this to the standard wall-crossing formula note that if we take the Witten index
of the matrix of Chan-Paton spaces we produce the generating function for framed BPS
degeneracies of the Interface:

F[3[z1,20]] == TrS(ﬂ[m,xz])(_l)F = Zg(j[xhxﬂv kg)ek,f- (7.76)
k¢

This matrix-valued function will be continuous in x1, o for locally trivial transport, but
when z crosses a binding point of type ij we have framed wall-crossing formula:

Py A (Mt pgey)  @ij € Ay (7.77)
F- (1= pijeij) @i € Yij

In the second line we have used the degree —1 isomorphism of R}, with R;; to identify

the Witten index of Rj; with —u;;. Equation (7.77) is precisely the framed wall-crossing

formula of [31].

7.8 Mutations

Categorical transport by Gf]?f makes contact with the theory of mutations and exceptional
collections in category theory. The relation between mutations of exceptional collections
and D-branes in Landau-Ginzburg models has been discussed at length in [95, 48, 81]. We
briefly make contact with these works.

In general there is no natural order on the set of vacua V because the vacuum weights
z; are points in the complex plane. If we choose a direction in the plane, say parallel to a
complex number (, then that direction defines a height function on the plane and, so long
as ( is not parallel to any of the z;; for i, j € V we can order the vacua by increasing (or
decreasing) height. Note this is the same as the condition that ¢ is not orthogonal to any
S;j ray. Considering ¢ to the normal direction to a half-plane, the corresponding thimbles
T, can now be ordered:

T < T & Re(¢12;) > 0. (7.78)
Note that with such an ordering we can write
Rij T, <
Hop(%:, %) ={ Ry =27 i=j . (7.79)
0 > %
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where ]?iij is defined with respect to a half-plane with inward-pointing normal vector (.
Since the thimbles generate the category of Branes, they form what is known in category
theory as an exceptional collection, and the vacuum category Yac(7T,H) is an exceptional
category as defined in Appendix B below.

Now consider rotating ¢ or, equivalently, fix ( = +1, take the positive half-plane H™,
and consider a family of spinning weights e () z;. When ¢?®) passes through an Sij
wall an ordered pair of thimbles (%;,T;) exchanges its ordering and the old exceptional
collection is no longer an exceptional collection in the new Theory. A natural question is
whether one can construct a new exceptional collection of Branes in the new Theory out of
the old exceptional collection of the old Theory. The answer to this question is “yes,” and
the procedure is called a mutation. We will explain how mutations work in our formalism.

If our path of Theories crosses a future stable S;; wall then interface product with
the S-wall Interface GZJ; defines, as usual, an As-functor Br(TYi+¢) — Br(T%5~¢). The
original Theory, 7745 +¢ has Re(z;;) > 0 so T; < T;. So, the original exceptional collection
is

B R ¥ T Future stable (7.80)

and the final Theory, 774~ has Re(z;;) < 0. Similarly, if the path of Theories crosses a
past stable Si; wall then we use &%, to define an Aq-functor Be(7757) — Br(T75+).
The original Theory, 774~¢ has Re(z;;) < 0 so T; > T;. So, the original exceptional
collection is

B 3 R Y I Past stable (7.81)

and the final Theory, 774 7€ has Re(z;;) > 0.

N f
-A ) Iy .
-!) b'r ~ V j.‘ l|
ij ¢
X ; J
\ ‘
1|2

Figure 88: The Brane T, &6{; has one nonvanishing boundary amplitude. Under the isomorphism
E® Eji ®5]* = Rij ® Rji it is KZ;I

Let us examine the action of the S-wall functors on the exceptional collections of the
original Theory in these two cases. It is easy to see that

TGRS =T, ki (7.82)
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Figure 89: The Brane §;X&” f has one nonvanishing boundary amplitude. Under the isomorphism
E® Eij X 5; = Rij ® Rji it is —(—1)FKZ»;1.

since none of the amplitudes in Figures 77 or 76 can contract with T;. On the other hand,
T, KNS j’-f is nontrivial. Indeed we can compute the Chan-Paton factors:

& (ThRSY) = E(Th)e @ il @ E(5,): )
£ (zk X efj)z = E(Th)e ® OpiRij @ E(F,)s

Moreover, each of the Branes ¥; X GZ’.f has a single nonvanishing boundary amplitude,
illustrated in Figures 88 and 89.

Let us consider the case of crossing an S;; wall in the future-stable direction. We
now would like to introduce a new generating set of Branes, replacing the old exceptional
collection (7.80) by the new collection of Branes

LT LR (7.84)

In the language of Appendix B this corresponds to a left-mutation at j. Similarly, when
crossing an S;j-wall in the past-stable direction we would like to introduce a new generating
set of Branes, replacing the old exceptional collection (7.81) by the new collection of Branes
...,‘IZ-&GZ,‘IJ-,... (7.85)
In the language of Appendix B this corresponds to a right-mutation at j. The idea is that
the “missing” Brane T; can be expressed as a boundstate of the Branes T; and T; X G{f
by condensing local boundary operators. One way of expressing this, often found in the
literature, is to relate the three Branes by an exact triangle. We explain this momentarily.
On general grounds, mutations of exceptional collections are expected to provide a
representation of the braid group, up to homotopy. Such a braid group representation is
intimately connected to the theory of categorical wall-crossing we develop in Section 8.
Before writing our exact triangles we first note that the category of Branes forms a
module over the category of Z-modules. Given any Z-module V and any Brane 8 we define
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V ® B to be the Brane which has Chan-Paton spaces
EV®DB),=VeEeDB), (7.86)
Then the amplitude of V' ® B is supposed to live in

D2, enE(V @ B), @Ry @ E(V@B)s = (VO V") @ @.,en(B) @ Ry @ E(B); (7.87)

and we take the amplitude (up to an appropriate sign) to be Idy ® B where B is the
amplitude of 2. The hom-spaces of the category of Branes satisfy

HOp(V1 @B, Ve ® %2) =® HOp(%l, %2) (=) VQ* (7.88)

Now, consider a path crossing an S;;-wall in the future-stable direction and consider
the triple of Branes R;; ® %;,%;,%; X G{j We compute the hom-spaces for the positive
half-plane in the new Theory T —¢:

Hop(R;; ® ¥;,%;) = Rij ® Eji (7.89)
Hop(T; X &7, %;) = Hop(i,i) & Ry; ® R;i (7.90)
Hop(R;; ® T;,%; X 6{;) =R;® ﬁji © Rij ® R} (7.91)

Each of the summands above contains a canonical element. In (7.89) we have the element
Kigl, in (7.90) the first summand has the identity and the second has K !, and in (7.91)
the first summand has K ! and the second summand has the identity Id R;;- Using the
definition (5.17) (contraction with the taut element) we can check the exact triangle of

morphisms

Ri; ®%; T (7.92)

is a commutative diagram.
Similarly, for ¥; X ij we compute (again with z;; in the positive half-plane)

Hop(%;, R;fi ®%F;) = Eij ® Ry
Hop(T;,T; ¥ &Y,) = Hop(i, i) & R;;Rji (7.93)

HOp(fi D G?j, R;i & ‘Ij) = Rij & le' D R;i & Rji
Once again, using suitable canonical elements from the summands we can construct the
exact triangle:

K1 A
T K6,

These are the kinds of exact triangles that appear in discussions of mutations of exceptional
collections found in the literature.

When comparing with the general discussion of Appendix B we should note that some
of the factors R;; above should really be viewed as Hop spaces ]:?Z-j. However, near an
S;j-wall these two spaces can be identified.
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7.9 Categorical Spectrum Generator And Monodromy

Let us now return to (7.52). We define R[V, ¥ — 7] to be the categorical spectrum generator.
The name is apt because in this case 9(x) has a unique future stable binding point for each
pair of vacua with z;; in a suitable half-plane. Taking ¢ to be small we can rewrite (7.28)
as

®yevipeiy = Q) Silay) (7.95)

Re(zi;)>0
where the ordering in the product from left to write is the clockwise ordering of the phases
of z;;. If we consider the Witten index of this product we produce precisely the spectrum
generator as defined in [28, 31]. In the case of 2d Landau-Ginzburg models this is precisely
the matrix S defined long ago by Cecotti and Vafa. (See equation (2.11) in [15].)
In our case we have the general result that

R[Y, 9 — 27| ~ R[I, ¥ — 7] KR[Y — 7,0 — 27] (7.96)

Examining the Chan-Paton factors for the Interface SR[1J, ¥ — 27| motivates the interpreta-
tion of R, ¥ — 27| as a categorified version of Cecotti and Vafa’s “monodromy” SS—1
(which in turn is motivated by the monodromy of the cohomology of a Milnor fiber in
singularity theory). 4' Indeed, if J(x) = —z for = € [0,27] then all the S-walls are future
stable and, for every pair ij with i # j there will be precisely two future stable binding
points x;; and xj; in the interval of length 27, and moreover |z;; — xj;| = 7. Again, with
a suitable choice of half-plane H (or choosing ¢ to be small) we can write the Chan-Paton
factors of R[J, V¥ — 27| as

- ® (Z1® Rijes;) ® - - ® (Z1 ® Rjiej;) ® - -- = S @ SOPP (7.97)

where S is the clockwise phase-ordered product for z; in one half-plane and S°PP is the
clockwise phase-ordered product in the opposite half-plane. Now, if we take the Witten
index to decategorify S — S then we map the factors in S via (Z1® Rije;j) — (14 pijei;).
Now we need the relation

[ji = —Hij (7.98)

which follows from the existence of the degree —1 pairing K;;. (See also the discussion in
Landau-Ginzburg theory in Section §12.3 below.) If we define the fermion number to be
integral (using the gauge freedom discussed in Sections §4.4 and §4.6.4) then p;; is real and
hence if S — S then S°PP — Gir—1

There is a known relation between properties of the UV theory and the eigenvalues
of the matrix SS~! [15]. If the massive theory flows from a UV SCFT, as is the case
for TV, the eigenvalues take the form exp 27iq,, where g, are the charges of UV B-model
operators under the R-charge broken by the massive deformation of the SCFT. If the UV
theory is asymptotically free, as is the case for 79V §§t—1 typically has Jordan blocks.
In Section §7.10 below we will construct some rotation Interfaces for 7V and 75YV(®) and

“1We can also regard R[0,9 — 27] as a categorified version of a Stokes matrix. We will not pursue that
very interesting direction in the present paper.
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we will see that indeed a sufficiently high power of the rotation Interface is trivial in the
former case, but not in the latter case. Moreover, since R[J, 9 — 27| is a categorical lift
of §St~1 it is natural to wonder if it somehow reconstructs some other properties of the
UV theory. Indeed we will see that it is an essential ingredient in the construction of local
operators (on the plane) in Section §9.2.

It would be interesting understand whether there is a categorical generalization of the
relation of the eigenvalues of S5 ~! to R-charges. Perhaps this can be done by introducing
a notion of an “eigen-interface” for R[¥}, ¥ — 27| under interface product X, but we will
leave this idea for future work.

7.10 Rotation Interfaces For The Theories %N And %SU(N)

N,SU(N)

In this section we construct some interfaces in the Theories 7T, which give a very

useful construction of nontrivial Branes from the simple thimbles. (Much of the discussion
can be developed in parallel for the two families of Theories 7;9N and %SU(N). So we will
delay separating the cases as long as possible.) We will reveal how one could discover the
Branes € and 9, of the Theories 7" and %SU(N), respectively. (See Section §4.6 above.)
This construction also leads to a very neat computation of the space of boundary-condition-
changing operators H*(Hop(281,B2), M) for certain pairs of Branes, thus justifying several
claims made in Section 5.7.

Recall that the Theories %N’SU(

change of notation from §4.6):

N) are based on the vacuum weights (making a slight

z;? R (7.99)

Here j is an integer modulo N and we will always choose it to be in the fundamental
domain 0 < j < N — 1. As described in section §4.6.3, there are nontrivial isomorphisms

ot TN 7;512} () (7.100)
N

and the corresponding isomorphism Interfaces will be denoted Jo+ := J0¢°. In particular,
we have joT = (j F 1)modN and

Spy—1ZM j=0

(7.101)
O, j—12 1<j<N-1

5(30+)j7k = {

The choice of degree shift here is the simplest one such that the boundary amplitudes

Kigl’w €&i1®ORi1j1® 5;,3'—1 ® Rji (7.102)
all have degree one. In 7:9N this is just +1 € Z! and in %SU(N) it is of the form
£ er(er@en)! (7.103)
I

where the sum is over multi-indices of length |i — j| and ¢ is a sign defined under (4.110).
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We can work out J0~ similarly. It is useful to think of the Chan-Paton data as a
matrix with chain complexes as entries and in these terms we have

N-1
£ty =2zMeg 1 & P Zej 1 (7.104)
j=1
N-2
5(30_) = Z[_I}EN_LO D @ Ze]-,jﬂ (7.105)
7=0

TSV for dif-

ferent values of . Thus, ¥(x) varies linearly and the binding walls are determined by the

We now consider rotation Interfaces [y, 9, relating the Theories

equations
Re (=3;,) = 2sin (9 + G +j)) sin (%(k ~7) =0 (7.106)

Im (sz) — 2cos (19 + -k + j)) sin (%(k - j)) >0 (7.107)

To be more specific we consider the Theories

TH = TNSUN) e gviU () (7.108)
N
where € is a small positive phase with € < . (Actually, 0 < € < & will already suffice.)
We now consider functors between the categories of Branes Bt(7+) and Br(7 ).
They will be induced by Interfaces as discussed in equation (6.49) et. seq. There are four
natural ways to relate these Theories. Indeed, for clockwise rotations, we can rotate 7.V

into 73Y _,» or rotate T _, into TN e and then act with a symmetry interface J0~ to bring
N N N

it back to 72V. For counterclockwise rotations, we can rotate 75 _, into TN, or rotate TV
N
into 7N and then act with a symmetry interface 30 to bring it back to Tg .
We can thus define

N

It = R, 2% — € eB(TH,T)

=~ 2m 2m

A+ .2t Jo~ - Tt
gt = [N e,N—l—e}&JD eBe(T,7T7)
I = Re, —¢] IO € Be(TH,T7)

Jt .= 9‘{[2% —e,€] €Be(T,TH).

(7.109)

Next, we work out the effect of convolution by these Interfaces on the Chan-Paton
factors of Branes. We begin by computing the binding walls.

Consider the case of 3~ F. Equation (7.106) is equivalent to ¥ + &-(k + j) = nx, with
n € Z,. But, given the range of ¥, we must have = § and hence k+j = N—1and n = 1.
Then the positivity constraint (7.107) implies k& < j, and hence 0 < k < % Similar
results hold for the other three cases with minor variations. We have binding walls of type
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jk where, roughly speaking, j is an upper vacuum and k is the lower vacuum vertically
below it.

There is a small subtlety in this computation because all the binding walls of type jk
with j+k = IN—1 are at the same value of z, thanks to the very symmetric choice of vacuum
weights we made for these examples. However, the matrices e;; for j +k = N — 1 and
0<k< % all commute with one another and hence the product (7.28) is unambiguous.
Indeed, any small deformation of the vacuum weights will split the walls, leading to a
multiple convolution of the walls 6£ i for these values of j, k. The different orderings of
the convolutions will be homotopy equivalent. Similar remarks apply to the other three
Interfaces.

Since the product of two matrices of the type e;; for j+k =N —-1and 0 <k < %
is zero (7.28) simplifies to the lower triangular matrix

5(j_+) =71 @ RjN_j1ejN—j-1 (7.110)

Nolcj<N-1

Explicitly, for N = 2,3,4,5 we have

EO ) = ( z 0) (7.111)

Z 00
EdH =0 zZo (7.112)

(7.113)

EO =] 0 0 ZO00O (7.114)

The case of 37~ is slightly more elaborate. The binding walls of R[e, —¢] are obtained
from (7.106) with ¥ = 0 and hence j + k = N. Again n = 1 and then (7.107) implies
1<k< % We must then convolve with the isomorphism Interface J0™. The net result
is

Ot =zMeg vy @;V:_ll Zejj—1 Brcpe ¥ BN-kkEN-kE-1 (7.115)

Again, to get a feel for these, we list the cases N = 2,3,4,5:

EOT) = (; ng) (7.116)
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0 0zl
EOT)Y=17Z 0 0 (7.117)
Ro1 Z 0

0 00zl
Z 00 0
0 Z0 0
R31 07Z 0

(7.118)

0 0 002zl
Z 0 00 0
0 Z 00 0
0 Rs2Z 0 0

Riy 0 0Z 0

(7.119)

Using these formulae it easily follows that if B € Bt(7 ) then

E(B); ®EDB)N—j1 ® Ry—j_1; 0<j< VAL
E(BRI ) = { (B); ®EB)N—j-1 ® BN -j-14 o (7.120)
£(B); A <j<N-1
and similarly if B € Bt(7 ") then the Chan-Paton factors change by
E(B)j41 B EDB)N_jo1 ® Ry_j_1j41 0<j<F -1
E(BRIT), ={E(B)n N _1<j<N-2 (7121)

£(3)\! j=N-1

Entirely analogous remarks apply to the Interfaces 3%F. The main difference is that
since ¥(x) increases in the rotation Interfaces the binding walls are past stable. In this way
we find that if B € Br(T) then

P (SB 5 §+_) _JE®) @ EBINn @Ry, 0S5 < P (7.122)
i | &B); M <j<N-1
and if B € Be(T ) then
5(%%&}1 J=0
E(BRIT) = (E®) 1@ EB)N— 1 OBy 1<5<¥ (7.123)
E(B)j1 T <j<N-1

The boundary amplitudes for 3= and J*~ are shown in Figures 90 and 91, respec-
tively. Similar results hold for 3-F and 3.

Now, successive application of these Interfaces generates a sequence of Branes in
T, T starting with one Brane in either Theory. To be specific, suppose B € Br(T ).
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Figure 90: Nonzero boundary amplitudes for J~+.

Figure 91: Nonzero boundary amplitudes for 3.

We then generate a sequence of Branes B[n] € Bt(7+) and Bn+1] € Be(T ) withn € Z
by setting B[0] := B and then defining recursively, for n > 0

1 Bn| XK I+ Y/
Bln 4 1] 4 O " 1 (7.124)
2 BN|RI™T neZ+;
while for n < 0 we take
1 Bn|KIT neZ
B — 1= { B - ; (7.125)
2 Bn] KT nez+s;
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Note that for n positive we are thus taking successive convolutions (well-defined up to
homotopy equivalence)
JITTRITRIT . (7.126)

and similarly for n negative with 3+F. We do not get anything interesting by alternating
JtF and J*T because of the homotopy equivalences:

ITTRIT ~ Jogs TTTRITT ~ Jor- (7.127)

and

TTTRITT ~ Jor TTRITT ~ Jor (7.128)

i

) KOS

Figure 92: A boundary amplitude for 7+~ X 3+ contributing to the extended web shown on the
right arises from the convolution of boundary amplitudes with the taut web shown on the left. This
defines a differential which eliminates the Chan-Paton factors not present in the identity Interface,
upon taking cohomology.

The homotopy equivalences (7.127) are straightforward given our previous discussion
on categorical parallel transport. The equivalences (7.128) require more discussion. A
short computation show that the Chan-Paton data for 7™~ X3~ is

EOT X §*+) =7Z1® @ (R};’N_Q_k © RN k-1kt1) EN—k—1k+1 (7.129)

0<k<f -1

Plainly, the Chan-Paton data differ from those of the identity Interface.

A glance at Figure 92 shows that the problematic chain complexes £(It"KI ™)y 1 k41
have a nonzero differential. Indeed, using the symmetry isomorphism and K we have a
degree zero isomorphism:

~ pl-1
RZ,Nfok - Rl[c+1],ka71 (7.130)
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and with this understood the differential given by Figure 92 acts on RL;? Nek1PRN k—1k4+1
as (rI=1,s) + (0,7). Thus, the cohomology of the problematic terms in the Chan-Paton
data vanishes.

Of course, the above quasi-isomorphism would be a simple consequence of the homo-
topy equivalence (7.128), but, as we have seen with the homotopy equivalence of G{j X 6%
with the identity Interface, explained at length in Section §7.6, more discussion is needed
to establish a homotopy equivalence. The argument in this case is very similar to that for
CH IS

Let us now study the sequence of Branes B[n| for some simple choices of B = B[0]. It
is already quite interesting for thimbles. To begin, suppose that T, € Bt(7 ") is a thimble
with 1 </ < %, i.e. a down-vacuum thimble. Then one can easily show that

(T X j+_)k = O 4—1Z (7.131)

and moreover the boundary amplitudes are all zero. To see this note that since the bound-
ary amplitudes of T, are all zero the only possible boundary amplitude in the convolution
would use the amplitude in the upper right of Figure 91, but for £ in the range 1 < ¢ < %
there is no such nonzero amplitude. It follows that we have

N
TLRITT =%, 1</(< > (7.132)
o _ N -1
TIRITT =%, TeeBr(T ), 0<1< 2 (7.133)
- + N-1
TIXT =% Ty € %t(T ), 0<e< 2 (7.134)
~ N
LRI =%,  TeBe(T), 0<1< 5 L (7.135)

where the results (7.133)-(7.135) are obtained in an entirely analogous fashion.

Equations (7.132) and (7.133) cannot be applied to thimbles for upper vacua nor to
the case of £ = 0. Let us focus on the latter case and consider the more nontrivial sequence
of Branes produced when we take B[0] = To. Then B[3] = 3%]_1 is a shifted thimble.
However, at the next step we find

Ry g §=0
E(B[1]); =<z j=N-1 (7.136)
0 else

Moreover, B[1] now acquires a nonzero amplitude for the fan J = {0, N — 1} given by
K;,im € Rg\l,]flyo ® Ron—1® (Zm)*. See Figure 93.
Proceeding to compute B[3] = B[1] K I*~ we get

1 .
REV}AJ J=0
7] i— N —2
e ="y (7.137)
2 Ry g j=N-1
0 else
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B[1] B3] %

Figure 93: This figure shows how a nonzero boundary amplitude can be generated from the
thimble.

Moreover, computing the boundary amplitudes we find three fans have nontrivial ampli-
tudes They can be interpreted as K ! for fans {0, N—2} and {N—1, N—2} and K (8p.1.n-1)
for {N —1,0}. (These come from using Figure 91, upper right with j = N — 1, lower left
with £ =0, £ = N — 1, and lower right, with £ =0, j = N — 1, respectively.)

Figure 94: These amplitudes are common to B[2] and B[2].
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.razA s Bl B[

Figure 95: These amplitudes are present for B[2] but not for B[2).

If we move on to B[2] = B[3] K I~ then

RE\I;]_M @ RB%,]_LO ®@Ry-10 j=0
1 .
REV]—2,1 J=1
E(B2]); =}zl j=N-2 (7.138)
2 .
REV]—I,O j=N-1
0 else

The nontrivial amplitudes are illustrated in Figures 94 and 95. Note that {N — 1,0} is a
positive-half-plane fan for the Theory 7~ but {0, N —1} is a positive-half-plane fan for the
Theory 7. Thus the “emission line” in the lower left of Figure 95 does not continue into
the positive-half-plane.

We would now like to replace B[2] with a simpler, but homotopy equivalent, Brane,
denoted by %[2] At this stage we must distinguish between the Theories 7.V and GSU(N)
since we need to use special properties of the R;;. We first discuss the case of TN, We
then return and pick up the thread for ’7ZSU(N) at this point.

For TN equation (7.138) simplifies to

zM a7zl =0
z j=1
E(B[2)); = <z j=N -2 (7.139)
z j=N-1
0 else
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We want to eliminate the j = 0 Chan-Paton space so we define %[2] to have Chan-Paton
data:

7,1] j=1

zZN j=N-2

D= v

(7.140)

0 else

with the same boundary amplitudes as in Figure 94.

Now we describe the homotopy equivalence B[2] ~ B[2]. Note that with nonempty
positive-half-plane fans 0 is always in the future. Moreover, {0,i},i=1,N —2, N — 1 are
all positive-half-plane fans for 7. To construct the homotopy equivalence we need closed

morphisms
8, € Hop(B[2], B[2]) = Hop(B[2], B[2]) (7.141)
8, € Hop(B[2], B[2]) = Hop(B[2], B[2]) & D (7.142)
D= (D B2 ® Ros® (E(B[2))" (7.143)
i=1,N—2,N—1

such that the products Ma(01,02) and Ma(d2,d1) are homotopy equivalent to Id:

My (31,05) = Tdgy + Mi(s)

(7.144)
M2(52,(51) = Id%[g] + M1(54).

It will be useful below to compare the boundary amplitudes of B[2] and %[2] and write
B(B[2]) = B(B[2)) + AB (7.145)

The multiplications M) are computed using the taut half-plane webs, and the only
ones with at least two boundary vertices in fact have at most two boundary vertices. (See,
for example, Figure 31 for the case of unextended webs.) This property considerably
simplifies the computation of Ms. To begin we take §; = Id%p] and o = Id%p] @ 0, where
the direct sum refers to the decomposition in (7.142). The equation Ms(d1,0d2) = Id%p]
works nicely with 3 = 0. On the other hand, since B[2] has a nonzero Chan-Paton space
for i = 0 and %[2] does not, M3(d2,61) cannot possibly reproduce Idg(g)),. Therefore,
d4 € Hop(B[2],B[2]) must be nonzero. We take it to have only nonzero scalar component
in End(€(B[2])o). Then the scalar component of the differential is simply given by matrix
multiplication

M (64) = Boods + 04Boo (7.146)

where By € End(E(*B[2])o) is the boundary amplitude induced by the lower left diagram
of Figure 95. Writing vectors in £(*B[2])¢ in the form r @ r9 where r; € 7MW and ry € 712
we easily compute that the boundary amplitude is the linear transformation:

Boo i1 @1y — 07, (7.147)
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Therefore, we can take 4 to be the chain-homotopy inverse
04:71 DT> i1 ®0 (7.148)

so that the scalar component of Mj(d4) is the missing component Idgss2)),- There will
be further contributions from Mj(d4), producing amplitudes with positive half-plane fans
of type {0,1}, {0, N — 2}, and {0, N — 1}. They are given (essentially) by AB, and can
be cancelled by adding (essentially) —AB to d2. Now we have established the required
homotopy equivalence B[2] ~ B[2].

In what follows we will need to employ repeatedly a maneuver very similar to what
we just explained: We will find a pair of Branes B and 9B all of whose Chan-Paton spaces
are identical except for one vacuum j, (the vacuum j, = 0 in the example above) and
whose boundary amplitudes are identical for all amplitudes not involving this distinguished
vacuum. Moreover, we have

E(B), =E(B), eVavll (7.149)
and there is a boundary amplitude in Hop(8,8) in End(€(%B);,) taking
v B vy © g — vy &0 V)] (7.150)

In this case we can find a homotopy equivalence B ~ B, exactly as in the above example.
This will allow us to replace 28 by the simpler Brane B. We call this the cancellation

lemma below.
Returning to our sequence of Branes %B[n]| in the Theory 7:9N we next observe that
‘%[2] is the nontrivial Brane 621]:1 of equation (4.91) above. We now proceed inductively.
1]

Suppose that k < & and that B[k] is homotopy equivalent to B[k] = (’ZL_I. Therefore

zZN i =k-1
~ zZN j=N-—k
B =1 oy (7.151)
Z j=N-k+1
0 else

so we compute

ZMaezl2 j=f—2
AR j=k—-1
EBKRIT); =<zl j=N—-k—-1 (7.152)
AR j=N—k
0 else

Once again there is a component of the boundary amplitude which acts as a differential
on the Chan-Paton space with j = k — 2 and eliminates it upon passing to cohomology.
Our cancellation lemma allows us to replace this Brane with a homotopy equivalent Brane
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Bk + 1] with
(Z0 =k -1

- 1 zZW j=N-k-1
EMBk+=]); = 7.153
0 else

Now we compute again

(ZM @z j=k—1

7] j=
= 1
E(Bk + 5] RIH); = { zl j=N—-k-1 (7.154)
7,2] j=N—k
0 else
and again the cancellation lemma gives us
Bk + ]xj Bk +1] =l (7.155)

completing the inductive step.

The inductive step works until we produce B[k] € Be(T ) for k = [5]. For simplicity
assume first that N is even. Then we compute

Mozl j=5_2
N - AL - N _q
8(%[5] I = 202 j :é (7.156)
2
0 else

The cancellation lemma produces a homotopy equivalent Brane with Chan-Paton factors

zi 5 = |
~ N 1 2 . N
5(‘3[5 5])]’ =429 j=3% (7.157)
0 else
Then we compute again
ez j=Y -1
~. N 1

5(%[5 5] X3 1) =< zk =2 (7.158)

0 else

which, by the cancellation lemma, is homotopy equivalent to a shifted thimble! That is,
we have B[ + 1] = ‘ZE\QI}/Q.

Now using equations (7.132) and (7.133) we can continue the procedure to produce a
sequence of thimbles of down-type vacua, until we get to Tg].
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It follows from the above discussion that

N+1

TR (T RI)

N

(7.159)

a similar story holds if N is odd. In this case the induction works until we get to %[%]
Then %[%] has two Chan-Paton fators Z[ and ZIZ at j = (N —1)/2 and j = (N +1)/2,
respectively, and %[%] = ‘3[53,_1)/2.

We have not worked out the sequence of Branes generated by thimbles for upper vacua.

We next turn our attention to the Theory 7;SU(N). We begin with the sequence of
Branes Bk], k£ > 0 generated by the thimble ¥ in the Theory 7§SU(N). We have already
described the general story up to the Brane 92|, as in equation (7.138). Now, however we

have

g(%p])() = RE\I/]_Ll @ RE\QT]—LO X RN—I,O

(7.160)
—Ale Al @ 4,

Next A[12] ® A = A[QQ] <) S%Q}. It is natural to expect that the differential computed by
the lower left diagram of Figure 95 maps A[;] — A[QQ} as a degree shift, since we know
the amplitudes are all SU(N)-covariant. We will assume this to be the case and proceed,
although we have not checked the boundary amplitudes in detail.

Passing to cohomology we eliminate the two summands of As and using the cancellation

lemma we claim a homotopy equivalence to %[2] with

s j=0
Al =
EEB[2); =z j=N-2 (7.161)
AP =N
0 else

\

Referring to equation (4.117) we identify these as the Chan-Paton factors of ‘ﬂ[ll]. We
expect that the boundary amplitudes coincide with those of ’ﬁ[ll], although we have not
checked in detail. In this and similar equations below we must interpret

Ln,mzo n>1m<0
Lig =S50 =27 (7.162)
Sm =0 m <0

Again, we can proceed inductively. Suppose that B[n] ~ B[n] where B[n + 1] = i)

It is useful to employ the isomorphism Ly 41 = Sy, and rewrite (4.117) as

Ly 0<j< ML
EMy,),; = Ztlntlzy = = 2 (7.163)
" {Smﬁl_?é“ Nl<j<N-1

- 179 -



The boundary amplitudes were described in section §4.6. Now it is straightforward to

compute
L[n-fjfll- @S[_fﬂ @Rn_j_1j41 0<j<&¥ -1
sin, v = { b O v (5028 (7160
Sn+j+27N F-1<j<N-1
Thus, using (4.100) and (4.121) we learn that for 0 < j < & — 1
it o »
EM, MTTT); = L[QT;’—FJS,nlj S L[27;+g,n—j+1 ® L[QZL'JF]:))],n—j (7.165)
Using the cancellation lemma we claim a homotopy equivalence to %[n + 3] with
.3 bl 0<i<¥
E(Bln+ 3)); = { s N 1= (7.166)
Sn+j+2—N 7 -1<j<N-1

Then a similar argument shows that ‘%[njt %] KI~T ~ ’ﬁﬁrl thus completing the inductive
step. Unlike the case of the Theory 7;N , the sequence does not simplify and there is no
periodicity as we increase n. Physically, n is related to a first Chern class of an equivariant
bundle on CPV !, and no such periodicity is expected. See Section §7.10.1 below for further
discussion of this non-periodicity.

If, instead, we use the interfaces §+_,§_+ we find that n is reduced by successive
composition. If B[0] = N,, with n > % then the recursion relations (7.125) give a sequence
of Branes %[f] for /¥ <0and £ € Z + % With this sequence we find for ¢ negative integral
(and not too negative) %[E] ~ Nyt

_ N/
M, X (3** X 3*+) ~ Moy (7.167)

At n— |0 = % — 1 the Chan-Paton factor becomes Z for j = % Proceeding to lower N
the usual cancellation argument in expressions like (7.165) produces zero. Making use of
equation (7.162) note that equation (7.163) makes sense for n > —1 and we can proceed
to reduce n until we get to N_; = ‘ZO_”. We can then continue the recursion (7.125) using
(7.134) and (7.135) to define M, for lower values of n in terms of down-type thimbles. The

process then stops when we arrive at M_;_ /5 = 55\7/12]

At this point we recall the Branes 91, of section §4.6 with

(taking N to be even, for simplicity).

Fl=i—-n] . _ N
EMn); = {Lfﬁfj’”%l 0=i<z (7.168)
Smin_y | B <js<N-1

which makes sense for n > —N/2. Note that N_ Nj2 = ‘15\171/2. The usual arguments then

show that ,

N, X (§+— X §—+) ~ M (7.169)
and hence we can continue to define 0, for values below —N/2 — 1 by taking

(-2]
—1—%—}—71

N v =N

2

n>1 (7.170)
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(We have not checked the above equations at the level of boundary amplitudes.)

The relation of the Branes 91, to thimbles for a certain range of n allows us to fill
in a gap from Section 5.7, namely the proof of equation (5.92). The key idea is that,
thanks to the A,-bifunctor of Section §6.2 the complex between two Branes Hop(B1, B2)
is quasi-isomorphic to the complex obtained by composition with an invertible interface.
If we apply that to the present case then we can write, for the case of two lower vacua
i,j < N/2

Hop(T;, %) = Hop(M!_, o))

=i Hop(m, )

= Hop(To, M), ;)

(7.171)

where =, ; means we have a quasi-isomorphism.
Now assume for simplicity that IV is even. We next use the observation of equation
(7.53) to say that,

H*(Hop(%,, %), My) = H*(ELr(To, M, [n]). dig) (7.172)
Recall from the discussion of equation (7.53) that we should rotate in the direction of
increasing 1, so we should compose with (37~ X 3=F)V/2 to rotate the Brane by 7 and
hence

m[—l}l—i-i—j [71'] = m[—l]l—‘ri—j—N/Z' (7173)

The complex of groundstates is very simple when one of the Branes is a thimble. In this
case there is no differential and the cohomology is the Chan-Paton factor itself. In our

case

[71]1+1'7ij/27 ):dLr) = <g(m[,1]1+i,j,N/2)N/g> (7.174)

Note that although we have the thimble for the vacuum ¢ = 0 on the left side of the strip,
thanks to the rotation by m we should take the Chan-Paton space with vacuum N/2 on

H*(ELr(%o, N

the right-Brane. Next, assuming that j > ¢ we can use equation (7.170) to say

=[-1
g(m[_l]1+i_j_N/2)N/2 = g(m‘[]‘_i]_N/Q)N/Q (7175)

Finally, using (7.168) we have
& ‘ﬁ[ ’ = S’[i 7l 7.176
(O i ny2) g2 j—i (7.176)

Putting together equations (7.171)-(7.176) we finally arrive at a proof of equation (5.92).

We expect that similar manipulations allow a computation of the cohomologies of the
groundstate complexes such as (4.128) and the spaces of local operators in (5.93) and
(5.94).
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7.10.1 Powers Of The Rotation Interface

It is rather interesting to examine the powers of the Interface 37— := 37~ X J~T that
corresponds to a rotation by 27 /N in the worldvolume of the Theory. We will discuss this
at the level of Chan-Paton factors, without investigating the boundary amplitudes.

The Chan-Paton data of J7~T is the matrix of complexes:

N-2
E0T) = RE\II}—LOGO,O ® @ Zeji1; ® ZMeq n_1
=0 (7.177)
& @ Ryaggenj;e @ Ryoijnenoigy
1<j<(N—1)/2 0<j<(N—2)/2
Explicitly, for N = 2 this is
1~
£t ) = (RLO z ) (7.178)
Z 0
and for N = 3,
Ry, 0zl
EGTH =112z 0 0 (7.179)
Roi Z 0

The equation (7.159) suggests that for ¥ the (N + 1) power is homotopy equivalent
to a (shifted) Identity interface. Indeed, one easily checks that the third power of (7.178)
is just
72l & 712 & 7131 712] 3 73]
( ©LT e © (7.180)

72l @ 73] 7,2]

and is quasi-isomorphic to Z?15. Similarly, a check by hand shows that the fourth power
of (7.179) is quasi-isomorphic to Z[?13, and we conjecture that for all N, (J+—H)2WNV+1) jg
homotopy equivalent to the isomorphism Interface given by a degree shift of 2. There is a
simple intuitive explanation in the LG theory 4.138 for this result. The effect of convolution
with 3%~ or 3= on geometric branes simply rotates the sectors at infinity by one unit
and deforms the geometric brane accordingly by a rigid rotation by 27/(N 4+ 1) in the ¢
plane. 2 As there are 2N + 2 sectors, the (N + 1) power of the interface J*~J~F acts
geometrically on the branes by rotating it by 27 back to itself in the ¢ plane.
In fact, the characteristic polynomial of £(J7~) is given by the remarkable formula:

N—-1
det(zly — (O T) =2V + > Rjad +1 (7.181)
j=1

where we interpret a shift by [1] as a minus sign and we use the property that Ry, = Rq—p
only depends on the difference a — b. For a proof see Appendix §D

For the Theory 7J' we have R; = Z, and hence the “eigenBranes” of 37~ have
cigenvalues given by the N nontrivial (N + 1) roots of unity. This proves that (3J7—+)N+1

is homotopy equivalent to the identity (up to an even degree shift).

*2Do not confuse this with the origin of the Interfaces from rotations by 27/N in the (x,7) plane.
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We can also apply equation (7.181) to the Theory %SU(N). Now we have R; = An_;
so, at the level of the Witten index we can factorize equation (7.181) to get the character

N
[+t (7.182)
i=1
where t = Diag{t1,...,tn} is a generic element in the diagonal Cartan subgroup of SU(N).
It is natural to suspect that the “eigen-Branes” can be interpreted in the CPN~! B-model
as Dirichlet branes located at the N fixed points of the natural SU(N) action on the
homogeneous coordinates, with eigenvalue ¢;. The result (7.182) will be very useful when
we discuss local operators in Section §9.3 below.

8. Categorical Transport And Wall-Crossing

8.1 Preliminary Remarks

We now return to the general situation discussed at the beginning of Section §7. In Section
87 we considered in detail categorical transport of Brane categories associated to paths of
weights @ given by spinning weights (7.4). In this section we consider more general vacuum
homotopies. In particular we will consider three kinds of vacuum homotopies:

1. Vacuum homotopies {z;(s)} which are more general than (7.4) but do not cross the
real codimension one walls of special webs described in Section §2.5. In this case the
webs behave in a very similar way to those of (7.4). We will call these tame vacuum
homotopies. They are discussed in Section §8.2.

2. Vacuum homotopies {z;(s)} which cross the exceptional walls described in §2.5 above.
This is discussed in Section §8.3.

3. Vacuum homotopies {z;(s)} which cross walls of marginal stability described in §2.5.
This is discussed in Section §8.4.

In Section §7 we constructed Interfaces J[0(z)] € Be(T% T"). Given T* there was
a canonical choice for 7" given by taking “constant” web representation R and interior
amplitude 5. In this section we will see that the more general paths of weights listed above
make a canonical determination of 7" given 7* somewhat more problematical. The reason
for this is that there can be wall-crossing phenomena associated to the data (R, ) used to
define a Theory. In particular, we will see that if p(s) crosses an exceptional wall then the
L. algebra of closed webs will in general change because the taut element will in general
change. Therefore, in general the interior amplitude will change. If p(s) crosses a wall
of marginal stability then the set of cyclic fans will change and hence R™ must change.
Indeed, in general when crossing a wall of marginal stability both the interior amplitude
and the web representation R will change. The rules for the discontinuity of R lead to a
categorification of the Cecotti-Vafa-Kontsevich-Soibelman wall-crossing formula.

We will now make the notion of a “change of Theory” somewhat more precise. Given
a vacuum homotopy g : R — CY — A we say that a family of Theories 7 (s) is continuously
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defined over g if for all ¢ # j the R;; form a continuous vector bundle with connection
over g such that K;; and 8 are parallel-transported. If we can and do trivialize the bundle
with connection then R;j, K;j;, 5 are all constant. As mentioned above, when the path p(s)
crosses walls with special configurations of weights there will be obstructions to defining
a continuous family of theories over that path. Instead, we can only define piecewise-
continuous paths of Theories over p. Naively, the only discontinuities are located at the
walls of special weights described in Section §2.5. We will assume this for the moment,
but that assumption will need to be revised for reasons described in Remark 2 below. A
formula for the discontinuity of T is a wall-crossing formula. Let T~ denote the Theory
just before the wall and let 7' denote the Theory just after the wall. Thus, a wall-crossing
formula is, in its simplest incarnation, just a prescription for determining (R*, 37) from
(R™,57).

Given such a wall-crossing rule, if we have path of vacuum weights @ then, given 7*
we can construct a corresponding piecewise-continuous path 7 (s) of Theories. The wall-
crossing rule should then be constrained by requiring that the path 7 (s) behave suitably
with respect to homotopy and concatenation of paths of vacuum weights p. Heuristically
speaking, we want to define a “flat connection on Theories.” However a little thought
quickly shows such a parallel transport rule must be defined on a suitable equivalence class
of Theories. In order to motivate the relevant notion of equivalence let us say a little more
about how we propose to approach the wall-crossing formula.

As in Section §7 our theme will be to interpret the variation of parameters 7 (s) as
spatial-variation of parameters, so we will have spatially dependent vacuum weights p(x)
and spatially-dependent data of Theories 7 (x). Then it is quite natural to interpret a
discontinuity of theories across some point x, in terms of a suitable “wall-crossing Interface”
Jve e Be(T,TH).

Let us make this slightly more precise. We assume that there exist xy and z, so that
o(x) is constant for x < xy and = > z,. Choose such points and let 24V = C and
2"+ V — C be the corresponding weight functions in these regions. Then there should be a
corresponding piecewise-continuous family of Theories 7 (z) interpolating between 7¢ and
T" together with an Interface

3T (x)] € Be(T*, T (8.1)

generalizing equation (7.46). As before, such a family of Interfaces allows us to define a
functor of Brane categories F : Bt(T*) — Br(T") and hence define a categorical transport
law on Brane categories.

When trying to construct the relevant Interfaces we will keep in mind the following
three useful guiding principles:

1. The Interfaces for paths such that z;;(x) is never pure imaginary should already define
functors between the vacuum categories Vac(V, z¢) and Vac(V, 2"). In particular the
Chan-Paton factors of J[7 (x)] will be & = d;¢Z.

2. We must have properties (7.2) and (7.3): First, if there are two piecewise-continuous
families of Theories 7 (x) and 7?2(x) that can be concatenated at a point of continuity
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then
ITH(2)] ®I[T2(x)] ~ [T o T?(x)]. (8.2)

Second, let € be the exceptional set of weights in CV — A described in Section §2.5.
That is, the subset {z;} where some subset of three or more weights is colinear, or
where there are exceptional webs. Then, if pP(z) and pf (z) are paths in C¥ — A — &
homotopic in C¥ — A — & through a homotopy keeping fixed (V, z¢) and (V, 2") for
r < zfand 2 > 2" and TP(x) and T/ () are corresponding paths of Theories then

TP (@) ~ AT ()] (8.3)

are homotopy equivalent Interfaces. As before, given such Interfaces we have a notion
of flat parallel transport along @ from the category of Branes ‘Bt('Tg) to the category
of Branes Bt(7"), generalizing what was constructed in Section §7.

3. Because the underlying physical theory is rotationally invariant the Interfaces should
come in a vY-dependent family, intertwined by the rotation interfaces. To be more
precise, for any path ¥(z) of real numbers from 0 to ¥ we can concatenate the path
o(2) from {z{} to {27} with a path e™¥(®)27 from 2] to e7V27. Alternatively we can
concatenate the path e (®)2f with the path e " p(z). The homotopy z;(z)e W)
shows that these two vacuum homotopies are homotopic and hence it follows from
(8.2) that 43

R[0, 9] K I[e VT ()] ~ I[T (z)] K R[0, 9] (8.4)

More geometrically, we can imagine rotating the plane by angle ¥ and defining in-
terfaces for the rotated Theories for vacuum homotopies defined along the rotated
z-axis. Of course, this should not essentially change the parallel transport, and that
is what equation (8.4) is meant to express. Note in particular that if we set ¥ = 27
then J[e~2™T ()] = J[T (x)] are literally equal, but 2[0, 27] might well be nontrivial.

We can now say what our notion of equivalence of Theories will be. We say that
Theories 7' and T2 are equivalent Theories if there exists a periodic family of invertible
Interfaces JY between 7Y and 72 which intertwine with the rotational Interfaces in the
sense of equation (8.4). The auto-equivalences of a Theory with itself form a kind of “gauge

7

symmetry” of the “flat connection on Theories.” We should only hope to define parallel
transport up to such “gauge symmetry.” As a simple example, the dependence of equation
(8.1) on zy and z, is only up to equivalence of Theories in this sense.

Conditions 1,2,3 above on the Interfaces J[7 ()] are certainly rather restrictive. We
do not know if they are defining properties.

In the remainder of Section §8 we will construct Interfaces and rules for constructing

T (x) for paths p which cross exceptional walls and walls of marginal stability. We will

43The notation MR[0, ] is slightly ambiguous since the interface actually depends on the initial Theory,
just like in equation (8.1). The two appearances of this Interface in (8.4) are hence slightly different. Also
the notation e 7 (x) means that we take the same continuous family of (R, ) but the vacuum weights
—iv
are e "V z (x).
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see that the existence of such Interfaces imposes strong constraints on how the interior
amplitude and the web representation can vary along the family. The problem of finding
the Interfaces is over-determined and thus invertibility of the Interfaces, compatibility with
rotations, homotopy invariance, etc. give constraints on the family 7 (x). This phenomenon
is a categorical version of the derivation of the wall-crossing formula for the p;; from the
properties of framed BPS degeneracies under deformations of parameters [30, 31, 75].

Remarks

1. A more ambitious formulation of a wall-crossing formula is to give an L., morphism
%P between the planar web algebras determined by (V*,2%) compatible with an
L morphism v between the L..-algebras associated with the Theories 7F. We
will, in fact, do this for crossing exceptional walls. One should probably go further
and construct an “LA., morphism” of “LA,, algebras.” which is compatible with a
functor F : Br(T ) — Be(T ). We have not done that. It is not clear to us if such
data is uniquely determined by giving families of Interfaces (8.1).

2. There is a natural notion of “inner auto-equivalence” between Theories 7+ which
have the same vacuum data and representation of webs, but interior amplitudes
which differ by an exact amount:

BT =B+ ps_(V)]e] (8.5)

where € is a degree 1 element in R™ supported on a single fan I.. Because of the line
principle, p(e?") = ps_ (e~ (6)) =0 if p(e’”) = 0. It is straightforward to map the
Brane categories of the two Theories into each other, simply by shifting boundary
amplitudes in a similar fashion:

B =B~ +pp_(to)

= (8.6)
This transformation can also be implemented by a family of interfaces 37 which
differs from the identity interfaces only by a shift by e of the boundary amplitude.
It is possible to show that these interfaces are truly invertible (i.e. not just up
to homotopy) and commute with rotation interfaces. Indeed, the two sides of the
commutation relation 8.4 for these interfaces only differ by an exact term added to
the boundary amplitude. It is also possible to recast these relations in the form of

an LA, algebra isomorphism. %

3. Inner auto-equivalences play a role in the relation between Theories and concrete
physical theories: although we expect to have a direct map from physical theories

441n order to prove these statements, it is useful to observe that the amplitude for a web defined in the
presence of an 37 interface which includes an insertion of € at an interface vertex is identical to the amplitude
for a web with the same geometry defined in the absence of the 37 interface. By this identification, the MC
equation for J7 becomes 8.5, the definition of B X J? maps to 8.6 and 8.4 maps to the convolution identity
for curved webs.
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to Theories, the image of the map may change by inner auto-equivalences as we
vary the parameters of the underlying physical theory, even if the corresponding
vacuum homotopy does not cross the exceptional set €. These jumps will occur at
co-dimension one walls whose position depends on the detail of the underlying theory,
possibly including D-term deformations. We will therefore call these phantom walls.
Because of the possibility of phantom walls, we should really map physical theories
to equivalence classes of Theories up to inner auto-equivalences. Correspondingly, in
physical applications any “categorical wall-crossing formula” should be understood
up to inner auto-equivalences. It is also possible to envision another class of phantom
walls, across which the R;; themselves may change to a homotopy equivalent complex,
which would require one to quotient the space of Theories further in order to define a
robust map from physical theories. We leave open the problem to identify which type
of equivalences between theories should be associated to the most general possible
phantom walls.

4. We can elaborate further on the possibility of phantom walls in the context of physical
theories such as the Landau-Ginzburg theories we discuss in Sections §§11-17. Sup-
pose we are given a one-parameter family of superpotentials W (¢; s), say with s € R.
Following, Remark 9 of Section §2.1 we obtain a vacuum homotopy {z;(s)}. In gen-
eral, there will be isolated points s, where W, admits exceptional {-instantons with
fan boundary conditions. (See Section §14 below for a discussion of (-instantons.)
Such exceptional instantons will have a moduli space whose formal dimension (given
by the index ¢(L), discussed in Section §14.3 below) is 1. This means that the am-
plitude associated with the path integral with fan boundary conditions (as discussed
in Section §14.6) will define an element v € R™ with fermion number +1. It can
be inserted into some taut webs in t;, to produce an element pg[ts,]() of fermion
number +2. This will contribute to a jump in the interior amplitude 5 as s passes
through s.. In terms of (-instantons, as s — s, the size of the relevant (-web that
can accomodate the exceptional instanton at a vertex will grow to infinity. This is
an infrared phenomenon associated with working on a noncompact spacetime; it has
no counterpart to invariants associated with topological field theory integrals defined
on compact manifolds.

5. We should note that these are by no means the most general continuous families we
could consider. An important variation on the above ideas involves replacing the
vacua V with the fibers of a branched covering 7w : ¥ — C, where C is a space of
Theories. This is the setup appearing in the 2d4d wall-crossing formula of [31]. It
should be possible to extend the ideas of the present paper to the more general setting
of a branched cover, but, beyond some remarks in Section §18.2, that lies beyond the
scope of this paper.

8.2 Tame Vacuum Homotopies

We define a tame vacuum homotopy to be a vacuum homotopy {z;(z)} such that:
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1. For all x the set of weights {z;(x)} is in general position, in the sense of Section §2.5.

2. Each taut web in WEB|z] (the set of plane webs determined by the vacuum weights
{zi(z)} ) fits into a continuous family of webs, in the sense defined in Section §6.3.3.
Moreover, no taut web is created as x varies.

Given these criteria we can speak of a single web group W and there is a continuously
varying planar taut element ty(x). We can also define curved webs precisely as in Section
§7.1 and hence we can define the curved taut element t to be the sum of oriented deformation
types of curved taut webs, i.e. those with expected dimension d = 1. We can then write a
convolution identity for t. We make the assumptions contained in the paragraph containing
equation (8.1). In particular, the vacuum data (V,2%) and (V, 2") define web groups W*
and W". We can define t,; = tf;l + t,, to be the formal sum of the planar taut elements
in the web groups. Similarly, we let t” denote the taut interface element for an interface
separating vacuum data (V, 2¢) and (V, z"). Then we have the analogue of equation (7.22)

. Ta(t“)[%] 0. (8.7)

We choose the representations R’ and R of the webs determined by (V, 2¢) and (V, 2")
to be the same, indeed we can think of a constant, i.e. z-independent representation of the
vacuum data (V, z(x)). For a tame vacuum homotopy the set of cyclic fans is constant so
R™™ is constant. Moreover, since the taut element ty1(z) varies continuously it makes sense
to speak of an z-independent interior amplitude 8. We can therefore define the contraction
operation pg on curved webs and then (8.7) implies that

1

ZIG [m

=0 (8.8)

where the superscript 0 on p% (t) indicates that the interior amplitude S is inserted at all
vertices of the curved taut element t. It follows that p% (t) can be regarded as an interface
amplitude, where the Chan-Paton factors for the interface are given once again by the
formula (7.28), repeated here:

ojpevEipeiy =) Q) Si(xo), (8.9)

i£j T0EY 5 Uk

where we just take zg in the interval (:L‘E ,x"). Strictly speaking we should define binding
points and binding walls in the more general context of tame vacuum homotopies, but the
definitions of Section 7.4.1 are essentially the same and will not be repeated.

Therefore, to a tame vacuum homotopy and a choice of points xy, x,, with corre-
sponding Theories 7¢ and 7" determined by a constant web representation R and vacuum
amplitude 8 we can construct an Interface between the theories.

We can now imitate closely the ideas used in Section §6.3. If we are given a tame
homotopy p(z,y) between two tame vacuum homotopies pP(z) and o/ (z) then there is a
set of weights z;(x,y) which we can regard as space-time dependent with z”(z) in the far
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past and zzf (x) in the far future. Curved webs again make sense with these space-time
dependent weights and we can use them, together with a constant web representation and
interior amplitude to construct a closed invertible morphism Id+d[p(x, y)] between J[pP (z)]
and J[p/ (z)]. Again we can define the time-concatenation or of two such homotopies and
we claim that

Id + 6[p" op p?] = My(Id + §[p'], Id + 6[p?]) (8.10)

Finally, as in Section 6.3.3 a homotopy of homotopies p(x,y; s) with fixed vacuum weights
2¢ for x < xp and 2" for > x,, and fixed pP(z) in the far past and pf(z) in the far
future defines a homotopy equivalence between the morphisms Id + §[pP(z)] and Id +
S[pf (x)]. Tt then follows from (8.10) that homotopies between vacuum homotopies lead
to homotopy-equivalent Interfaces thus checking (8.3) for tame homotopies between tame
vacuum homotopies. In a similar way we can also check equation (8.2) for concatenation
of tame vacuum homotopies.

Figure 96: An exceptional web which appears only at s = s, in a family of webs defined by {z;(s)},
s eR.

8.3 Wall-Crossing From Exceptional Webs

We now come to a different kind of path of vacuum weights where p(z) crosses a wall of
exceptional webs. For simplicity assume first that exceptional webs exist only at a single
point .. It will be useful to consider first an abstract family of weights {z;(s)}, with
s € R and consider the h-types of webs for this family rather than curved webs. (Recall
the definition of h-type in Section §6.3.3.) The exceptional webs appear only at s = s,.
We will describe how such families lead to Lo.-morphisms of the Lo, algebras (W, T'(t)) of
Section §3 and (R™, ps(t)) of Section §4.1, as well as A-morphisms of the A, algebras
defined by ty. Then, when we consider the family as an x-dependent family of weights we
describe the wall-crossing in terms of a suitable Interface.

8.3.1 L-Morphisms And Jumps In The Planar Taut Element

Let us begin with an example.
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Figure 97: A non-exceptional web which can degenerate as s — s, to the exceptional web shown
in Figure 96.

Figure 98: The taut web of Figure 97 disappears for s > s,, and near s = s, its h-type can be
written as a convolution of an exceptinol web with a taut web.

Suppose that the family of weights {z;(s)} admits an exceptional web such as that
shown in Figure 96 at s = s,. If we study the behavior of webs in the neighborhood of
s several things can happen. The vertex with fan I = {1,2,3} will continue to exist for
all s, but it will typically happen that it will not “fit” into any larger triangle with fan
I = {5,6,7}. When this happens there are several different subcases:

1. It can happen that the exceptional web of Figure 96 is not a degeneration of any web
that exists for s # s.. Such a web then has no effect on the L., algebras (W, T'(t))
and (R™, pg(1)).

2. It can also happen that there is a vacuum with weight z4(s) so that the web of Figure
96 can be viewed as a degeneration of a nearby non-exceptional web, such as that
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Figure 99: Another exceptional web in the exceptional class of the web shown in Figure 96.

Figure 100: An exceptional sliding web that will appear in the convolution ¢ x t. To see this
convolve the vertex with fan {2,5,8,6,3} of Figure 99 with a suitable taut web.

shown in Figure 97. Here, some set of edge constraints are effective for s # s, but
become ineffective, or linearly dependent, at s = s.. Geometrically, some set of edges
and vertices shrinks to a single vertex. Generically, we will have a triangle shrink
to a single vertex, reducing the contribution of this set of edges and vertices to the
expected dimension from 3 to 2. The result is an exceptional web. In this case there
are two further subcases we must consider:

3. It can happen that such nonexceptional degenerating webs exist both for s < s, and
s > 8x. Again, when this happens there might or might not be a difference in the
Lo algebras (W, T(t)) and (R™, ps(t)) defined by webs for s < s, and s > s,. This
can be understood once we understand the next and last case.

4. On the other hand, it can also happen that the degenerating web of Figure 97 exists
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Figure 101: Terms in t* ¢ such as this cancel the exceptional sliding webs such as those shown in
Figure 100.

Etxe

Figure 102: A typical component of the moduli space of sliding h-types for the family {z;(s)}.
(Three dimensions for translation and dilation have been factored out.) It can happen that the only
nonzero component is just t+ or t~, as could happen for the case of Figure 96. Or it can happen
that there are several branches meeting at s = s,, as for the case of Figure 99. Comparing the
boundaries of this dimension one complex leads to the convolution identity for exceptional webs.

for s > s, but not for s < s, or vice versa. Note that the web of Figure 97 is a taut
web. If it exists for s > s, and not for s < s, (say), then there must be a change in
the taut element and hence a change in the Lo algebras (W, T(t)) and (R™™, pg(t)).
We are most interested in this fourth case.

In order to understand how the algebras (W, T'(t)) and (R™™, ps(t)) change in the fourth
case above let us first note that the web of Figure 97 can be written as a convolution as in
Figure 98. Thus, a convolution of an exceptional web with a non-exceptional web can be
non-exceptional. Moreover, given the rule (2.9), in such a case the convolution of a taut
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exceptional web with a taut non-exceptional web will be a taut non-exceptional web. This
example suggests that we can write the change in the taut element t© — t~, where t* are
the taut elements for s > s, and s < s, respectively, in terms of ¢ x t where ¢ is the sum
of oriented exceptional taut webs and t is the sum of taut webs that do not change from
S > 8y 10 8§ < 84.

There is a problem with expressing t© — t~ in terms of ¢ * t. The problem arises from
the fact that there can be further exceptional taut webs such as that shown in Figure 99.
Indeed, we will refer to the set of exceptional webs obtained by shrinking the same small
triangle as an exceptional class of webs. Generically e will be the sum over one exceptional
class. Quite similarly to the case of Figure 96, the web of Figure 99, and indeed every
web in the exceptional class, can be viewed as a degeneration of a nonexceptional taut web
obtained by taking the convolution of the {1,2,3} vertex as in Figure 98. However, the
problem is that the convolution et will also typically contain exceptional sliding webs. An
example is shown in Figure 100. Such terms must clearly be cancelled off from e * t since
tT — t~ contains no exceptional webs. We can do this by noting that Figure 100 can also
be degenerated by shrinking the exceptional triangular web, producing a boundary in the
form of a convolution as shown in Figure 101. This suggests that we should subtract t e
from e xt. Note that tx* e is always exceptional, and hence will always produce exceptional
sliding webs.

We now generalize the above example by considering the h-types of the webs defined
by {zi(s)}. The moduli space of sliding h-types (that is, h-types of h-dimension 4) will
have typical components that (for the doubly-reduced moduli space) look like Figure 102,
which the reader should compare with Figure 59. Comparing the boundaries of this space
leads to the convolution identity for jumps in the taut element due to exceptional webs:

th—t =ext—txe (8.11)

where, again, ¢ is the sum of exceptional taut webs at s = s, and t is the sum of taut webs
which do not change across s.. In the next paragraph we explain that the taut element t
on the right-hand side can be either t or t~.

At this point we need some properties of exceptional webs. Let us call the difference
between the dimension of the moduli space of a web and its expected dimension, that is,
D(ro) — d(w), the excess dimension. In a generic one-parameter family of webs the excess
dimension will only jump by 4+1. Thus, for example, in a family where the web of Figure 97
degenerates to Figure 96 the excess dimension jumps by +1. Let us call the fans at infinity
I, for the exceptional webs exceptional fans. In any web, the set of local fans I, (tvo), for
v € V() will contain at most one exceptional fan. Otherwise the excess dimension would
jump by more than £1. Moreover, no local vertex I, of an exceptional web can be an
exceptional fan, since resolving such a web would change the excess dimension by more
than +1. It follows that the taut webs which do jump across s, cannot have exceptional
fans as local vertex fans. Therefore, we can replace t on the right-hand-side of (8.11) by
either t* or t~.

Given the change in the taut element (8.11) how can we express the change in the L
algebras (W, T'(t)) and (R™, p5(t))? We will focus on R™, which is somewhat simpler and
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just remark on the former case at the end of this section. It is natural to try to relate the
two Lo algebras for s > s, and s < s, using an Ly,-morphism.

Recall that, in general, given two L., algebras (/ji, bi) an Lo, morphism~y : (L7,b7) —
(L*,b%) is amap v: TL™ — LT such that, for all monomials S € TL~ we have

Z Z €b+(’)’(81),...,’)/(5k)): Z 67(b7(sl)732) (812)

k Shy(S) Shy(S)

where € are signs following from the Koszul rule. See Appendx A below for more precise
definitions. It is easy to show that, given an L., morphism v and a solution 5~ of the Ly
MC equation for (£~,b~) we automatically get a solution

BT =) (8.13)

of the MC equation for (£T,b7).
Now we claim that
v =1+ ple] (8.14)

is an Loo-morphism, where 1 is the identity on R™ and vanishes on the higher tensors
(Rmt)®n with n > 1. To prove this first note that if it is an L., morphism then we must

have
Bt =7(”)
— 5+ () (8.5
=B+ py-lel.

Again, 87 and B~ will only differ on summands R; where I is an exceptional fan. As we
have just explained, these are never the fans at vertices of an exceptional web so we may
write p%, [e] = p%Jr[e] and hence it is also true that 3~ = 7 — pg,+ [e]. Note that (8.15) is
compatible with equation (8.11) because

[€1(e7T) + plex (e77) — pltx (")
(€105 [¢]) + ps [e] (0% [) — o+ 1610 [e]) (8.16)

pltt](e”)

[
© ™

To get to the last line the first and third terms of the second line cancel and the middle
term vanishes, after using the definition of an interior amplitude.

Now to prove that (8.14) is in fact an L., morphism recall that taut webs can have
at most one exceptional fan as a local fan I, at its vertices. Therefore, in (8.12) on the
left-hand-side p[e] can appear at most linearly. (It might appear linearly through the
expansion of ¢’ using (8.15) or it might act on the arguments of S.) This, together with
the properties of 1 simplifies the sum over k-shuffles considerably and the required identity
follows from applying a representation of webs to the convolution identity (8.11).

Remarks
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1. The final arguments using equations (8.15) and (8.16) made use of the finiteness
properties of V and the line principle. In general we would like to have more general
arguments since some of the main applications, namely knot homology and categori-
fied spectral networks will not enjoy those finiteness principles. We expect that in
general there will be an L., morphism to express the change of the interior amplitude.

2. Let us return briefly to discuss the change in the L, algebra of planar webs (W, T'[t]).
It would be preferable to describe the jump in this algebra and then apply web
representations to obtain the jump in (R™, ps[t]). Roughly speaking, we expect that
there will be an equation of the form

Tlty](e?) =gt (8.17)

for some object g generalizing t + ¢ (where v is the rigid element). Some further
thought suggests that in order to give a direct geometric meaning to such a formula,
and in particular to g itself, we need to cook up a setup which is translation invariant,
but not scale invariant: g has degree number 2! For example, we could let the slope
of an edge depend on its length, so that long edges are controlled by the vacuum
data for s > s, and short edges by the vacuum data for s < s,. Then the set of rigid
webs in such a setup would give us a degree 2 object g. Sliding webs in such a setup
would give the desired convolution identity: large web endpoints of moduli spaces
will look like a large taut web in t; with all vertices solved to g rigid webs, while
small web endpoints will look like a rigid web in g with a single vertex resolved into
a taut web in t_. The advantage of this complicated construction is that it would
probably work in situations with weaker finiteness properties. The disadvantage is
that the prescription seems somewhat ad hoc and unphysical.

3. Returning to the path p(x) defining x-dependent weights and curved webs, when z
passes through z, we will introduce in Section §8.3.3 below an Interface whose (Ax)
Maurer-Cartan equation is equivalent to the condition (8.15) above. Then, if there
are several values of x where p(x) passes through an exceptional wall we simply take
the convolution of the Interfaces.

8.3.2 A, .-Morphisms And Jumps In The Half-Plane Taut Element

Let us fix a half-plane H, for example the positive or negative half-plane, and continue to
consider the family of weights {z;(s)} with exceptional half-plane webs appearing at s = s,
and for no other value of s. It is possible for both plane and half plane exceptional webs to
appear at the same value s = s,. Indeed, for any class of planar exceptional webs we can
make half-plane exceptional webs by taking an extremal vertex of the planar exceptional
and interpreting it as a boundary vertex. See, for example, Figure 103. In this way we can
construct taut exceptional half-plane webs from taut planar webs. We will denote the sum
of oriented taut half-plane exceptional webs at s = s, by ¢y and the sum of oriented taut
plane exceptional webs, if present at s = s,, by e.
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Figure 103: Exceptional half-plane webs for the positive and negative half-planes, whose existence
follows from Figure 96.

If we consider the moduli space of sliding h-types of half-plane webs we derive the
convolution identity:

th—t; =eg oty +egrty —tgxe —ty* ey (8.18)

Adopting the usual arguments based on finiteness and the line principle, it does not matter
whether we take t;[l or t(?}t on the right hand side.

Let us now suppose that B~ is a boundary amplitude for the positive half-plane for
a Theory 7~ with vacuum weights z;(s_) with s_ < s,. We must also choose R and
Chan-Paton data £. Now, holding R and & fixed, consider a Theory T+ for z;(sy) with
s+ > s.. We can construct a new solution B* to the MC equation of 7+ if we set

L
1-B"

B =B~ + pa(eo)| (8.19)
Again, we are using heavily the finiteness principle to insure that this expression is well-
defined, and independent of the choice of B or ¥ on the right hand side. To verify it
one must take

o) | e (5.20)

and expand everything in terms of amplitudes and webs for s < s, using (8.15),(8.18) and
(8.19). After a few lines of computation, using the finiteness properties and the fact that
B~ and S~ are boundary and interior amplitudes one finds that (8.20) is indeed zero.

An obvious way to extend this analysis to more general situations would be to think
in terms of an A, morphism vy from the As-algebra (R?, ps-(t;)) to the A-algebra
(R?, pg+(t3)), mapping B~ to B. In the case with a single class of exceptional webs, the
morphism is 79 = 1 + pg(ea), in close analogy to the case of planar webs.

Remarks
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1. We could probably extend the above discussion to define an LA, morphism from
p(ty) to p(t}), which coincides in the simple case with 1+ pg(es). (See Appendix
§A.6 for the definition of an L A,,-morphism.)

2. As in the planar case we could give a geometric meaning to these general structures
by using the same trick to break scale invariance, considering half-plane webs with
edges whose slope depends on the length. Rigid webs in such a setup would define an
element gp mapped by a web representation to v, and satisfying automatically the
required axioms.

Figure 104: We consider an interface with weights {z;(s. + €)} in the positive half-plane and
weights {z;(s« — €)} in the negative half-plane. In the upper center we show a typical interior
amplitude which is discontinuous at s, because of the exceptional web of Figure 96. There is a
unique corresponding taut interface web obtained by placing a vertical slice through an adjusted
version of the exceptional web. Two (out of three) possible places for the placement of this vertical
slice are shown in the lower left and lower right. Only one of the three possible vertical lines will
actually admit a solution to the edge constraints.

8.3.3 An Interface For Exceptional Walls

We will now construct an Interface J*¢ whose Maurer-Cartan equation is equivalent to
the discontinuity (8.15) of the interior amplitude and which induces a functor on brane
categories reproducing the discontinuity (8.19) of boundary amplitudes.

We continue to consider the continuous family {z;(s)} of vacuum weights crossing an
exceptional wall at s,. For simplicity we restrict ourselves to the generic situation where
a single class of exceptional webs appear at the jump locus, and use all the necessary
finiteness constraints.

Our Interface 3¢ will separate two Theories with vacuum weights {z;(s. —€)} in the
negative half-plane and {z;(s.+€)} in the positive half-plane. The Interface will be formally
the same as the identity Interface J9. That is the Chan-Paton factors are simply 9; ;Z and
the nonzero interface amplitudes are all 2-valent and take the value KZ; le R;; ® Rj;. The
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main difference from the case of the identity Interface J9, is that the interface taut element
is now more interesting and the Maurer-Cartan equation satisfied by J°*¢ is more subtle.

Quite generally, given any continuous family of weights {z;(s)}, by taking a vertical
slice through a planar web v with weights z;(so), where the slice does not go through any of
the vertices of v, one can make a corresponding interface web ' (adding 2-valent vertices
where the lines intersect the vertical slice). One could then deform the interface web so
the slopes have weights z;(sg + €) in the positive half-plane and z;(sgp — €) in the negative
half-plane. This procedure will never change the expected dimension: We always add a
boundary vertex and an internal edge so d(t) = d(1w'®). In general, the procedure also
does not change the true dimension: D(t) = D(w'®®). Thus, in general, if we apply the
procedure to planar taut webs we get interface sliding webs. However, in the special case
when we apply this procedure to an exceptional web with sy = s, the resulting interface
web is non-exceptional: D(n') = d(r0'®). In particular, if we apply the procedure to an
exceptional taut planar web we then produce a taut interface web. We claim, moreover,
that for each deformation class of exceptional taut web at s = s, the procedure will yield
a unique deformation class of taut interface web separating weights z;(so & €). See Figure
104.

It then follows that the Interface J*¢ has a more subtle Maurer-Cartan equation than
that of J0. Since some interior amplitudes By are discontinuous we cannot apply the
simple argument of Figure 40. But we know from equation (8.15) that S; will only be
discontinuous when [ is an exceptional fan. These extra terms are precisely compensated
by the taut interface webs such as those shown in Figure 104! The Maurer-Cartan equation
thus becomes

BT =B = pale] (8.21)

and thus the MC equation for 3¢ is equivalent to the discontinuity condition (8.15), as
was to be shown.

In a similar way, if we try to compose our Interface with a Brane, the only non-trivial
taut (=rigid) composite webs will be in one-one correspondence with exceptional taut half-
plane webs through a similar procedure of introducing a vertical slice. Thus the Ay.-functor
Frexe defined in (6.49) implements the discontinuity equation

B~ B = pales) ) (8.22)

The Interface J°*¢ we have just constructed represents the discontinuity of Theories for
crossing an exceptional wall. It is thus similar to the Interfaces 6%’-f for crossing S-walls.
In a way analogous to the general Interface for spinning webs of Section 7, we can use
the concatenation property (8.2) to define Interfaces for more general paths p(x) which
can cross several exceptional walls by taking suitable compositions of the Interfaces such
as J*¢ with interfaces for tame vacuum homotopies. At this point one should engage
in an extensive discussion of homotopy equivalence, well-definedness of concatenation of
homotopies up to homotopy equivalence etc., but we will not spell out the details here.
It is useful to point out, however, that when working with homotopies of homotopies
special codimension two loci in the space of weights CV — A can become important. In
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particular, one one should treat with care points where two distinct co-dimension one walls
of exceptional weights intersect.

Another loose end which we leave to the reader’s imagination is to show that the
Interface J°*¢ satisfies the MC equations also in the more general setup we defined with
Lo, morphisms and non-scale invariant configurations. This can be done with a setup
where the edge slopes depend on their length, but only on the positive half-plane. Then
the MC equation for the Interface with 3 realized by rigid webs represents a large sliding
web in the setup. The other endpoints can be represented by convolutions with standard
planar taut elements, and these terms will vanish. Similar interpolations show that the
A, morphism matches the composition with the trivial interface.

Figure 105: An example of a continuous path of vacuum weights crossing a wall of marginal
stability. Here zy = a and z; = b with a,b real and a < 0 < b. They do not depend on zx, while
zj(x) = ix. We show typical vacuum weights for negative and positive « and the associated trivalent
vertex. All other vacuum weights are assumed to be independent of z. As x passes through zero
the vertex degenerates with z;;(z) and z;;(z) becoming real. Note that with this path of weights
the {4, j, k} form a positive half-plane fan in the negative half-plane, while {k, j,i} form a negative
half-plane fan in the positive half-plane. If we choose zy < 0 < x,. there is an associated interface
J<s. (We suppress the dependence on xy,x, in the notation.) The only vertices are divalent
vertices. These are all the standard amplitude K ! familiar from the identity Interface J9, except
for a3 € Rg,z) ® R,gli).

8.4 Wall-Crossing From Marginal Stability Walls

One of the most interesting wall-crossing phenomena occurs when the path of vacuum
weights goes through a wall of marginal stability, such as equation (2.41). In this section
we examine some important examples of such wall-crossing, but we do not give a completely
general wall-crossing prescription.

One way to cross such a wall is illustrated in Figures 105 and 106. While we have
chosen a very concrete set of weights our analysis applies to general configurations where
the fans behave as described in the captions, and so long as none of the z;;, 2, zx; become
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Figure 106: In this figure the path of weights shown in Figure 105 is reversed. Again, z = a and
z; = b with a,b real and @ < 0 < b, but now z;(z) = —iz. We show typical vacuum weights for
negative and positive 2 and the associated trivalent vertex. All other vacuum weights are assumed
to be independent of x. Note that with this path of weights the {i, j, k} form a positive half-plane
fan in the positive half-plane, while {k, j, i} form a negative half-plane fan in the negative half-plane.
In order to define an interface we choose initial and final points for the path —x,, < 0 < —z so that,
after translation, it can be composed with the path defining J.~. The interface J< . has several
nontrivial vertices. See Figure 111.

B Z
<

Figure 107: For the path of vacuum weights in Figure 105 we have BPS rays crossing as in the
standard marginal stability analysis of the two-dimensional wall-crossing formula.

pure imaginary. If our Theory has more than three vacua we assume that all other vacuum
weights are constant and just the 4, j, k “subsector” of the Theory is changing.

Let us begin by recalling the well-known standard Cecotti-Vafa-Kontsevich-Soibelman
result for this situation. Referring to the path of Figure 105 we have the standard trans-
formation of BPS rays shown in Figure 107. Thus the equality of phase-ordered products
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Jeon T

Figure 108: Vertices for the interface amplitude J.~ described in Figure 105. The bottom left

and right amplitudes are the standard K ~!-type of the Interface J0, but the middle amplitude is a

)

nontrivial amplitude a3 € REZ) ® R,(; in the wall-crossing identity.

Figure 109: There is one nontrivial taut interface web in the MC equation for J.~ which only
involves vacua 1, j, k.

(5.40) where H is the positive half-plane gives:
(14 pijeiy) (1 + pgein) (1 + pogee) = (1+ pein) (1 + pgpean) (1 + peis) (8.23)
and so we obtain Cecotti and Vafa’s wall-crossing result:
-+
Mg = Hj
ik = /L;_k (8.24)
- - = _ .t
Fige T Hjbl = Mg

Of course, the inverse transformation is obtained by considering the path shown in Figure
106.
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T

Figure 110: Vertices for the interface amplitude Js . described in Figure 106. The bottom left

and right amplitudes are the standard K ~!-type of the Interface J0, but the middle amplitude is a

)

nontrivial amplitude oS- € Rﬁ) ® Rl(j in the wall-crossing identity.

Figure 111: There are three other vertices for the interface J< . described in Figure 106, shown
here. The lower left is an amplitude aZZ € Rz(»,? ® Ri; ® Rj;. The lower right is an amplitude

aSS € Rij @ Rjp ® R,(c?. The middle amplitude is S € R;j ® R;i ® Ri; ® Rj;.

At a minimum, a “categorification” of the wall-crossing formula (8.24) should describe
the discontinuous change in the web representation R of the Theories defined by the weights
of Figure 105 at xy < 0 and x, > 0. As we have seen with the paths involving exceptional
webs we should also allow for a change in the interior amplitude and indeed this is quite
necessary in the present case since the set of cyclic fans must change by replacing {i, j, k}
with {4, k, j}.

The simplest hypothesis for how R changes, which is compatible with the change
of Witten indices (8.24), is that Rk, Ry;, Kk, Kx; change while all other representation
spaces and contractions remain unchanged. Similarly, the component ;5 of the interior
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Figure 112: There are two nontrivial taut interface webs in the MC equation for J . which only
involves vacua 1, j, k.

Figure 113: The first nontrivial equation in the identity J.~ X Js . ~ J0. The simplest possibility

is to take the amplitude to be Ki(,i)’fl.

amplitude can only exist on one side of the wall while 3;,; can only exist on the other. We
assume all other interior amplitudes are unchanged.

We will again seek to characterize an Interface which implements (via the discussion
of Section 6.2) the desired Ay, functor between Brane categories. The Interface J.~ re-
lates the Theory with vacuum weights at x,, web representation, RZ%), R,(Cli), K i(,:), K ,gzl.), and
interior amplitude ﬂgg on the left and the Theory with vacuum weights at x,., web repre-
sentation Rﬁ), R,(j.), K z.(,f), K Ig) and interior amplitude 51(131) on the right. The interface Js
is then defined by the choice of path in Figure 106 beginning at —x, and ending at —xy.
Thus, we seek to define Interfaces:

Jos € Be(THTT) & Joe € Be(TT, T (8.25)
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Figure 114: The second nontrivial equation in the identity Jos X Js. ~ J0. The simplest
possibility is to take the amplitude to vanish.

Lk 'S Y

Figure 115: The first nontrivial equation in the identity J< - XJ_.< ~ J0. The simplest possibility
is to take the amplitude to be Ki(,f)’_l.

(where the notation is meant to remind us how the half-plane fans are configured in the
negative and positive half-planes). Now, the essential statement constraining these Inter-
faces is that, after a suitable translation of an Interface to the left or right so that they
can be composed, the composition of the Interfaces should be homotopy equivalent to the
identity Interface:

j<> X j>< ~ 307’2 & j>< X j<> ~ jb']’r (826)

The Interfaces only depend on x; < 0 and x, > 0 through composition with invertible
Interfaces.

We now construct such Interfaces J~. and J.~. The simplest hypothesis is that the
Chan-Paton data of the Interfaces J<~ and Js < is identical to that of J0 and we will adopt
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Figure 116: The second nontrivial equation in the identity Js X J.~ ~ J0. The simplest
possibility is to take the amplitude to vanish.

these. As explained in Figure 108 the Interface J.~ has amplitudes coinciding with those
of the Identity interface J0, except for

azs € RY @ RY) (8.27)

where the notation is again meant to be suggestive of the picture. The Mauer-Cartan
equation for this interface is illustrated in Figure 109. It constrains the interior amplitudes
through the condition:

Kij @ Ky (/3,(]1;3; ® ﬂ%) =0 (8.28)

where we have used repeatedly the defining properties of K~!'. There is no constraint on
a_< from taut webs involving only vacua i, j, k. Of course, if there are other vacua then
this amplitude might well be involved in other components of the MC equation.

Similarly, as explained in Figure 110 and 111 the Interface J0~ . has a more intricate
set of amplitudes. In Figure 110 we have

azz e R @ R} (8.29)
and in Figure 111 we have
—< g 4 (2)
a2 € Rij © Ry @ Iy,

O‘;; € Rg;) & Rkj & Rji (8-30)
all € Rij @ Rj;, @ Rij @ Rj;
Once again, the notation is meant to be a mnemonic for the picture. There are now

two nontrivial components to the MC equation, illustrated in Figure 112. These lead to

equations

K (85 @azz) =0 (8.31)
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Kl(li) <a>< ® ﬁzgk) = 0 (832)

In order to investigate (8.26) we work out the nontrivial amplitudes of the composition
of the two Interfaces. For J.~ X J. . there are two nontrivial amplitudes. The first,
illustrated by Figure 113 is given by 43

2) [ — 1
Ki(k) (0‘<> ® a><) + Kij @ Ky (55311 ® 0‘><) € Rz(k) ® R( ) (8.33)
In this formula, and in the similar ones to follow we have used the basic defining property
(6.11), (6.12) of K~! several times. The second nontrivial amplitude, illustrated by Figure
114, is given by
2

Kz(k:)

(0= @ a33) + Ky @ Ky (8] @ 025) € Ry @ Ry @ B, (3.34)

Similarly, for J< . X J.~ there are likewise two nontrivial amplitudes. The first, illus-
trated by Figure 115 is given by

(2

KR (052 ®aZs) + Ky © Ky (035 65)) € R @ RYY. (8.35)
The second nontrivial amplitude, illustrated by Figure 116, is given by
Kz(li) (a2 ®all) + Kij ® Kji (Oé>< ® szj) € Ry @ Rji ® R(Q) (8.36)

In order to illustrate the categorified wall-crossing we will content ourselves with con-
structing a consistent pair of Interfaces J.~ and Js . satisfying all the above criteria. We
will not try to construct the most general Interface consistent with all the criteria. In this
spirit we will therefore try to construct these Interfaces so that equation (8.26) is satisfied
with equality, rather than homotopy equivalence. This leads to the four equations:

K (025 @a32) + Ky @ Ky (Bl @ a22) = K (8.37)
K (025 ® a55) + Kij © K (ﬁz‘(jlll ® 0@2) =0 (8.38)
Ky (032 ®aZs) + Ky © K, (a;< ® %) — kP! (8.39)
Kf,i) (aZZ®aZl) + Kij @ Ky, (ogj ® szj) = (8.40)

The conditions (8.37)-(8.40) are rather opaque. They can be considerably simplified
by using the property that K is a nondegenerate pairing to define a degree minus one
isomorphism Rj; — Rj;. In this way we can reinterpret the amplitudes (8.27)-(8.30) as 7

45Tn these, and similar formulae below we have not attempted to get the relative signs in the equations
right.
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Figure 117: A quiver-like figure illustrating the various linear transformations appearing in the
categorified wall-crossing formula.

linear transformations between three different vector spaces:

az3 € Hom(R\}), RY)
as_ € Hom(Rlz), R(l))
ass e Hom(le ,Rij ® Rji)
&2= € Hom(Ri; ® Ry, RY) (8.41)
dii € Hom(R;; ® Rji, Rij @ Rjy,)
”k € Hom( Ri; ® Rji)
B e Hom(RZ] ® Rjk,RE,j)

In these terms the Maurer-Cartan equations become 3 simple conditions on the linear

transformations: 46

5(1) 5(2
BijiBiey =0

azZh =0 (8.42)

’(2) s _

Pikjd>< =0,
while the equivalence of the composition with the identity Interface, equations (8.37)-(8.40)
become the four somewhat more tractable equations:

N /Bz]ka>< Id .
o < _
Qs O + a><5ikj = IdRﬁi)

(8.43)

<><(2)
aZoas +azs ikj — 0.

460ur convention here is that subsequent composition of linear transformations are written on the right.
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It helps to draw a quiver-like diagram to represent the linear transformations and their
constraints as shown in Figure 117.

There will be a moduli space of solutions to these constraints. Some general facts are
readily deduced. For example it is an easy exercise to show from these equations that
a_sas - and as _a_< are projection operators onto subspaces Vi C RZ(,? and Vo C jo)
and that &_< is an isomorphism from V; to Vo. We may therefore take

RY=vew, RY-vew, (8.44)

Therefore BS;@;; and d;EBZ(ZJ) are orthogonal projectors onto Wi and Wa, respectively.
We will not try to give the most general solution to the constraints. The simplest solution
of all our constraints is obtained when

Rij@Rjp=WreWea U (8.45)
and then to take 4Z< = 0 and 47

oo =da., =Py

azs =3 = P, (8.46)
(1 1 S —1
5 =Pl azz =Pl

The superscripts in the last line indicate a degree-shift. Indeed, when passing from the
amplitude « to the linear transformation ¢& we must use the degree —1 isomorphism of
Rij — R};, and so on. Therefore, a5, a_<, ass, and Bl(lfj) all have degree 0, etc.

In terms of physics, V represents ik solitons which are unchanged by the wall-crossing,
while W7 and Wy are sets of solitons which are gained or lost during the wall-crossing.
Those subspaces are isomorphic to subspaces of R;; ® Rj; (and indeed correspond to
boundstates). Thanks to the degree assignments of & and S we see that W, and W
contribute with opposite signs in computing the index on R;; ® R, (while U is a subspace
which contributes zero) and in this sense we can say, informally, that the categorified

Cecotti-Vafa-Kontsevich-Soibelman wall-crossing formula is
RE? — RE;) = (Rij ® Rjk)+ — (Rij ® Rjk)_
N B N B (8.47)
— (B - ;) @ (R}, - Ry,

where the superscript + on the right hand side refers to the sign of (—1)%".

It is time to stop and assess our results. We have given an explicit description of a
pair of “minimal” wall-crossing interfaces J.~ and J<., which exist as long as the web
representations before and after wall-crossing are related in a natural way, as described by
the above decomposition. We have not checked that J.~ and J- . intertwine with rotation
interfaces, nor that one can encode the relation between the two theories enforced by J.~

4TThere is a slight abuse of notation here. Py here denotes the projection to V' composed with the identity
map to the subspace V in the codomain. We have suppressed this in an attempt to keep the equations
readable.
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and Js . into an Lo, (or better, an LA ) morphism. We leave these problems to future
work.

In the context of LG theories, as described in Section §12.3 the R;; spaces are generated
by certain solitons interpolating between the critical points of the superpotential associated
to the vacua ¢ and k. At a wall-crossing, such solitons only appear and disappear generically
when the critical point j hits the soliton, splitting it into 75 and jk solitons. The subspaces
V, Wy and Wy should be generated by solitons which respectively are not hit by 7, or
are hit when approaching the wall in parameter space from either side. It should also be
possible to test our solution for the jump in interior amplitudes for LG theories. We leave
that problem, as well, to future work.

We expect our proposal for the wall-crossing of the R;; spaces to hold universally
for massive (2,2) theories, in the sense that the “true” wall-crossing interfaces should
always factor through our J<~ or Js ., up to inner auto-equivalences or other equivalences
associated to phantom walls (See Remarks 2,3 and 4 at the end of Section §8.1.)

9. Local Operators And Webs

This section develops some formalism for discussing local operators on the plane, in the
context of the web formalism.

We have already identified the local boundary operators on the half-plane between two
Branes 967 and 285 with Hop(81, 83). More precisely, using the first A, multiplication Mj,
Hop(B1,B2) is a complex whose cohomology is meant to be the space of Q-cohomology
classes of local operators preserving suitable supersymmetries. As explained in Section
§11.2.1 below, the physical context for these operators is the “A-model with superpoten-
tial.” As explained in Section §16.2, this space of local operators includes both order and
disorder operators and is slightly unusual in discussions of Landau-Ginzburg models.

Now, in Section §16.3 we show that further new ideas are needed to discuss local
operators in the bulk. This proves to be the case in the approach from the web-based
formalism as well. We should stress one point: In the Landau-Ginzburg model it is quite
natural to look at the Jacobian ideal C[¢!]/(dW) (or its generalizations with curved target
space). This is the chiral ring for the B-twisted model, and is not the local operators
relevant to the “A-model with superpotential.” The latter has a subspace of local operators
given by the DeRham cohomology of the target, although these are only the order operators,
and in principle there will be other, disorder operators, in the space of local operators.

9.1 Doubly-Extended Webs And The Complex Of Local Operators On The
Plane

The guiding principle for generalizing the complex Hop(81, B2) to the case of operators on
the plane will be the relation to the complex of groundstates provided by the exponential
map

u+iv = e 7Y, (9.1)

Recall that, for boundary operators, the spinning webs, (7.4), with uniform rotation J(z) =
—x on an interval of length m map to half-plane webs with a marked point on the boundary
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at u = v = 0. This point corresponds to the far past y — —oo on the strip. The relation of
the complex of local operators to the complex of groundstates is summarized in equation
(7.53).

We now imitate the above discussion for closed strings. Accordingly, we will map the
infinite cylinder with coordinates (z,y) and = ~ x 4 27 to the plane using the exponential
map (9.1). Equivalently, we can consider periodic webs on the strip in the (x,y) plane
with zp < z < xp + 27. We again consider curved spinning webs with uniform rotation
Y(x) = —x. The complex of groundstates on the strip will be given by the trace of the
matrix of Chan-Paton factors of the rotation Interface R[Js, 9y — 27]. (See the discussion
in Section §7.3, and further development in Section §9.2 below.) All binding points are
future stable and, from equation (7.28) see see that each cyclic fan of vacua will fit on the
cylinder. We thus might expect the complex of groundstates to be simply the complex
R™ = @;R; we have met before. This is not quite right since the constant vacuum 4,
corresponding to the “fan” {i} is also an approximate groundstate. Therefore, for each
vacuum ¢ we introduce a module R; = Z, in degree zero, and we define

R, = [@ievR;) © R™

(9.2)
= [DievRi] @ [®1R;]

The complex R, defined in equation (9.2) is nicely in accord with the MSW complex
of semiclassical twisted ground states discussed in Section §16.3.1 below. The summands
R; correspond to states in the constant vacuum ¢; that sits at a critical point of the
superpotential. The summands R; where I has length greater than one correspond, for
large radius of the cylinder, to the fans of solitons.

Now, we would like to define a differential d. on R. to make it into a complex. We
follow the lead of the complex of approximate ground states defined in Section §4.3 above.
We should contract incoming states at y = —co on the strip with all taut webs, saturating
all boundary and interior vertices with boundary and interior amplitudes, as in equation
(4.59).

The image under the exponential map (9.1) of a taut spinning periodic web will be one
of two types, illustrated in Figures 118 and 119. In the first type, there is a fan of vacua I
at y — —oo of length larger than one. In the second type, the fan at y — —oo consists of a
single vacuum {i}. In the first case the image of the taut curved web in the (u + iv)-plane
is a taut web with one vertex at the origin, as shown in Figure 118. If [ is the fan of vacua
at y — —oo and if r; € Ry, then we define

de(rr) = paltpl(r1), (9.3)

where t,; is the taut planar element on the (u + iv)-plane. Thus, all vertices except for
the one at the origin are saturated with the interior amplitude 5. The second type of taut
spinning periodic web will lead to a map

R; — ®j£ Rij @ Ry;. (9.4)
To define this map return to Figure 73 and use equations (7.42)-(7.44) to write
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Figure 118: This figure represents the relation between a taut curved web on the x + iy cylinder
and a taut extended web on the u + iv plane. The open red circle is the origin of the plane and
corresponds to the y — —oo limit of the cylinder under the map u +iv = e~*+¥. The vertical lines
extending from y = —o0 to +00 at © = —ayp and * = —ayy have no moduli, and the vertex can
only move vertically at x = —ay. Taut webs are used to define a differential on the complex R..
Contraction with the taut web shown here takes an element r € Ry, 1y to pglt](r) which in this
case is just p[t](r ® B;;x). The cylindrical picture is meant to motivate this operation as a transition
amplitude from an approximate ground state in the far past of the cylinder to a state in the future.

Figure 119: The web on the cylinder has one modulus and hence is taut as a curved web. It can
be considered as a map from a state in R; to a state in R;; ® Rj;. It is natural to give this map
the amplitude Kigl and indeed that completes the operation of Figure 118 to a differential. The
image under the exponential map shows that we should broaden our notion of extended webs to
doubly-extended webs by including a new kind of vertex in the faces of the webs.

where ¢; is a generator of R; = Z defined below. The crucial property d? = 0 will follow
from our discussion of “doubly-extended webs” below.

The cohomology H*(R.,d.) is to be identified with the space of local operators. Recall
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that under the isomorphism R;; ® Rj; — R;; ® R;;, the element Kl; Lis antisymmetric. It
therefore follows that
1:=®icvo; (9.6)

is always closed and defines a canonical element of the cohomology. This element simply
corresponds to the unit operator.

Figure 120: The pictorial demonstration of a convolution for doubly-extended webs. The web
with the closed vertex in vacuum ¢ has four moduli - two for each vertex and is therefore a sliding
web. Near one of the boundaries of its moduli space it can be expressed as a convolution of two
taut webs.

fa) (b

Figure 121: The two boundaries illustrated in (a) and (b) correspond to two boundaries leading
to cancelling contributions in the contribution of d(d(¢;)) to the summand of R, with fan I =

{i,k, ¢, 5}

We now show that R, is indeed a complex. In fact, it is an L, algebra, extending the
L algebra structure on the set of interior vectors R™. To this end we introduce a notion
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of doubly-extended webs. These are plane webs, defined as before, but now we introduce
a new kind of vertex, called a closed vertex that can be inserted into the interior of the

faces of an ordinary extended plane web. These closed vertices are denoted by open circles
in Figures 120 and 121. We can now define oriented deformation type and convolution in
straightforward ways. Each closed vertex adds two moduli. The boundaries of the moduli
space include ends where a closed vertex approaches a bounding edge of a face. Given a
web tv, let 0 be the new doubly-extended web where a closed vertex has been inserted into
some face at a point (u,,v,). Then the orientations of the two webs are related by

o(w) = o(w) A (duydv,) (9.7)

All the convolution identities work as for (extended) plane webs. An illustration of an
important convolution involving a closed vertex is shown in Figure 120. An example of
cancelling ends in a convolution identity is shown in Figure 121.

With a representation of webs we can define generators ¢; of R;, j € V, by

p(10)[S1, @5, S2] = 6 ;p(1)[S1, S2] (9.8)

where tv and 1o are related as before and the closed vertex in tv is inserted in a face marked
with the vacuum i. Here S1,59 € T'R.. The generator ¢; of R; is the same as that used
in equation (9.5), as one can check by carefully comparing orientations in Figure 120. The
demonstration of the L., algebra structure on R. completely parallels that used before for
R, In particular, the demonstration that d(d(¢;)) = 0 follows from the consideration of
ends of moduli space such as those shown in Figure 121.

9.2 Traces Of Interfaces

There is a useful, alternative perspective on the cylinder geometry with ¢¥(z) = —z. Up to
an homotopy, we can deform the ¥(z) profile so that the variation happens on a small scale
compared to the size of the circle. Thus the geometry reduces to a cylinder with essentially
constant vacuum weights, and an interface 2R[27,0] inserted at z = 0. The complex of
approximate ground states is essentially the same as R., though the differential will only
be chain-homotopic to d..

This is a special case of a construction which is available every time we have an interface
T € Be(T,T) between a Theory T and itself. Let us define the trace of the Interface Z,
denoted Tr(Z), to be the complex of approximate groundstates on the cylinder with Z
running along the axis of the cylinder. Thus, the underlying Z-module of the complex is

Tr(Z) = @ievE(D)ii (9.9)

To define the differential we consider “periodic webs.” These are webs in R x S where
the edges have constant slope. In other words, if we unroll the cylinder by cutting along
a vertical line to get a strip, then the edges of the webs are straight lines in the strip.
Periodic webs are a close analogue to strip webs or composite webs on a strip geometry.
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Taut webs have two moduli (one of which is translation along the axis of the cylinder). 48

The taut element t. satisfies a convolution identity
teote+texty +textz =0 (9.10)

and hence d. = pg[t](125), where B is the boundary amplitude of the Interface, is a
differential.

In general we claim that Tr(Z X 9R[0, £27]) is homotopy equivalent to the complex of
groundstates on the strip x ~ x + 27 with Z inserted and with spinning vacuum weights,
spinning by ¥(z) = —z. In particular, taking Z to be the identity Interface, and the
definition (7.28) we see that the Chan-Paton data of R[¥, 9 — 27] are given by

@iEV(Ri D ]%;Z)eu D @i<j§;;‘€ij D @i>j§i_jeij (9.11)

where ]/%;Z is the set of cyclic fans with vacuum ¢ at © = 0. (See equation (7.41) above for
the case of two vacua.) The trace of this matrix of complexes recovers the complex R, of
equation (9.2). Thus, given the results of the previous section, the space of local operators
in a Theory can be described in terms of the trace of R[J, 9 — 27].

The above construction can be generalized. If we have a sequence of Interfaces Z; €
Br(T?, T at locations z;, i = 1,...,n along the periodic direction z — = + 27, inter-
polating between a periodic sequence of Theories 7 then we can consider the trace of the
product

T R RI,) = @), gy Sy E(T) (9.12)

JirJi+1
There will be many different homotopy-equivalent differentials. If we consider again the

taut element for periodic composite webs t. (generalizing that used above for a single
Interface) then the convolution identity generalizes to

n
teotet ety + Y texty, =0 (9.13)
=1

and therefore d. = pg [tc](®?:11%&) defines a differential on (9.12).

9.3 Local Operators For The Theories 7V and 7°V()

We comment briefly on the computation of the cohomology of R, for the two examples of
Theories TV and T5Y®) discussed throughout this text.

Let us consider first 7V. According to Section §4.6.4 this is meant to coincide with the
A-model with target space X = C and superpotential (4.138). For the strict A-model the
target space cohomology H},(X) has a single operator in degree zero corresponding to the
unit operator. Nevertheless, as discussed in Section §16.3 the full space of local operators
can in principle include disorder operators, and H},(X) is only a subspace of the space
of local operators. In fact, for the 7% Theories, the cohomology of R, is one-dimensional,
and spanned by the unit operator 1 as the following computation shows.

48Tn the absence of the Interface Z, the line principle shows the only webs would be unions of closed loops
wrapping around the cylinder.
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The complex R, takes the form
GiRi — DicjRij @ Rji = @icjrRyijny = = ®illy > Ryo1,.. .n—13 = 0 (9.14)

where in degree N — 2, i denotes the fan that omits i from {0,..., N — 1}. Using (4.79)
this becomes

oz 5 ezl 5. 5 a(zli-u . 7N g (9.15)
The Witten index is thus automatically 1. We can in fact do better and compute the
cohomology as follows. We can identify the complex with a subspace of a Grassmann
algebra G = Z[6p,...,0n_1]/Z where the ideal Z is generated by 6;6; + 0;0; = 0, for all
i,7 and the 6; have degree +1. We identify R, with the subspace of G of elements of
degree at least one and then shift the degree by —1. To see this, identify a generator of
Rilﬂé & .- Rikfl,ik X Rik,iu where i1 < i9 < -+ < i} with 91'1«9@'2 cee 9% [—1]. Then, for any
fan, the differential acts by diagrams like those of Figure 118. Since the interior amplitude
is only nonzero for 3-valent vertices with b;;, = 1 for ¢ < j < k it is easy to see that the
differential d. is the same as the action of multiplication by © = 6y + --- + O5_1. There
is thus a clear chain-homotopy inverse between the zero map and the projection operator
onto on elements of R, of positive degree. It is given by:

oo [ @) et >0 o1
0 deg(r) =0
Thus,
N7 deg(r) >0
(kde + dek) (1) := {Nr )1 deg(r) = 0 (9.17)

Here 1 = ),y ¢; is the unit operator discussed above. In this example 1 = Zﬁgl 0;[—1].
Moreover, if r = ) x;6;(—1] is of degree zero we define tr(r) = >, x;. Therefore the
cohomology is generated by the unit operator. 49

Turning now to the 75Y®) Theory the physical expectation from Section §4.6.4 is
that it should correspond to an A-model with superpotential W = Zf\; 1 Y; on the space
= defined by = = {(Y1,...,YN)|Y1 - Yy = q} C (C*)V where ¢ # 0. By [47] this should
be mirror to the B-model on CPY~1. We use this mirror dual pair to check our proposal
for the local operators using the complex R. constructed from the representation of webs
described in equation (4.100) above.

In general, the B-model with target space X has a space of local operators

Op o HP (X, AT X). (9.18)

49This argument only suffices to determine the cohomology up to N-torsion. From examples we find that
the cohomology is in fact isomorphic to Z in degree zero. In physics the space of local operators is a vector
space over C, but in the web formalism one can work over Z. This raises the interesting question of whether
there can be torsion in the cohomology of R., and what its physical meaning would be, if any. We leave
that for another time.
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In the present case we compute the cohomology, as a representation of su(N) to be:

Ly —0
HP(X, ATYOCPN 1) = { “N et P (9.19)
0 p>0

where the L, ,,, were defined in Section §4.6. The result is in fact very intuitive. Cohomol-
ogy classes with p = 0 can be represented by global sections

0 0
J1---Jq i1, ., Y? -
G liaX X anﬁ A=A Eyen (9.20)
where [X! : ... : X] are homogeneous coordinates. The SU(N) tensor C’fllqu is totally

symmetric in 7, and totally antisymmetric in j, and therefore in Ay_; ® S;. Now we
must identify by the image of holomorphic vector fields and this requires Cflquq to be
traceless. Referring to the decomposition (4.121), the traceless part is the second summand.
The cohomology is one-dimensional in degree ¢ = 0 and isomorphic to the adjoint in
degree ¢ = 1. Indeed, the one-dimensional cohomology should be a Lie algebra of global
symmetries of the theory on a priori grounds and that is the su(N) symmetry of the present
example.

We leave it as an interesting and nontrivial challenge to reproduce (9.19) from the
cohomology of R, as defined in equation (9.2).

We can perform one nontrivial check on this identification by examining the character-
valued index. Let ¢ = Diag(t1,...,tn) be a generic diagonal element of SU(N). It
acts naturally on the homogeneous coordinates of CPY~! thereby inducing an action on
HP(X, AT X). By the Atiyah-Bott fixed point formula we have 59

N-1 N-1
Fy(x) = x4 (— 1)pTer(X AaT1oCPN-1)t
=0 p=0 (9.22)
i=1 H]#l(l tj /t )
In particular, the character-valued index is
(1 —ti/t5) N—1 A NIFE A
Z LL = (DY) Y = (DM Y 8 (9.23)
Hj;éz t]/tz) i=1 i=1

where in the second equality we used the property that ¢ € SU(N).

®OIncidentally, there is an elegant argument to recover the representations of (9.19) from this formula.

Consider .
LTI (1 + 22 /ty)

2 T, (1~ t;/2)

By equating the residue at z = oo with the sum of the finite residues, using the generating functions for

Un(z,z) = (9.21)

characters of symmetric and antisymmetric representations, and using the decomposition (4.121) one can
reproduce (9.19).
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On the other hand, by direct computation of the character-valued index of R., using
the characters of the anti-symmetric representations R;; we find

N N N
Trp (-)F =N = NJJti+ DV eV = (V1> ) (9.24)
=1 =1 =1

where in the second equality we used the property that t € SU(N). We checked equa-
tion (9.24) for N = 2,3,4,5,6, but giving a direct proof of this equation looks difficult.
Fortunately the methods of Section §7.10.1 above can be used to give a proof: The Inter-
face 3t~ of that section implements a rotation by 27/N, and hence its N** power gives
the full Interface for rotation by 2w. The eigenvalues of the character-valued index of the
Chan-Paton data of this Interface follow from (7.182), and are simply (—¢t;), i =1,..., N.
Using the relation of the complex R, to the trace of the Interface explained in Section §9.2
we arrive at equation (9.24). 5!

Note that the cohomology is much larger than the naive DeRham cohomology of = =
(C*)N=1 that one might associate to the A-model on Z. Indeed, the dimension of the
H*(R.,d.) for TSU(N) is given by o F(1— N, N +1,1; —1), and this grows with N far more
rapidly than 2V~1. Thus, there are many disorder operators. Indeed, we can already see
the need for disorder operators for the case N = 2 discussed in detail in Section §16.3.3
below.

10. A Review Of Supersymmetric Quantum Mechanics And Its Relation
To Morse Theory

In Sections §§11-17 below we will sketch our main physical application of the formalism
we have developed. That application is based in turn on standard ideas about the in-
terpretation of Morse theory in terms of supersymmetric quantum mechanics [87]. While
this material is well-known, and is nicely reviewed, for example, in [50], we would like to
emphasize several key points which are of particular importance in our application.

10.1 The Semiclassical Approximation

We start by reviewing supersymmetric quantum mechanics and its relation to Morse theory
(see [87] and section 10 of [50]), since much of our subject can be developed in close parallel
to this. Much of this material may be familiar to many readers, but in section 10.6 we
explain a point that may be less familiar and that is crucial background for the present
paper.

We begin with a Riemannian manifold M of dimension n, with local coordinates u®, a =
1,...,n, ametric tensor g,;, and a smooth real-valued function h, called the superpotential.
A critical point of h is a point at which its gradient vanishes, 0h/0u® = 0,a = 1,...,n, and

51 Actually, there is a disagreement by an N-independent minus sign. We have not sorted out the expla-
nation of this sign.
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a critical point is called nondegenerate if at this point the matrix of second derivatives®?

0%h/0utdu’ is nondegenerate. (This matrix is sometimes called the Hessian.) We will
assume that h is a Morse function. A Morse function is simply a smooth function such
that all critical points ¢; are nondegenerate. For the moment, we assume M to be compact,
in which case the number of critical points of h is finite, but sometimes one wishes to relax
the compactness assumption and also allow infinitely many critical points.

From this data, we construct a supersymmetric quantum mechanics model, describing
maps from R!2 — a supersymmetric worldline with a real coordinate t and odd coordinates
0 and 6 — to M. The supersymmetry algebra®® is generated by the odd vector fields on M

0 o = 0 —0
= —= 60— = - 0 —: 1 .1
Q ae—l—wat, Q 80+168t’ (10.1)
the only nonzero anticommutator of these operators is

This supersymmetry algebra admits a group U(1) of outer automorphisms called the R-
symmetry group, generated by a charge F that assigns the values 1 and —1 to 6 and 6,
respectively. This will be a symmetry of the models we consider. The supersymmetry
algebra commutes in the Zy-graded sense with the operators

D:i—wa p-? _mﬁ

— D== 10.
00 ot’ 00 ot’ (10:3)

which are used in writing Lagrangians.

To construct a supersymmetric model that describes maps from R2 to X, we promote
the local coordinates u® on M to superfields X@(¢,0,0) = u®(t)+i0y(t)+i0y" (t)+00F(t),
where ¢® and Ea are Fermi fields with F = 1 and F = —1, respectively, and the F'® are
auxiliary fields.?* It follows from this that

{Q,¢"} =i + F°

{Q v} = —ia® + F°. (10.4)
One takes the action to be
1 1 _
I=+ /dt d%e <anb(Xk)DXaDXb — h(XC).) (10.5)

52In general, to define the second derivative of a function h on a Riemannian manifold M, we need to
use the affine connection of M; the only natural second derivative is D*h/Du®Du’, where D/Du® is a
covariant derivative. But at a critical point, D*h/Du®Du’ reduces to the more naive d?h/0udu®, a fact
that we incorporate in some formulas below.

"3 We write Q@ and Q (rather than @ and Q) for the supercharges of the quantum mechanical model, since
this will be more convenient in discussing the generalization to two-dimensional LG theories.

5When working with complex superalgebras we let % denote the complex anti-linear involution which
acts on odd variables according to the rule (#162)* = 030;. Our notation is such that = (6)*, and so on.
Hence X° is a real superfield when F* is real. We are using the same letter Q for an operator on fields and
for an odd vector field on a supermanifold, so the supersymmetry transformation rule is [iQ, X?] = QX"
Unfortunately, our conventions differ from those in [50] by an exchange of ) <+ 1.
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This action describes a supersymmetric o-model in which the target space is M. Perturba-
tion theory is a good approximation if A is small, but A can be eliminated from the formulas
by rescaling g, and h (and to avoid clutter we do so in what follows). After integrating

over A and 6, the action becomes®

I= /dt <1gabu“ub + z’gaba‘zgw + 1g yFOFY — F29,h +@“¢bD72h + .. )
2 Dt 27 “ Du®Dub ’
(10.6)
where the covariant derivative D/Dt is defined using the pullback of the Levi-Civita con-
nection of M, and we omit four-fermi terms. One can eliminate the auxiliary field F'* via

its equation of motion

F* = g®dh, (10.7)

and for the ordinary potential energy, one finds
k 1 2 1 ab

A classical ground state is therefore a critical point of h. Since we have assumed that h is
a Morse function, there is a finite set V of such critical points.
The fermion mass term that arises in expanding around a critical point can be read

off from the action:
b, O%h

HM, =S[¥" ¢ ]W (10.9)

1

2
(The bracket appearixng here is an ordinary commutator, not a graded commutator, and
accounts for an important normal ordering convention to preserve supersymmetry.) Since
we assume that h is a Morse function, the fermion mass matrix mg, = 0%h/0u®Oub is
nondegenerate at each critical point. In Morse theory the number of negative eigenvalues
of the Hessian at a critical point p is called the Morse index. We denote it by n,. Thus
the number of negative eigenvalues of the mass matrix is n,. Similarly the bosonic mass
squared matrix that arises in expanding around p is positive-definite. So in expanding
around a given critical point, all bosonic and fermionic modes are massive. Hence, from
the standpoint of perturbation theory, there is precisely one minimum energy state ®,
for every critical point p € V. In perturbation theory, this state has zero energy and is
annihilated by the supercharges @ and @Q. Indeed, the supersymmetry algebra

(0,0} =2H, Q?=0" =0, (10.10)

implies that eigenstates of H with nonzero eigenvalue come in pairs, and therefore the
fact that in expanding around the critical point p one finds only a unique ground state
®,, implies that in perturbation theory, ®, is annihilated by Q, Q, and H, so it is a
supersymmetric state of zero energy. (Beyond perturbation theory, as we discuss in section
10.4, nonperturbative effects can modify this statement.)

The states in the o-model are not functions on M, but differential forms on M. To
see this, we observe that a state of smallest fermion number must be annihilated by the 1*

®Here [d*000 = [ d0do 060 = +1.
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operators, but may have an arbitrary dependence on the bosonic variables u®. So letting
|Q2) denote a state annihilated by all " and independent of the u®, a state of minimum
possible fermion number is f(u)|Q2), where f(u) is an arbitrary function on M. A state
whose fermion number is greater by n is then >, . fajay..a, (w)*19%2 .. % [Q), where
in the language of differential geometry, >, . fajas...a, (u)du®du® ... du®" is called an
n-form on M. Thus quantum states in the o-model correspond to differential forms on
M and, up to an additive constant (which is the fermion number we assign to the state
|©2)), the fermion number of a state is the degree of the corresponding differential form.
In differential geometry, it is customary to define the degree of a differential form on a
d-manifold to vary from 0 to d. However, the theory (10.5) has a symmetry 1 < 1
(“charge conjugation,” which in differential geometry is called the Hodge star operator on
differential forms). F is odd under this symmetry at the classical level, and to maintain
this property quantum mechanically, we subtract an overall constant —d/2 and say that
an n-form corresponds to a state of fermion number F = —d/2 + n.

To determine the fermion number of the low energy state ®, associated to a given
critical point p, we need to determine which modes of 1 and v annihilate ®,. All we
need to know is that for a real number m and a single pair of fermion modes 1, v, the
operator Hy = Z[1h, 4] has (i) an eigenstate ||) annihilated by ¢ with Hy = —% and (ii)
an eigenstate |1) annihilated by ¢ with Hy = +%. For m > 0, the ground state of Hy is
annihilated by 1 but for m < 0, it is annihilated by 1. So the number of modes of v that
annihilate the ground state of the fermion mass operator HE " of eqn. (10.9) is equal to the
number of negative eigenvalues of the matrix 9%h/0u®du®, or in other words, the Morse
index of the critical point p. So if p has Morse index n,, then ®, is an n,-form.

Thus if ny and n_ are the number of positive and negative eigenvalues of the fermion
mass matrix in expanding around a given critical point p (so d = ny + n_ and the Morse
index of p is n, = n_), then the fermion number of @), is

1

fo=—5 e —n-). (10.11)

A standard argument using the supersymmetry algebra (10.10) shows that the space
of supersymmetric states — states annihilated by @, O, and H — can be naturally identified
with the cohomology of Q (the kernel of Q divided by its image). Here Q is an operator
mapping n-forms to n + 1-forms and obeying Q% = 0. In differential geometry, there is a
standard operator with this property, the exterior derivative d. In differential geometry, it is
usual written d = du®dya, which in our language would be ¢*0,a. Hence {d, 9"} = g*d,s.
Recalling that in canonical quantization, %% maps to —ig®d,s, eqn. (10.4) tells us that
{0, 0"} = g™ (D + Dph). So Q does not coincide with 1)*d,e = d; rather,

Q = YDy + Ogh) = e ""de". (10.12)

Thus Q does not coincide with the exterior derivative d, but rather is conjugate to it.
This means that the cohomology of Q is naturally isomorphic to the cohomology of d,

which is usually called the de Rham cohomology of M: the cohomology of Q is obtained

from that of d by multiplying by the operator e ". In particular, the number of states of
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precisely zero energy with fermion number —d/2 + n is the corresponding Betti number
b, (defined as the rank of the de Rham cohomology for n-forms) and does not depend
on the choice of h. By contrast, the number of zero energy states found in perturbation
theory for given n is the number of critical points of i of Morse index n and definitely does
depend on h. (For example, if M is the circle 0 < ¢ < 27, the Morse function h = cos k¢
has 2k critical points, half with index 0 and half with index 1.) So there will have to be
nonperturbative effects that in general eliminate some of the vacuum degeneracy.
Since Q is the adjoint of Q, it follows from (10.12) that

Q =" (—0ya + 95h) = e"dle ™", (10.13)

where d is the adjoint of d in the standard L? metric on differential forms. The Hamiltonian
H = {Q, Q}/2 definitely does depend upon h, though the number of its zero energy states
for each value of F does not.

10.2 The Fermion Number Anomaly

The next topic we must understand is the fermion number anomaly. For this computation,
we transform to Euclidean signature via ¢ = —i7. The (linearized) Dirac equation for 1)
and 1) becomes

Ly =0= Ly, (10.14)

with

Dy® D?h
(Ly)* = Dt _gabDubDuC¢c
o DY D*h .

L _
(L) Dr g DubDuye

(10.15)

We consider expanding around a path ¢ C M that starts at one critical point ¢ in the far
past and ends at another critical point p in the far future.

Let ny and n, be the Morse indices of these critical points. We want to compute a
vacuum-to-vacuum amplitude, that is, a transition between the initial state ®,, of F =
—d/2+n, and the final state ®,,, of fermion number F = —d/24n,,. The fermion numbers
of the initial and final states differ by n, — ng, so the amplitude must vanish unless one
inserts operators that carry a net fermion number n, — n,.

As usual, the mechanism for this is that the index®® of the operator L, which is defined
as the number of zero-modes of L minus the number of zero-modes of its adjoint LT, is
equal to n, —n,. Let us verify directly that this is true. Since the index is invariant under
smooth deformations (which preserve the mass gap at infinity), it suffices to consider the
case that the Levi-Civita connection of M is trivial along ¢ and that the fermion mass
matrix is diagonal along ¢. Thus it suffices to consider the case of a single pair of fermions

56There is a slight clash in the standard terminology here; the “index” of an operator should not be
confused with the “Morse index” of a critical point of a function.
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¥, 1 with

L(r) = 0 ey
L) = - ) (o) (10.16)

where in the one-component case, we abbreviate D?h/Du? as w. We assume that the
function w is nonzero for 7 — #o00. The equations L) = 0 and LTt = 0 imply respectively

W(7) = Cexp ( /O ’ dT'w(T'))

D) = ' exp <— /0 ’ dT'w(T')> , (10.17)

with constants C,C’. If w has the same sign for 7 >> 0 as for 7 << 0, then neither
solution is square integrable. If w is positive for 7 << 0 and negative for 7 >> 0, then
1 has a normalizable zero-mode but not ¢; if w is negative for 7 << 0 and positive for
7 >> 0, then ¢ has a normalizable zero-mode but not ¢. In all cases, the index of the
1 x 1 operator L for a single pair v, is the contribution of this pair to np — Ng. Summing
over all pairs, the index of L equals n, — ng, as expected.

The index ¢(L) of the operator L always determines the difference between the number
of 9 and v zero-modes, but in fact generically one of these numbers vanishes and the other
equals |¢(L)|. For example, if (L) > 0, generically there are no v zero-modes, and the space
of 1 zero-modes has dimension ¢(L); if «(L) < 0, generically there are no v zero-modes
and the space of ¢ zero-modes has dimension —:(L). The explicit calculation in the last
paragraph shows that these statements are always true in the 1 x 1 case; in fact, they hold
generically. Informally, (L) is a regularized difference between the number of variables and
the number of conditions in the equation Ly = 0. So for example if ¢(L) > 0, the equation
Ly = 0 is analogous to a finite-dimensional linear problem with ¢(L) more variables than
equations and generically has a space of solutions precisely of dimension «(L).

10.3 Instantons And The Flow Equation

In general, a Morse function on M has too many critical points to match the de Rham coho-
mology of M, so there must be nonperturbative effects that shift some of the perturbatively
supersymmetric states ®, away from zero energy. For this to happen, the supercharges Q
and Q, instead of annihilating the ®,, must have nonzero matrix elements (®,|Q|®,) or
(®,|Q|®,), for distinct critical points p and q.

So we have to analyze tunneling events that involve transitions between two critical
points g and p. As a preliminary, we evaluate the action for a trajectory u(7) that starts at
q for 7 — —o0 and ends at p for 7 — 400. For such a trajectory, in Euclidean signature,
and with the auxiliary fields eliminated via (10.7), the bosonic part of the action (10.6) is

1 [ du® du?
J == e B ab
2/00017 <gab T Y 8ah6bh>

_ / ” & o (du“ n gacach> <(21“: n gbea€h> T (h(p) — h(q)),  (10.18)

1
2 J_ dr
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after integrating by parts. The action is therefore minimized by a trajectory that obeys

d a

=g hh =0, h(p) > h(q), (10.19)
or

du® ab

4, T97%h =0, h(p) <h(qg)- (10.20)

(For a given sign of h(p) — h(q), only one of these equations may have a solution, since the

left hand side of eqn. (10.18) is non-negative. If h(q) = h(p), with g # p, neither equation

has a solution.) These equations are called gradient flow equations; we can write them
da -

i +Vh, (10.21)

where the “flow” vector du/dr has components d;u®, and the “gradient” vector Vh has

components g®dyh.

The gradient flow equations have another interpretation. The Lorentz signature super-
symmetry transformations (10.4) can be transformed to Euclidean signature via t = —ir,
so that 1u® = idu®/dt is replaced by —du®/dr. After also eliminating the auxiliary fields,
the supersymmetry transformations in Euclidean signature read

—Ta o dua (lb
{Q,d}}__dT +g 8bh
_ du?
{Qy"} = % + 9" Oh. (10.22)

The condition for a trajectory to be Q-invariant is that {Q, @a} vanishes for that trajectory.

So Q-invariant trajectories obey
du®
— = g®9,h, (10.23)
dr
and we call these ascending gradient lines since the flow (for increasing 7) is in the direction
of steepest ascent for h. And O-invariant trajectories are similarly descending gradient flow

lines, obeying
du®

dr

Now let us discuss the moduli space My, of ascending gradient flow lines from ¢ in

= —g®dyh. (10.24)

the past to p in the future. The tangent space of Mg, at the point corresponding to a
given solution of the ascending flow equation (10.23) is the space of solutions of the linear
equation found by linearizing the ascending flow equation around the given solution. The
linearization of the ascending flow equation is simply the equation L = 0, where L is the
fermion kinetic operator defined in eqn. (10.16). As explained in section 10.2, the index
of L is «(L) = np — ng, and generically, when this number is nonnegative, it equals the
dimension of the kernel of L or in other words of the tangent space of Mg,. Generically
(that is, for a generic metric g, on M and a generic Morse function h), Mg, is a smooth
(not necessarily connected) manifold of dimension n, — n,, assuming that this number is
positive. For this reason, one calls n, —n, the expected dimension of M,. If the expected
dimension is negative, generically M, is empty.

— 223 —



To understand what happens when n, = n,, we first need the following general com-
ment. As long as p # ¢, an ascending flow from ¢ to p cannot be invariant under time
translations, so there is always a free action of the group R of time translations on Mg,. So
for p # ¢, we can define a reduced moduli space Mg req as the quotient Mg, /R. My, is a
fiber bundle over M, ;eq With fibers R. The expected dimension of My, req is 1y — g — 1.
So if n, = ng and p # ¢, the expected dimension of Mg, eq is —1. This means that
generically Mgy, req is empty, in which case My, is likewise empty. If instead p = ¢, the
only ascending or descending flow from ¢ to p is the trivial flow in which u*(7) does not
depend on 7. (This is an easy consequence of the fact that the right hand side of (10.18)
vanishes for such a flow.) So M, is always a point.

One last comment along these lines is that even if M, has a positive expected dimen-
sion, it is empty if h(p) < h(g). This follows easily from (10.18), whose right hand side
would be non-positive for an ascending flow from ¢ to p.

We conclude with a more elementary way to determine the dimension of Mg,. Near
a nondegenerate critical point m € M, we can find Riemann normal coordinates u® such
that the metric tensor is just >, (du®)? + O(u?), and

1 2
h=ho+ 3 za: fati?, (10.25)

where the f, are all nonzero and the number of negative f, equals the Morse index at m.
The flows (10.23) near m look like

u(r) = caelT, (10.26)

so the flows that depart from m for 7 — —oo (or approach m for 7 — 400) are those
in which ¢, = 0 for f, < 0 (or f, > 0). The space of all gradient flows has dimension d
(since a flow is determined by its value at a specified time). After imposing n, conditions
to ensure that a flow starts at ¢ and d — n,, conditions to ensure that a flow ends at p, we
find that the expected dimension of the space of flows from ¢ to p is n, — ny.

10.4 Lifting The Vacuum Degeneracy

Now we want to see how instantons can lift the vacuum degeneracy that is present at tree
level. We consider the matrix element of the supercharge Q between perturbative vacuum
states ®, and ®,:

(P, QD). (10.27)

For this matrix element to be nonzero, the fermion number of |®,) must exceed that of
|®,) by 1. In other words, the Morse index of p exceeds that of ¢ by 1. To compute the
matrix element, we perform a path integral over trajectories that begin at ¢ at 7 = —o0
and end at p at 7 = 400. Since Q is a conserved quantity (or since ®, and ®, both have
zero energy in the approximation that is the input to this computation), the time at which
Q is inserted does not matter.
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The action for trajectories from ¢ to p is Q-exact modulo an additive constant that
depends only on the values of the superpotential at the critical points p and ¢:

1={Q.V}+ 5 (h(p)  h(a) (10.25)

This statement is a supersymmetric extension of eqn. (10.18). In eqn. (10.28), V is
proportional to 1/A. By rescaling V', one goes to arbitrarily weak coupling while only
changing I by Q-exact terms. So the path integral with insertion of arbitrary Q-exact
operators, such as Q itself, can be computed in the weak coupling limit.

Since Q is a symmetry of the action and obeys Q2 = 0, the path integral with insertion
of arbitrary Q-invariant operators — such as Q itself — localizes on Q-invariant fields. As we
deduced from eqn. (10.22), a Q-invariant field is a solution of the ascending gradient flow
equation. These are the appropriate instantons in our problem, and the desired matrix
element can be computed as a sum of instanton contributions. Since the Morse indices
of p and ¢ differ by 1, the moduli space M of solutions of the gradient flow equation is
1-dimensional and the reduced moduli space M,eq is a finite set of points. The desired
matrix element can be computed by summing over those points.

There is, however, a subtlety in the computation. To see why, it helps to restore the
loop counting parameter ) in the original action (10.5). When we do this, Q, Q, and H
are all proportional to 1/) if expressed in terms of classical variables u, 1,1, and 1. For
example

o- 1! (Qabd“b - 6ah> 0. (10.29)
A dr
The supersymmetry algebra {Q, O} = 2H is obeyed (with no factor of \) since the canonical
commutators are proportional to .

In computing a transition from ®, to ®, with an insertion of Q (or any other Q-
invariant operator), there will be a factor of exp(—(h(p) — h(q)/\) that comes from the
value of the classical action for the instanton trajectory. We will use the phrase “reduced
matrix element” to refer to a matrix element for a transition from ®, to ®, with this
elementary factor of exp(—(h(p) — h(q))/\ removed.

Though Q is of order 1/, its reduced matrix element is of order 1 and comes from a
1-loop computation around the classical instanton trajectory. There are two ways to see
this. First, if we try to do a leading order calculation in the instanton field, we immediately
get 0, since the instanton is a solution of the gradient flow equation gab%—lf — J,h =0, and
Q is proportional to the left hand side of this equation. So the reduced matrix element
must come from a 1-loop calculation. Second, an elegant calculation explained in section
10.5.1 of [50]) shows directly that the reduced matrix is of order A°.

This is shown not by doing the 1-loop computation ®7 but by an interesting shortcut
that avoids the need for such a calculation. Instead of computing the reduced matrix
element of Q, we pick any function f that has different values at the critical points p and
g and compute the reduced matrix element of the commutator [Q, f]. (For example, we

5TIt turns out that a direct calculation is actually quite tricky.
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could take f = h, and this is the choice actually made in [50].) This contains the same
information, for the following reason. When we compute the matrix element of an equal
time commutator

(@,1(Qf - £Q)[D,), (10.30)

we can as usual assume that the operator that is inserted on the left is inserted at a slightly
greater time than the one that is inserted on the right. But as Q is a conserved quantity,
the time at which it is inserted does not matter and we can take this to be much greater
or much less than the time at which f is inserted. So

(@pl[Q; f11®q) = (2p[(QAT) () = F(T)QT)[®y), (10.31)

where we can take 7 — 7/ to be very large. (Only the difference 7 — 7’ matters, since the
initial and final states have zero energy.) When we evaluate the right hand side of (10.31)
by integrating over instanton moduli space, the instanton must occur at a time close to
the time at which O is inserted. This means that f is inserted in the initial or final state
P, or ®,. To lowest order in A, we set f to f(¢) or f(p) in the initial or final state. (In a
moment, it will be clear that higher order terms are not relevant.) So

(@p[QPg) = (@pl[Q, F1]Pq)- (10.32)

1
fla) = f(p)
What we have gained from this is that [Q, f] = J,f%® is independent of A, so the right
hand side of (10.32) can be evaluated classically.

The actual calculation is explained in [50]. We insert [Q, f] at, say, 7 = 0. The
instanton trajectory is u®(7) = u% (7 —v), where v is a collective coordinate over which we
must integrate. The corresponding classical fermion zero-mode is ¥%(7) = Jyul (T — v).
At the classical level in an instanton field, we simply set [Q, f](0) = 0, f1)®|;=o to its value
with u®(7) set equal to the classical trajectory ul (7 —v) and 9 set equal to ¥¢, both
evaluated at 7 = 0. Thus [Q, f](0) = 0yu%(—v)0af(u(—v)) = Oy f(u(—v)). This must be
integrated over v and multiplied by the ratio of fermion and boson determinants. By time
translation symmetry, these determinants do not depend on v, so we can integrate over
v first, giving [*°_ dvd, f(u(—v)) = f(q) — f(p). Inserting this in (10.32) the factor of
f(q) — f(p) cancels, and we find that the contribution of a given instanton to the reduced
matrix element is simply the ratio of fermion and boson determinants. The boson and
fermion determinant are equal up to sign because of a pairing of nonzero eigenvalues by
supersymmetry, so their ratio gives a factor of £1. In more detail, the ratio of determinants
is

det/(L)
(det'(LTL))/2

where det’ is a determinant in the space orthogonal to the zero-modes. The numerator

(10.33)

in (10.33) is real, since L is a real operator, but is not necessarily positive. The denom-
inator is positive since LTL is non-negative and is positive-definite once the zero-mode is
removed. The cancellation of numerator and denominator up to sign occurs because for a
real operator L, det'(L) = det’(L") so det’(LTL) = det/ (L") det/(L) = (det’(L))?.
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Actually, as usual, the path integral on R is not a number but a transition amplitude
between initial and final states. This is clear in eqn. (10.34), where reversing the sign of
the initial or final state ®, or ®, would certainly reverse the sign of the matrix element
Mgp. In the mathematical theory, one says that the regularized fermion path integral is
not a number but a section of a real determinant line bundle that can be trivialized by
choosing the signs of the initial and final states. We give an introduction to this point of
view in Appendix F, but here we give a less technical explanation.

Restoring the factor of exp(—(h(p) — h(q))/A), Q acts on the states of approximately
zero energy by

Q0= Y, exp(=(h(p) = h(9)/A) Mg, (10.34)

plnp=ng+1

where the sum runs over all critical points p of Morse index ng + 1. The matrix element
mgp vanishes if there are no flows from ¢ to p and receives a contribution of 4+1 or —1
for each ascending flow line from ¢ to p. We will describe this loosely by saying that mg,
is computed by “counting” the instanton trajectories from ¢ to p. We always understand
that “counting” means “counting with signs.”
Alternatively, denoting as M a matrix that multiplies ®, by exp(—h(q)/A), we find
that Q = M~1OM acts by
0y = > mgd, (10.35)

plnp=ng+1

Thus matrix elements of O are reduced matrix elements of Q. Of course, the cohomology
of Q is naturally isomorphic to that of @, but eqn. (10.35) has the advantage of making
it manifest that the cohomology is defined over Z. We call the complex with basis ®, and
differential Q the MSW (Morse-Smale-Witten) complex.

Now let us see what we can say about the sign of the fermion path integral, based only
on very general ideas. It is simplest to assume first that the target space M is simply-
connected. The fermion kinetic operator L makes sense for expanding around an arbitrary
path from ¢ to p, not necessarily a classical solution, and likewise it makes sense to discuss
the sign of the measure in the fermion path integral for an arbitrary path. For a particular
path, there is no natural way to pick the sign of the fermion measure, but it makes sense
to ask that the sign of the fermion measure should vary continuously as we vary the path.
For simply-connected X, any two paths from ¢ to p are homotopic, and therefore the sign
of the fermion measure for any such path is uniquely determined up to an overall choice
of sign that depends only on the choice of ¢ and p and not on a particular path between
them.

From this, it seems that the reduced matrix element mg, in (10.35) or (10.34) is well-
defined up to an overall sign that is the same for all trajectories from ¢ to p, say up
to multiplication by (—1)/®%9 where f(p,q) equals 0 or 1 for each pair p,q. However,
there is one more ingredient to consider and this is cluster decomposition. Let p,q, and
r be three critical points. Consider a path from ¢ to r that consists of a path that first
travels from ¢ to p and then, after a long time, travels from p to r. (Such a trajectory is
called a broken path and plays a further role that we will explain in section 10.6.) Cluster
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decomposition — that is, the condition that the fermion measure should factorize naturally
in this situation — gives the constraint (—1)7®(—=1)7("?) = (—1)/("9)_ This implies that
(—=1)/ 9 = (—1)2(P)+aa) for some function a on the set of V of critical points. But a factor
of (—1)4P)*a(a) in the reduced matrix element can be eliminated by multiplying the state
®,, for any critical point s, by (—1)*®). In short, for simply-connected M, the fermion
measure in all sectors is uniquely determined up to signs that reflect the choices of sign in
the initial and final state wavefunctions.

In case M is not simply-connected, the principles we have used do not necessarily give
a unique answer because in general the answer is not unique. The signs of the fermion
measure in the different sectors might not be uniquely determined (even after allowing
for the freedom to change the external states) because one is free to twist the theory by
considering differential forms on M valued in a flat real line bundle, rather than ordinary
differential forms. This will change the signs of the various transition amplitudes. (If one
wishes to weight the different sectors of the path integral by arbitrary complex phases, as
opposed to arbitrary minus signs as assumed above, one would find that the construction is
unique up to the possibility of considering differential forms on M valued in a flat complex
line bundle.)

The attentive reader might notice one subtlety that was ignored in the above discussion.
If M is simply-connected, we can interpolate between any two paths from ¢ to p. However,
if mo(M) # 0, there are different homotopy types of such interpolations. If different ways
to interpolate between one path and another would give different signs for the fermion
measure, we would say that the theory has a global anomaly and is inconsistent. This does
not happen in the class of supersymmetric quantum mechanical models considered here
(basically because the theory of differential forms can be defined on any manifold M), but
it does happen in other classes of supersymmetric quantum mechanical models.

In the simple remarks just made, we have explained, just from general principles, that
the path integral for trajectories from g to p is well-defined as a transition amplitude from
®, to ®,. But we have not given a recipe to compute the overall sign of this transition
amplitude. The reader interested in this should consult Appendix F.

10.5 Some Practice

To help orient the reader and as background for section 10.6, we will here give some simple
examples involving flow lines and Morse theory. In our first example, we take the target
space of the o-model to be N = S! with a Morse function h that has only two critical
points — a maximum p and a minimum ¢. Accordingly, the supersymmetric quantum
mechanics with this target space and Morse function has precisely two states whose energy
vanishes in perturbation theory — a state ®, that corresponds to a O-form and a state
®, that corresponds to a 1-form. Since the cohomology of S! has rank 2, the states @,
and ®, must survive in the exact quantum theory as supersymmetric states of precisely
zero energy. Since h has the minimum number of critical points needed to reproduce the
cohomology of M, it is called a perfect Morse function. Because QO increases the fermion
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Figure 122: Some example of flow lines in Morse theory. (a) A circle N = S! is embedded in
R? in such a way that the “height” function is a perfect Morse function A, with only the minimum
possible set of critical points — a maximum p and a minimum q. (b) A two-sphere M = S? is
embedded in R? in such a way that the height function is not a perfect Morse function. It has two
local maxima r and 77/, a saddle point p, and a minimum ¢. The arrows on the flow lines show the
directions along which h increases.

number by 1, its only possibly non-zero matrix element is
QD = my,®,, (10.36)

where mg, is a sum over ascending flow lines from ¢ to p, weighted by the sign of the
fermion determinant. However, since ®, and ®, must remain at precisely zero energy, we
expect mg, = 0. Concretely, as sketched in Figure 122(a), there are two steepest descent
or ascent trajectories from p to ¢, labeled ¢ and ¢ in the figure.

Each of them, if properly parametrized by the Euclidean time 7, gives a solution of
the equation for ascending gradient flow from ¢ to p. Each of these trajectories contributes
+1 to mg,. The expected result Q®, = 0 arises because the two trajectories contribute
with opposite signs: whatever orientation we pick at p, the orientation of time translations
along one of the two trajectories will agree with it, along the other trajectory will disagree
with it. (Again, see Appendix F for a technical description of the signs.)

For a slightly more elaborate example, we consider M = S?, but now with a decidedly
non-perfect Morse function that has two local maxima r and 7', a saddle point p, and a
minimum ¢ (Figure 122(b)). The MSW complex now has rank 4, generated by the 2-forms
®, and ®,/, the 1-form ®,, and the O-form ®,. A priori, the possible matrix elements of

Q are

@q)q = Mgp®p
OB, = My P, + My P (10.37)
As shown in Figure 122(b), there are two flow lines £ and ¢’ from ¢ to p. However, they

cancel just as in the previous example. There is, however, just a single flow line lor 0/
from p to r or 7/, so no cancellation is possible. We can pick the signs of the states so that
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Mypr = My = 1 and then we have

Qd, =0
Od, = B, + .. (10.38)

The cohomology of S? is therefore of rank 2, generated by a 0-form ®, and a 2-form that
we can take to be ®,. or ®,..

The result (10.38) makes it clear that in this example Q2 = 0. Considerations of
fermion number force Q2 to annihilate all the basis vectors except ®,, but qu)q = 0 since
Qd, =0.

10.6 Why Q%2 =0

We now want to explain in terms of Morse theory and gradient flow lines why Q2 = 0
in general (See [53] for a fairly accessible rigorous explanation.) The explanation gives
important motivation for many of the constructions in the present paper.

Consider in general a target space M with Morse function h. Let ¢ be a critical point
of Morse index n. The general form of @@q from eqn. (10.35) is

@(I)q = Z Map; Pp; (10.39)

pilnp,=n+1

where the sum runs over critical points p; of index n + 1 and mg,, is the usual sum of
contributions £1 from ascending flows from ¢ to p;. And similarly the general form of
Q2<I>q is

o, = > > Mgy My Py (10.40)

ra|nrg=n+2 pilnp,=n+1

where r, ranges over the critical points of index n 4 2. So the statement that QQCI)Q =0
amounts to the statement that for each «,

Z Map, Mpr, = 0. (10.41)
i

The only possibly dangerous case is the case that there is, for some 4, an ascending
gradient trajectory from ¢ to p; and also an ascending gradient trajectory from p; to r4.
(Otherwise, either mgy,, or my,,, vanishes for all i.) So let us assume this to be the case.
Rather as in Figure 122(b), let £ be an ascending trajectory from ¢ to p; and let 7 be
an ascending trajectory from p; to r. (We assume that as usual these flows depend on
no moduli except those associated to time translations.) We can make an approximate
ascending gradient flow trajectory from ¢ to r, as follows. Start at ¢ at 7 = —oo. After
lingering near ¢ until time 71, flow from ¢ to p; along the trajectory ¢. Linger near p; until
some much later time 75, and then flow to r, along the trajectory ?. For T — 11 >> 0,
this gives a very good approximate solution of the flow equation, depending on the two
parameters o and 7.
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Index theory and the theory of differential equations can be used to show that these
approximate solutions can be corrected to give a family of exact solutions of the flow
equations, also depending on 2 parameters.®®

Since n,, — ngy = 2 by hypothesis, 2 is the expected dimension of the moduli space
My, of ascending flows from ¢ to ro. What we have found is a component My, —of Mg,
that has this expected dimension. (M, is not necessarily connected; in general, My, is
one of its connected components.)

As usual, the group R of time translations acts on My, ; the quotient is a 1-manifold
MG, rea- For generic metric g;; on M and Morse function h, the 2-manifold Mg, —and
the 1-manifold M7, 4 are smooth manifolds without boundary. This follows again from
general considerations about index theory and differential equations.

A smooth 1-manifold without boundary is either a circle or a copy of R. However,
MG, rea 18 MOt compact, since it has an “end” corresponding to 75 — 71 — co. Therefore,
M, 1eq must be a copy of R. And since R has two ends, Mj  must have a second
end, in addition to the one that we know about.

The end of M;Tmred that we know about is sometimes called a broken trajectory or a
broken flow line. It corresponds to the limit of a gradient flow line from ¢ to r, that breaks
up into a widely separated pair consisting of a flow from ¢ to another critical critical point
p; followed by a flow from p; to r,, where the Morse index increases by 1 at each step.

It again follows from very general considerations that any end of any component of
My, red corresponds to a broken trajectory from ¢ to 7. So in addition to the broken
trajectory from ¢ to r, that appears at the end of M;rmred that we know about, M:;ra,red
must have a second end that corresponds to a second broken trajectory from g to 4.

The sum on the left hand side of eqn. (10.41) can be regarded as a sum over contri-
butions from broken trajectories. The contribution of each broken trajectory is +1. The

mechanism by which the sum always vanishes is that broken trajectories appear in pairs,

*
qro,red”

Careful attention to signs show that they do indeed provide canceling contributions. (See
Appendix F.)
To conclude, we should elaborate on the claim that an end of a 1-dimensional reduced

corresponding to the two ends of a 1-dimensional reduced moduli space such as M

moduli space must correspond to a broken trajectory. Roughly speaking, an end of a
moduli space of solutions of a differential equation corresponds in general to an ultraviolet
effect (something blows up at short distances or times), a large field effect (some fields go to
infinity), or an infrared effect (something happens at large distances or times). An example
of an ultraviolet effect is the shrinking of an instanton to zero size in four-dimensional
gauge theory. This has no analog in our problem, because at short times the gradient flow
equation reduces to du®/dr = 0 (the term g®dyh in the equation is subleading at small
times), and the solutions of this equation do not show any ultraviolet singularity. If M is

8Schematically, if we linearize the problem of correcting the approximate solution ug to an exact solution
we find an inhomogeneous linear problem
L éu = —Luyg (10.42)

The obstruction to inverting L on the space of normalizable fluctuations is controlled by the kernel of LT,
which is generically empty.
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compact, we do not have to worry about u® becoming large; if M is not compact (as will
actually be the case in our main application), it is necessary to analyze this possibility.
Finally, as we are considering a massive theory, the only interesting effect that is possible
at long times is a broken trajectory. In a massive theory in Euclidean signature, long times
do not come into play unless the trajectory becomes broken.

A final comment is that actually, this subject is one area in which rigorous mathemat-
ical theorems are illuminating for physics. From a physicist’s point of view, perturbation
theory gives an approximation to the space of supersymmetric ground states of supersym-
metric quantum mechanics, and the inclusion of instantons gives a better approximation.
Does inclusion of instantons give the exact answer, or could there be nonperturbative cor-
rections that near the classical limit are even smaller than instantons? One answer to this
question is that the rigorous theorems, described in [53], show that inclusion of instantons
gives the exact answer for the space of supersymmetric states.

10.7 Why The Cohomology Does Not Depend On The Superpotential

In equation (10.12), we showed that the supercharge Q is conjugate to the de Rham exterior
derivative d. This implies that the cohomology of Q is canonically isomorphic to the de
Rham cohomology, which is defined without any choice of metric g or superpotential h.
Hence, the cohomology of Q does not depend on the choice of g or h.

However, this sort of proof is not available when we get to quantum field theory with
spacetime dimension > 1. We will give another explanation here that does generalize.
This explanation relies on counting of gradient flow trajectories. (For a much more precise
account, see Section 4 of [53].)

Before beginning the technical explanation, let us explain the physical framework that
should make one expect such an explanation to exist. According to eqn. (10.28), the
Euclidean action of supersymmetric quantum mechanics is {Q,V'} plus a surface term,
where

1 [ dub h
v ped > (10.43)

V= 2 . d7gaptp <d7’ -9 Juc

The definition of V' makes sense if g and h have an explicit 7-dependence, rather than
being functions of u® only, and in this more general situation, we can generalize (10.28) to
the supersymmetric action

o0

dTéh(u; 7). (10.44)

1
I:{Q’V}+)\/ or

The fact that it is possible to give h and g an explicit time-dependence while maintaining
O-invariance can be regarded as an explanation of the technical construction that we will
describe in the rest of this section. This technical construction has numerous analogs that
are important in the rest of this paper, notably in section 15 where we explain the relation
between the Fukaya-Seidel category and the web-based construction of the abstract part
of this paper.

Here is the technical explanation. To compare the cohomology of Q computed using
one metric and superpotential ¢ and h to that computed using another pair ¢',h’/, we
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proceed as follows. Let C be the set of critical points of & and C’ the set of critical points of
h'. In the classical limit, the system based on g, h has a supersymmetric state ®, for each
p € C, furnishing a basis of the space V of approximately supersymmetric states (the MSW
complex). Similarly, the system based on ¢’, b’ has an approximately supersymmetric state
P, for each p’ € C’, furnishing a basis of the analogous space V. As in eqn. (10.35),
by counting gradient flow trajectories for the Morse function A with metric g, we define a
normalized differential O acting on V, and similarly by counting trajectories for ¢, #’, we
define a normalized differential Q' acting on V'. We write # and H/ for the cohomology of
0 and Q' , respectively. We want to define a degree-preserving linear map U : V — V' that
will establish an isomorphism between H and H'.
A degree d linear transformation ¢ : V — V' will induce a map U:H—H ifitisa
“chain map,” meaning that
ou = (-1)UQ. (10.45)

This ensures that if 1) € V represents a cohomology class of Q, meaning that @1/) = 0, then
U represents a cohomology class of Q’ , since @’Z/lw =U @¢ = 0. Moreover the class of
U only depends on the class of 1, since if we replace ¥ by ¥ + @X, then U is replaced
by U + Uy = U + (—l)d@’(L{X). We define If : H — H' by saying that if a class in
‘H is represented by a state 1, then u maps this state to the class of U(¢)). To show that
such a i : H — H' is an isomorphism, we will want a map U’ : V' — V in the opposite
direction, obeying the analog of (10.45) and inducing an inverse on cohomology.

To construct U, we first pick an interpolation from the pair g, h to the pair ¢’, h’. We do
this by letting g and h depend on a real-valued “time” coordinate 7, such that (g(7), h(7))
approach (g, h) for 7 — —oo and approach (¢’, k') for 7 — +00. We can assume that g(7)
and h(7) are nearly (or even exactly) independent of 7 except near some time 79. Now we
consider the gradient flow equation with a time-dependent metric and superpotential:

du® 4 Oh(u;T)
T =Y (u;T) b (10.46)

The boundary conditions are that u(7) — p € C for 7 — —oo and u(r) — p’ € C' for
T — +00. The index determining the expected dimension of the space of solutions of
this equation is simply the difference between the Morse indices n, and n, of p and p'.
(We know that this is the answer if ¢ = ¢’ and h = A/, and the index does not change
under continuous evolution of ¢’, k', and p’.) So the index is 0 if p and p’ have the same
Morse index. For a generic interpolation, the moduli spaces have dimensions equal to their
expected dimensions; we consider an interpolation that is generic in this sense. So the
index zero condition means that the moduli space consists of finitely many points. (Since g
and h are time-dependent, there is no time translation symmetry to force the existence of
a modulus.) These points correspond to solutions in which u%(7) is almost constant except
near some time 7 = 79. We let u,,y be the “number” of such solutions (as usual weighting
each solution with the sign of the fermion determinant), and define U : V — V' by

UD, = > upyPy. (10.47)

4 ‘”p’ =np
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The condition that n, = n, means that U preserves the grading of V and V'. We will need
to know that U defined by (10.47) is nonzero, and in fact satisfies (10.45). This will be
justified at the end of this section.

The left and right hand sides of the equation @’L{ = (—1)d2/{ @ both increase the
degree (or grading) by 1. So to prove this identity, we have to look at moduli spaces of
time-dependent gradient flows with n,, = n, + 1. The reasoning we need is very similar
to the proof that 02 = 0 in section 10.6. Let M be a component of the moduli space of
solutions of the time-dependent gradient flow equation, interpolating from p in the past
to p’ in the future. M is a one-manifold without boundary, and so is either a copy of S*,
with no ends at all, or a copy of R, with two ends. In the following, only the case that M
is a copy of R is relevant.

Just as in section 10.6, an end of M is a broken path, in which a solution breaks up
into two pieces localized at widely different times. The building blocks of a broken path in
the present context are of the following types:

(A) One ingredient is familiar from section 10.6. In the far past or the far future,
where the equation (10.46) has no explicit time-dependence, we may have a solution of the
time-independent gradient flow equation that interpolates between two critical points of A
or two critical points of h’ with Morse index differing by 1. Let us say that such a solution
is of type (A_) if the transition occurs in the past and of type (A4 ) if it occurs in the
future.

(B) The new ingredient in the present context is a solution that interpolates from a
critical point of h to a critical point of A/, near the time 9.

Ends of M correspond to broken paths of two possible types:

(i) One type consists of a trajectory of type (A_ ) in the far past, interpolating between
two critical points of h, followed by a trajectory of type (B) at 7 = 79, interpolating from
a critical point of h to one of h'.

(i) The other type consists of a trajectory of type (B) at 7 = 79, interpolating from
a critical point of h to one of h', followed by a trajectory of type (A, ) interpolating to
another critical point of A/

Conversely, every broken path of either of these types arises at one end of one com-
ponent of M, and this component has a second end that is either of the same type or
of opposite type. This is true for reasons similar to what we explained in showing that
Q2 =0.

A broken path of type (i) contributes +1 (depending on the sign of the fermion de-
terminant) to a matrix element of 2/Q, and a broken path of type (ii) contributes +1 to
the matrix element of @’L{ between the same initial and final states. If M has two ends
that are both of type (i) or both of type (ii), then the corresponding contributions to /O
or to QU cancel. On the other hand, if M has one end of each type, then these ends
make equal contributions to U @ and to Q’Z/l . Both statements follow from the observation
that the sign of a contribution is equivalent to a choice of orientation of the corresponding
component of M, and all contributions are oriented canonically towards the future. After
summing these statements over all components of M, we arrive at the desired identity
(10.45).
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Figure 123: Some possibilities for a component of the moduli space M of solutions to (10.49)
that exist for some s in the case where n, = n,. (Some additional possibilities are omitted).
The picture is only schematic: while the value of s at which a solution exists is precisely defined,
the corresponding value of 79 which characterizes the solution is not really well-defined. What is
well-defined is only whether a sequence of solutions goes to 79 = +o0o. A component of M might
be compact and without boundary, as in (a). Otherwise, it has two boundaries and/or ends. Each
boundary or end contributes to one of the four terms in equation (10.48). and the two boundaries
and/or ends of M make compensating contributions to this identity. In (d), (e), and (f), the vertical
dotted lines represent values of s at which there is an exceptional gradient flow solution contributing
to the matrix E. These are flows that reduce the Morse index by 1.

One question about this is whether the map & : V — V' (and hence possibly the
induced map U on cohomology) depends on the specific choice of a generic time-dependent
interpolation from g, h to ¢’, h’ (we call an interpolation generic if the moduli spaces have
their expected dimensions). In general, the counting (with signs) of the solutions of an
elliptic differential equation is invariant under continuous variations of the parameters in
the equation, as long as solutions cannot go to infinity. If we could assume in the present
context that solutions cannot go to infinity, then the numbers u,,, would be independent of
the choice of a generic interpolation and ¢ would likewise not depend on the interpolation.

This is actually not so in general. If Uy and U; are the maps determined by two different
generic interpolations, then in general the relationship between them is not Uy = U; but
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rather
U, — Uy = Q'E—EQ, (10.48)

where E is a linear transformation E : V — V'’ that reduces the degree by 1. This is enough
to ensure that the induced maps on cohomology are equal, Zji\l = Z:{\O. The correction terms
on the right hand side of eqn. (10.48) should be expected, for the following reason. The
action of our system is Q-exact up to a surface term (eqn. (10.44)), and when we change
the interpolation from g, h to ¢, h’ (without changing g or h at 7 = +00) we change the
action by a Q-exact term. After integration by parts, this results in contributions in which
@ acts on initial and final states, and the transition amplitude changes by Q'E — EQ for
some E (as usual the shift from Q to @ and @’ results from absorbing the surface terms in
the action in the normalization of the initial and final states).

Technically, E can be found as follows. Given two generic interpolations from g, h to
g, I/, we first select an interpolation between the two interpolations. This means that we
choose a metric g(u; 7, s) and superpotential h(u;7,s) that depends not only on the time
but on another parameter s, with 0 < s < 1, such that the restriction to s =0 or to s =1
gives the two interpolations that we want to compare. Now we look for solutions of the
gradient flow equation in 7 at a fixed value of s

du®
dr

Oh(u; T, s)
oub

b (s 7, 5) (10.49)
flowing from a critical point p in the past to a critical point p’ in the future in such a way
that the Morse index is reduced by 1: n, = n, — 1. For fixed s, the expected dimension
of the moduli space is —1, meaning that for generic s there are no solutions (and there are
in fact no solutions at s = 0 or s = 1 since we have assumed g(u;7,s) and h(u; T, s) to be
generic at s = 0,1). However, by allowing s to vary — or in other words including s as an
additional variable — we increase the expected dimension by 1. The expected dimension
of the moduli space of solutions flowing from p to p’ at some unspecified value of s is 0,
and we define an integer e,y as the “number” of such solutions, weighted by the sign of an
appropriate fermion determinant. (We address the sign issues here briefly in Appendix F.)
The matrix E is defined by

ED, = ) ep®y. (10.50)

p'|n,r=np—1

Let also Uy : V — V' and U; : V — V' be the maps defined via eqn. (10.49) at s = 0 and
s = 1. We claim that Uy, U1, and E satisfy (10.48).

As usual, to justify the claim we analyze the moduli spaces of solutions of the gradient
flow equation. We consider a matrix element of eqn. (10.48) from &, to ®,/, where
np = ny. The moduli space of gradient flows from p to p’ at some unspecified value of s is
1-dimensional. Some illustrative possibilities for what a component M of this moduli space
might look like are indicated in Figure 123. As usual (Figure 123(a)), M might be compact
and without boundary, but such a component does not contribute to the discussion. If M
is not of this type, then it has two boundaries or ends that may be either at s =0, s =1,
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T = —00, or T = +00. Boundaries or ends of M of the four possible types contribute to
the four terms in eqn. (10.48), and the two ends of M make canceling contributions in this
identity.

We already know that an endpoint of M at s = 0 or s = 1 contributes to Uy or U;.
What remains is to explain why M can have an end at 79 = oo and why such ends
correspond to matrix elements of Q'E or EQ. For example, suppose that O'E has a matrix
element from ®, to ®,/, where n, = n,. This means that E has a matrix element from &,
to ®,, where ¢’ is a critical point of b’ with ny = n, — 1, and Q' has a matrix element
from ®, to ®,,. The matrix element of E comes from a gradient flow from p to ¢’ (for the
time-dependent superpotential h(u;T,s)) that exists at some value s = s¢ (this solution is
localized near some time 7 = 7p). The matrix element of Q' comes from a flow from q top
(for the time-independent superpotential h’) that exists at generic s (and any 7). We can
try to convert the “broken path” p — ¢’ — p’ into an exact gradient flow that interpolates
from p to ¢’ near time 7y and then from ¢’ to p’ at some much later time 71. For very large
71 — 79, we can certainly make a very good approximate solution like this. However, in
contrast to examples that were considered before, general considerations of index theory
do not predict that this approximate solution can be corrected to an exact solution at the
same value of s. The reason is that the initial flow from p to ¢’ has virtual dimension
—1, meaning that the linearization of the gradient flow equation near this trajectory is not
surjective; the gradient flow equation that this soluton satisfies has one more equation than
unknown and a generic perturbation of the equation causes the solution not to exist. A
generic perturbation can be made by either changing s or including the second flow near
time 7 >> 19. However, the fact that the index is —1 means that the space of potential
obstructions to deforming a solution is 1-dimensional, so we can compensate for existence
of the second flow at very large 71 by perturbing s slightly away from sg. For 71 — oo (so
that the perturbation by the second flow goes to zero), we must take s — so (so that the
perturbation by s goes to 0). This is why a matrix element of @' E or EQ corresponds to
an infinite end of the moduli space, as indicated in Figure 123(d,e,f).

Now that we know that the map induced on cohomology by a generic interpolation
from g, h to ¢’, ' does not depend on the interpolation, it is straightforward to show that
this map is invertible. Just as before, we pick a time-dependent interpolation from ¢', b’
back to g,h and use the counting of trajectories to define a map U’ : V' — V in the
opposite direction. We can compute the product map U’ : V — V by considering an
interpolation from g, h to itself in which we first interpolate from g, h to ¢’, i’ near some
time 79 and then interpolate back to g, h near some much later time 7;. Thus the product
U'U is computed by counting the trajectories for some interpolation from g,h to itself.
As we have just explained, the map U'U/ will in general depend on the interpolation, but
the induced map U'U on cohomology will not. So we can compute it for the trivial, time-
independent interpolation from g, h to itself. The map on cohomology associated to the
trivial interpolation is certainly the identity, so it follows that in general Ui = 1.
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11. Landau-Ginzburg Theory As Supersymmetric Quantum Mechanics

Now we turn to our real topic — massive theories in two dimensions. Our purpose is to give
a concrete realization of the abstract algebraic structures described in Sections §2 - §8 in
the context of massive Landau-Ginzburg theories.

Our analysis will proceed roughly in the opposite order as in the abstract context. As
discussed in the introduction 1, our starting point is the complex of ground states for a
two-dimensional theory compactified on a strip with supersymmetric boundary conditions.
In a limit where the segment is made very long, we expect to be able to reconstruct this
complex in terms of a web representation and interior and boundary amplitudes which
encode properties of the same theory on the plane and on the left and right half-planes.
The advantage of working with LG theories is that we can formulate our questions in
the language of Supersymmetric Quantum Mechanics and Morse theory. As a result,
the complex of ground states on the strip, the web representation data, the interior and
boundary amplitudes will all be defined in terms of counting problems for solutions of
certain differential equations on the strip, plane and half planes.

In this section we review the basic data required to define a massive LG theory, some
supersymmetric boundary conditions, the relation to Supersymmetric Quantum Mechanics
and Morse theory and the corresponding differential equations. We also explain the relation
between the supersymmetric boundary conditions discussed in this paper and the Fukaya-
Seidel category or more precisely the Fukaya category of the superpotential.

11.1 Landau-Ginzburg Theory

Let us recall the basic data needed to formulate a 1 + 1 dimensional LG theory with
N = (2,2) supersymmetry. We require a Kahler manifold X, together with a holomorphic
superpotential W : X — C. X has a Kéahler form w, making it a symplectic manifold,
and a corresponding Kéhler metric. A vacuum state corresponds to a critical point of W,
and at such a critical point, the fermion mass matrix is the matrix of second derivatives
of W, also called the Hessian matrix. So an LG theory is massive precisely if the Hessian
matrix is nondegenerate at every critical point of W. In this case, we say that W is a
Morse function in the holomorphic sense. (Using the Cauchy-Riemann equations, this is
equivalent to the condition that any nontrivial real linear combination of Re W and Im W is
a Morse function in the ordinary real sense.) Since we assume that the theory is massive in
every vacuum, and in addition the soliton states that interpolate between different vacua
will also be massive, there is a characteristic length scale £y, beyond which the theory
should always be, in some sense, close to a vacuum configuration. As usual, we write V for
the set of vacua or equivalently the set of critical points of W.

There are many familiar ways to formulate the standard 1 4 1-dimensional Landau-
Ginzburg model associated to the above data. A slightly less familiar approach will be
convenient for us. We will formulate the LG model as a special case of the supersymmet-
ric quantum mechanics construction of section 10, but now with an infinite-dimensional
target space.”® This construction will make manifest not all four supersymmetries of the

%9 The ability to do this uses (2,2) supersymmetry in an essential way. A two-dimensional o-model
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(2,2) model, but only a subalgebra consisting of two supercharges whose anticommutators
generate time translations but not spatial translations. Such a subalgebra is not uniquely
determined. It will be important to have an unbroken U(1)r symmetry that acts on this
superalgebra. This will be an axial U(1) charge normalized so that the negative-chirality
supercharge (J_ and the positive chirality supercharge Q 4 both have axial U(1)g-charge
+1 while the positive-chirality supercharge ), and the negative-chirality supercharge @ _
have axial U(1)g-charge —1. We will refer to this axial U(1)g charge as “fermion number.”

As already explained in section 1, a subalgebra satisying these conditions depends on
the choice of a complex number ¢ of modulus 1. The subalgebra that we make manifest
via the quantum mechanical construction is generated by

Q=Q--¢'Q,, Q=0 —(Qs (11.1)
The nonzero anticommutators are
{Q¢, Qc} = 2H — 2Re(¢'2), (11.2)

where H is the Hamiltonian of the quantum field theory and Z is the central charge. We
will call this a small subalgebra of the supersymmetry algebra.

To present the two-dimensional LG model as an abstract quantum mechanical model,
we formulate it on a two-manifold of the form R x D, where R is parametrized by the
“time,” and D is a 1-manifold that represents “space.” It could be D = R, or the half-lines
D = [z4,00) or D = (—00, x,] or the interval D = [xy, x,].

The target space of the supersymmetric quantum mechanics model is going to be the
space of all X-valued fields on D, or in other words

X = Maps(D — X). (11.3)
X inherits a natural metric from the Kahler metric of X:

1 -
d? = 3 (gﬁdgb] ® dé” + complex conjugate) (11.4)

where ¢! are local holomorphic coordinates on X. Thus X has metric:

66| = ;/ dx (gﬁ(5¢1<5$j + complex conjugate) . (11.5)
D

Our motivating example is X = C" with a flat Kéahler metric
1 -K , =K
52 <d¢K®d¢ +d¢ ®d¢K). (11.6)
K

In this case, the Kihler formw = 1 37 - Ao AdGK is exact, w = dA with A = Re(5 >k oK dgK).
The following construction applies whenever w is exact. When this is not the case, some

with (1,1) supersymmetry actually cannot be viewed as an infinite-dimensional version of the construction
reviewed in section 10. For example, such a o-model in general does not have an additively conserved
fermion number.
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slight modifications are needed since the superpotential h that we introduce momentarily
is not single-valued. In this case one should replace X by a suitable cover on which A is
single-valued.

To put the o-model in the supersymmetric quantum mechanics framework of section
10, all we need is to define the superpotential h. We take this to be

h:=— 1/ dmRe(Zd)I 1W> (11.7)

for the case that X = C" with w = % > de! /\dgf. In general, one replaces Re(% S ! dgl)
with any 1-form A such that w = d\. Parametrizing X by an arbitrary set of real coordi-
nates u®, we write A = \,du® and then

du® 1 _
h:= —/Dda: <)\adx —5Re(¢ 1W)> : (11.8)

(If one transforms A to A + da for some function o on X, h is modified by boundary terms
that we will discuss in section 11.2.)

The construction reviewed in section 10, applied to any Riemannian manifold (in this
case X), with any superpotential (in this case h), gives a quantum mechanical model
with two supercharges Q. and @4 of fermion number F = 1 and —1, respectively. The
supersymmetry algebra of the quantum mechanical model includes time translations, but
of course it does not include spatial translations, which are not defined in the general
quantum mechanical framework. From eqn. (10.6), the kinetic energy of the quantum
mechanical model is T' = % gapt®0P, which in the present context becomes

1 d¢1d¢J
T = /dx 9T (11.9)

The potential energy of the quantum mechanical system, again from (10.6), is V =
% g™, hdyh. In the present case, this becomes

V=3 dzx 29 dp7

11.1
: , (11.10)

1/d 'd¢f i ,Jaw

or, after integration by parts,

1 d¢f d¢? 1 gowow )\ 1 R
= [ da= Sy ) T . 11.11

Here 0, D and 0y D are the left and right boundaries of D, which for the moment we assume
to be at © — fo00. (In case D has boundaries at finite points zy and/or x,., the same formula
holds after imposing some further conditions that we discuss in section 11.2.)

Still assuming that D = R, and assuming a reasonable behavior at infinity as discussed
in section 11.2), the boundary terms in (11.11) are just constants that depend on the
boundary conditions. These constants are responsible for the central charge term in the

— 240 —



small supersymmetry algebra (11.2). Apart from this constant term, the potential energy
V' of the o-model is independent of (. Moreover, the sum 7'+ V' is simply the bosonic part
of the Hamiltonian of the standard LG model with superpotential W. When one adds in
the fermionic terms in the Hamiltonian of the quantum mechanical model, one simply gets
the full supersymmetric LG Hamiltonian.

What we have achieved via this construction of the LG model is to make manifest
an arbitrary (-dependent small subalgebra of the supersymmetry algebra. This is useful
because we are primarily interested in branes and supersymmetric states that are invariant
under such a small subalgebra but not under the full N' = 2 supersymmetry algebra.

As an immediate application, let us discuss the states that are annihilated by Q¢ and
Q. From the general quantum mechanical discussion of section 10, we know that such
states®” correspond in the classical limit to critical points of h. A simple computation
shows that stationary points of h must satisfy

d
2

_ TSV (11.12)
2 an
We call this equation the (-soliton equation. Not coincidentally, the potential energy is
written in eqn. (11.10) as the integral of the square of the left hand side of this equation.
For D = R, with the fields required to approach specified vacua i, j, € V at the two ends of
D, a solution of this equation gives the classical approximation to an ij BPS soliton [15].

Another view of the (-soliton equation is as follows. We can think of h, as defined in
eqn. (11.8), as the action of a classical mechanical system in which the symplectic form
is w = d\ and the Hamiltonian is H = —%Re(C*IW). 61 So the (-soliton equation is a

Hamiltonian flow equation
dub  OH

—— =0. 11.13

Wb i * ou® ( )

Since the Hamiltonian is a conserved quantity in a Hamiltonian flow, an immediate con-

sequence is that H = —%Re((le) is independent of z in a solution of the (-soliton
equation. On a Kéahler manifold, Hamiltonian flow for a Hamiltonian that is the real part
of a holomorphic function is the same as gradient flow with respect to the imaginary part
of the same holomorphic function. So it is also possible to write the (-soliton equation as

du® _ g“b61m<1g—1w>. (11.14)

a gradient flow equation:

dz oub 2

(Concretely, the equivalence of these two forms of the (-soliton equation is proved using the
Cauchy-Riemann equation for the holomorphic function ¢~'W.) Hence Im(¢~'W) is an
increasing function of x for any flow. Combining these statements, it follows, for example,

50States annihilated by the full supersymmetry algebra with four supercharges, as opposed to the small
subalgebra generated by Q¢ and @C, are the supersymmetric vacua of the theory and correspond, of course,
to critical points of W.

S'This H is distinct from the Hamiltonian H in equation (11.2). Note too that one often splits the real
coordinates u® into canonically conjugate pairs p; and ¢*, with w = > dg* Adp; and A = — Zipidqi. This
might make h = f(pidqi — Hdzx) look more familiar.
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that an ¢j soliton (interpolating from ¢; at 7 = —oo to ¢; at 7 = +00) can only exist for
a particular value of (:

W =W
W - Wil

We recall that the central charge in this sector is Z;; = W; — W,.
In general, a solution of the (-soliton equation gives only a classical approximation to

iC =g : (11.15)

a quantum BPS state in the ij sector. To get the exact spectrum of quantum BPS states,
one needs to modify the classical approximation by instanton corrections. We defer the
details to section 12, and for now merely remark that the framework to compute instanton
corrections is simply the standard framework for instanton corrections in supersymmetric
quantum mechanics, as described in section 10. Thus, one needs to count (with signs)
the solutions of the instanton equation of the supersymmetric quantum mechanics. The
general instanton equation (10.23) of supersymmetric quantum mechanics, specialized to
the case that the target space is Kahler, is

(Zi[ = Qg”ifj. (11.16)
For the case that the target space is X and with our choice of h, this becomes
(8‘1 +ii§7’> 1_ iggﬂgzg (11.17)
or alternatively o
a;;f _ EQUZZ, (11.18)

where s = x + i7. We call this the (-instanton equation, and we call its solutions (-
instantons.

Remark: It is sometimes useful to have a clear idea about how the discrete spacetime
symmetries P and PT are implemented in Landau-Ginzburg theory. PT corresponds to
a rotation by 7 in Euclidean space and is therefore a symmetry of the theory. Under PT
the bosonic fields transform as ¢(z,7) — ¢(—x, —7), and the fermion fields transform as
1+ — Fip4. This is not a symmetry of the (-instanton equation but rather transforms it
by ¢ — —(. Parity, on the other hand, is in general not a symmetry of the Landau-Ginzburg
theory. Under parity we must have ¢(x,7) — ¢(—=z, 7), while the fermionic fields transform
as YL — eiia@? In general, this transformation will map one Landau-Ginzburg model to

another. A sufficient criterion for parity invariance is W(¢) = (W (¢))*. In particular, if
W is a polynomial it should have real coefficients.

11.2 Boundary Conditions
11.2.1 Generalities

The nature of the boundary conditions we impose on (11.12) depends on the domain D.
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At an infinite end of D, to keep the energy of the LG model finite, the fields must
approach one of the critical points ¢;, ¢ € V. So if D extends to —oo, then we require

lim ¢ = ¢ (11.19)

T—r—00

where ¢; is some critical point of W. Similarly, if D extends to +oc then we require

im 6=, (11.20)
where again ¢; is a critical point of W .62
Let us now consider boundaries of D at finite distance. We want to describe bound-
ary conditions that preserve the small supersymmetry algebra. Up to a certain point, the
abstract quantum mechanical construction of the LG model tells us how to do that. For-
mally, with an arbitrary target space and an arbitrary real superpotential, we can make a
quantum mechanical model with 2 supersymmetries. So from that point of view, we can
take the target space to be X = Maps, (D, X) where the notation Maps, means that at the
boundary of D, we place a restriction of our choice on the map from D to X. For example,
if D =[xy, z,] is a compact interval (the analog if D = R, has only one boundary point is
obvious), we can pick submanifolds Uy, U, C X and require that xy maps to Uy and z, to
U,. Similarly, from a formal point of view, we can add any boundary terms that we want
to the bulk superpotential i defined in (11.7). In the spirit of LG models, we will take the
boundary terms to be functions of the fields ¢’ only and not their derivatives. So we pick
arbitrary real-valued functions k, on U, and k, on U, and add the corresponding boundary
terms to h to get:

him—; [ da (»x;;;j - Re (clw)) ~ ko(u(er)) + b (u(z,) (11.21)

There is no natural choice of A; we are always free to transform A — A+ da for any 0-form
a. But in (11.21), it is clear that such a redefinition of A can be absorbed in k; — ks + oy,
k, — k. + a,.. So, since we allow any kg, k., a shift of A by an exact form does not matter.
The general quantum mechanical construction gives us an action with target Maps, (D, X)
and superpotential h; the action is invariant under two supercharges Qc, @4 for any choices
of Up, U, k¢ and k,. However, here we have to be careful because not every action function
constructed from infinitely many variables can be quantized in a sensible way. For example,
if we simply drop the % term in (11.21), we would lose the corresponding |9,¢|? term in
the Hamiltonian (or in the potential energy of eqn. (11.11)). The theory would then be
“ultra-local,” with no energetic cost in fluctuations of short wavelength, and we would not
expect to be able to quantize it sensibly.

52The integral (11.7) defining h is infinite if Re(¢™ W (¢)) is nonzero at an infinite end of D. However, in
each sector defined by the choices of critical points at infinity, A can be naturally defined up to an overall
constant; the variation of h (under a local variation of ¢(z)) and more generally the differences in the values
of h for different fields in the same sector are finite and well-defined. Actually, for D = R, in a sector that
contains BPS solitons, we can do better. In such a sector, Re(¢ "W (¢)) has the same value for ¢ = ¢; or
¢j, and the problem in defining h can be eliminated by subtracting a constant from W to ensure that this
value is 0. If D has only one infinite end, one can do the same for each choice of vacuum at infinity.
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A more subtle variant of this problem arises in the present context unless Uy, and U,
are middle-dimensional in X. Quantization will only be possible if the choices of Uy and U,
lead to elliptic boundary conditions on the Dirac equation of the two-dimensional o-model.
A simple elliptic boundary condition on the Dirac equation on a two-manifold ¥ requires
that one-half of the fermion components vanish on the boundary of . In the present
context, in the abstract quantum mechanical model of section 10, the fermions 1,1 take
values in (the pullback to the worldline of) the tangent space of the target space M. In the
present context, with M = X = Maps, (D, X), this means that the restrictions of v, to
the boundaries of D take values in (the pullbacks of) the tangent bundles of Uy, U,. Thus
the condition that the boundary values of the fermions take values in a middle-dimensional
subspace means that Uy, U, must be middle-dimensional. If we do not obey this condition,
we can write down a supersymmetric action, but we cannot quantize it in a supersymmetric
fashion.

Actually, Uy and U, are subject to a much stronger constraint, which we can discover
from the condition for a critical point of h. Asking for h to be stationary under variations
of ¢ or u® that vanish at the boundary of D will give the ¢-soliton equation that we have
already discussed. But there are also boundary terms to consider in the variation of h.
These terms are

Mi}éx) =+ 0(z—x) <Aa(:c) - gZ) —§(x — ) <)\a(x) — gﬁ) : (11.22)

In general, in supersymmetric quantum mechanics, h is certainly not stationary at a generic
point in field space. But in the particular case of the infinite-dimensional target space
Maps, (D, X), to get a sensible model, we do need to work in a function space in which
the delta function terms in the variation of A vanish. Otherwise, when we compute the
potential energy %\th, we will find terms proportional to §(0).

In the present context, the only way to eliminate the delta function terms in the
variation of h is to constrain suitably Uy, Uy, k¢, and k,. Writing A|¢y for the restriction of
Ato U C X, the conditions we need are

Mo, =dke, Ay, = dk,. (11.23)

In particular, A restricted to U, or U, is exact, and therefore w = d\ vanishes when
restricted to Uy or U,.. Since Uy and U, are middle-dimensional, this means that U, and
U, are “Lagrangian submanifolds” of X. To emphasize that they are Lagrangian, we will
henceforth denote them as £, and £, rather than U, and U,. Moreover, eqn. (11.23) imply
that (up to inessential additive constants) ky, and k, are uniquely determined by A.

The condition on Uy and U, that we have found is simply independent of W, so it must
agree with what happens at W = 0. Indeed, at W = 0, a brane invariant under the small
supersymmetry algebra is usually called an A-brane, and the usual A-branes are supported
on Lagrangian submanifolds. ¢ does not enter in standard discussions of A-branes; the
reason for this is that if W = 0, there is an extra U(1) R-symmetry that can be used to
rotate away (. The A-model at W = 0 in general may have “coisotropic” branes [55] as well
as the usual Lagrangian branes, but we will not try to generalize them in the presence of a
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superpotential. The fact that the usual Lagrangian A-branes at W = 0 can be generalized
S0 as to preserve the small supersymmetry algebra also for W 2 0 has been shown before
in a somewhat different way (see section 7.1 of [44]).

Just as it is not strictly necessary to assume that w is globally exact and therefore
that \ is globally-defined, similarly it is not strictly necessary to assume that k, and k&, are
globally-defined. Only their derivatives appear in the Lagrangian, and one can consider
the case that k; and k, are defined only up to additive constants. In this case, one must
develop the theory with a multivalued superpotential h or else replace Maps, (D, X) by a
cover on which h is single-valued. However, the theory has particularly simple properties if
one assumes that A, ks, and k, are all single-valued, and this assumption is rather natural in
the context of LG models. Therefore, in this paper we will usually make that assumption.

Under this assumption, eqn. (11.23) says that A|z, and A|z, are globally exact. On
a symplectic manifold X with exact symplectic form w = d\, one says that a Lagrangian
submanifold £ C X is exact if M|z is exact. One implication of exactness in the standard
A-model at W = 0 is as follows. In general, a (closed) Lagrangian submanifold £ C X
determines a classical boundary condition in the A-model, but because of disc instanton
effects, this classical boundary condition might not really correspond to a supersymmetric
A-brane. In fact, disc instanton effects can cause Q? to be nonzero in the presence of such
a brane, as we explain in section 13.5. A disc instanton is a holomorphic map ¢ : H — X,
where H is a disc, such that ¥ (0H) C L. Disc instantons do not exist if w and L are
exact, that is if w = d\ and Az = dk with X and k globally defined, for then the area of a
hypothetical disc instanton would have to vanish:

/ ww=[ wo=[ vk = / dy* (k) = 0. (11.24)
H OH OH OH

So in the usual A-model, an exact Lagrangian submanifold always does correspond to a
supersymmetric brane. The same is true in the presence of a superpotential, since as we
will explain in section 13.5, the disc instantons that are important here are “small” ones
(localized near a particular boundary point) that are not affected by a superpotential.
We conclude this introductory discussion with some general remarks.. The (2,2) su-
persymmetric sigma model with Kéahler target X and no superpotential has two classical
R-symmetries. U(1)axia rotates Q,,@+ with a phase and Q. ,Q_ with the opposite
phase, while U(1)vector rotates Q_, Q4 with a phase and Q_, Q . with the opposite phase.
The topological A-model is obtained by topological twisting using the current generat-
ing U(1)vector- A-branes are the branes in this topological field theory. When we turn
on a generic® superpotential W, the U(1)aya1 is unbroken classically but the U(1)vector
symmetry is broken classically and we cannot twist to make a topological A-model.
Nevertheless, as we have seen, it is still possible to define branes that correspond rather
closely to the usual A-branes at W = 0. We will just call them A-branes. Moreover, as
we will learn in section 11.3, it is also possible with W # 0 to define tree-level amplitudes

53In the presence of a quasihomogeneous superpotential, meaning that there is an action on X of a group
U(1)x under which W has “charge 1,” there is still an R-symmetry that acts on the supersymmetries as
U(1)vector- It is a diagonal combination of U(1)vector with U(1)x.
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with many of the properties of standard A-model amplitudes (though not the usual cyclic
symmetry). We will refer to the model that can be constructed with W # 0 as the A-model
with superpotential. This theory is not a topological field theory, but shares many features
of a topological field theory. In what follows, many statements are equally applicable to
either a standard A-model (with a compact target space, or with branes required to be
compact, or some other condition placed on branes for reasons explained in section 11.2.3)
or to the A-model with superpotential W # 0. When we refer loosely to the A-model, we
are making statements that apply equally to the different cases.

At W = 0, the standard definition of a Lagrangian A-brane involves specifying not
just the support £ of the brane, but also a flat unitary Chan-Paton vector bundle®* over
L. This part of the brane story is not affected by introducing W, and does not interact
in a very interesting way with what we will describe below. In principle we should always
denote a brane by 28 to distinguish it from its support £. Nevertheless, we will sometimes
trust to the reader’s indulgence and simply refer to a brane by L.

11.2.2 Hamiltonian Symplectomorphisms

In the conventional topological A-model — with a compact target space, for example —
the brane determined by a Lagrangian submanifold £ is supposed to be invariant under
deformations of £ that are induced by Hamiltonian symplectomorphisms of X, provided
the Hamiltonian symplectomorphisms are isotopic to the identity. The group of Hamilto-
nian symplectomorphisms is the group generated by Hamiltonian flows with single-valued
Hamiltonian functions H. To a function H, we associate the Hamiltonian vector field

Vi = wo,H. (11.25)

The group of Hamiltonian symplectomorphisms is the group generated by these vector
fields.

To determine the infinitesimal motion of a Lagrangian submanifold £ generated by a
given Hamiltonian function H, we only care about the corresponding Hamiltonian vector
field Vi modulo vectors that are tangent to £, since a vector field tangent to £ generates a
reparametrization of £, rather than a motion of £ in X. To determine Vi modulo vector
fields tangent to £, we only need to know the first derivatives of H along £ (rather than
its derivatives in the normal direction). So if we are given a function H that is defined just
on £ (and not on all of X), this suffices to determine a motion of £ in X to first order,
though of course only to first order.

In the mathematical literature on the topological A-model, going all the way back to
the work of A. Floer in the mid-1980’s, invariance of A-branes under Hamiltonian symplec-
tomorphisms is one of the most central properties. Yet this fact is relatively little-known
among physicists. The reason that the statement is not more familiar to string theorists is
the following. In a class of Lagrangian submanifolds that are equivalent under Hamiltonian

54This description is a little over-simplified, as one knows from the K-theory interpretation of D-branes.
The Chan-Paton bundle on a brane is not quite a flat unitary vector bundle but is twisted by a gerbe of
order 2 associated to wz(L).
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diffeomorphisms that are isotopic to the identity, there is at most one special Lagrangian
representative, and this is the representative that is important in most physical applica-
tions of the A-model. If there is no special Lagrangian representative in the given class,
then the branes in question are “unstable,” analogous to unstable holomorphic bundles on
the B-model side, and cannot be used in a superconformal construction.

Actually, invariance of the A-model under Hamiltonian symplectomorphisms of branes
is mirror dual to invariance of the B-model under complex gauge transformations of the
Chan-Paton gauge field of a brane. One expects to be able to make Hamiltonian sym-
plectomorphisms independently for each A-brane, just as in the B-model, one can make
separate complex gauge transformations for each B-brane.

Here is a more detailed explanation. First we consider the B-model, and then we will
consider the A-model in parallel. In a o-model, a brane B is described by a submanifold
Y C X that is equipped with a Chan-Paton vector bundle £ — Y that is endowed with
a unitary connection A. A unitary gauge transformation of A just changes the worldsheet
action by a total derivative, so it is trivially a symmetry. However, the B-model is actually
invariant under complex gauge transformations of A, not just unitary ones. The way that
this happens is that the change in the action when A is changed by a gauge transformation
with an imaginary generator is Q-exact. This is a special case of the fact that a D-term
in the action is always Q-exact. For simplicity, in both the A-model and the B-model, we
will consider only branes of rank 1; for the B-model, this means that A is a U(1) gauge
field. The boundary D-terms of lowest dimension take the form

ded?6 k(u®), (11.26)
ox

where X is parametrized locally by some functions u® and k is a real-valued function on
the support £ of a brane B. The integral runs over the portion of 9% that is labeled by
a particular brane. After performing the 6 integrals, in the case of the B-model, one can
recognize (11.26) as the change in the action under an infinitesimal gauge transformation
of A with imaginary gauge parameter ik.

To imitate this in the A-model, we proceed in exactly the same way, using the same
D-term (11.26). But this is actually not anything new. We already allowed for such a
boundary D-term in eqn. (11.21), where we included in the Morse function h a boundary
contribution involving an a priori arbitrary function k& on £. (In writing this equation,
we allowed for the possibility of separate Lagrangian submanifolds £, and £, at the two
ends, with separate functions k; and k,.) The contribution of the Morse function to the
action is the D-term f ded2e h, so the dependence of a brane on this interaction is Q-
exact. However, we learned in the subsequent analysis that actually k& cannot be specified
independently of the choice of £. Having specified once and for all a one-form A with
d\ = w, the restriction of A to £ must be related to k by eqn. (11.23):

Az = dk. (11.27)

This means that, up to an additive constant, k£ cannot be varied independently of L. If
we change L to first order by a Hamiltonian vector field V', then the change in \|. is iyw,
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where iy is the contraction operation (in coordinates, iyw = V%wgdu’). Thus eqn. (11.27)
tells us that if we want to change k by an amount %, then we also need to move £ by the
Hamiltonian vector field

Ve = w9y (5k). (11.28)

For a more complete picture, suppose first that we are given a Hamiltonian function
H that is defined throughout X. We consider making a change of variables in the theory
with du® = V}7. In first order, this moves each Lagrangian submanifold £ by the restriction
to L of V. To decide if this is an invariance of the A-model, we must see what happens
to the Morse function h. This is a sum of three terms

hy = —/ Agdu®
D

hy = /D dx%Re(g*W)
hg = —k‘g(Ug) + kr(ur)' (11'29)

None of these terms is separately invariant under du® = V. For example, ho changes by
a bulk integral

6h2:/Ddx§{H,Re(§_1W)}, (11.30)

where {f, g} is the Poisson bracket of two functions f and g. Because this is purely a bulk
integral with no delta function terms at the end, the corresponding contribution f dtd?0 5hs
is a harmless D-term. By contrast, the change in h; is only a boundary term:

6hy = / Sulwapdu’ = / WO H wapdu = — / dH = —H(z,) + H(z,).  (11.31)
D D D

A change in the Morse function by boundary terms will make 6(0) contributions to the
potential energy |dh|? of the o-model. So these terms must be canceled by the variation of
h3. To do this, we compensate for the change of variables du® = Vjj by allowing variations
in k. and ky:

5h3 = —5](54(1%) + 5kr(ur). (11.32)

To cancel the boundary terms in dh, we simply choose dk, and dk; to equal H(z,) and
H (zy), respectively, as was already explained in the last paragraph.

The result just described is not general enough, since modulo D-terms, we are sup-
posed to be able to make separate Hamiltonian symplectomorphisms at the two ends of an
open string. Suppose that we want to transform £, by a Hamiltonian function Hy; and L,
by another Hamiltonian function H,. We pick some more general function H(u®; x) that
depends explicitly on the point x along a string, chosen to coincide with H, in a neigh-
borhood of x = xy and with H, in a neighborhood of = x,. The important boundary
terms in the preceeding analysis are unaffected. The only change in the analysis is that dhy
becomes more complicated, with an additional bulk contribution that involves the explicit
x-dependence of H(u%;z) and contributes a harmless D-term.

There are still a few loose ends to tie up. First, in addition to the term |dh|?, the
o-model action contains another D-term, the kinetic energy of the o-model. This is not
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Figure 124: A disc with its boundary divided in three segments 0,3, i = 1,2, 3, labeled by different
branes.

invariant under a generic Hamiltonian symplectomorphism. However, since it is a D-term,
its variation is also a D-term, and moreover a harmless one, like dho, with no boundary
contributions. That is so simply because the kinetic energy has time derivatives only, and
no spatial derivatives, so there is no way for it to generate a boundary term.

Second, the A-model action also has a topological term that is not Q.-exact:

I':/Cb*(w):/ wapdu® A dul. (11.33)
% %

In discussing this term, we can assume an arbitrary X, not necessarily a strip in the plane.
I’ is a topological invariant — and hence in particular is Q¢-invariant — if ®(9%) is contained
in a Lagrangian submanifold £. What happens under a Hamiltonian symplectomorphism
du® = V§ that changes the map ® and also changes £7 The change in I’ is

oI = / d(0utwapdul) = [ Viwgdu® = — / dH. (11.34)
by

0% ox

This vanishes if all of 9% is mapped to the same Lagrangian submanifold with the same
H (since H is single-valued). More generally, 0¥ may be a union of segments 0;% whose
left and right endpoints we call p; and p;11 (Figure 124. We assume that the 9;% are
mapped to different Lagrangian submanifolds £;, which we want to deform using different
Hamiltonian function H;. The generalization of eqn. (11.34) is

57 = -3 / aH, = S (Hi(p) - Hi1(pi)- (11.35)
i JOi% i

At each intersection point p;, a vertex operator is inserted for an external string state, and
the contribution H;(p;) — H;—1(p;) to the action can be absorbed in the normalization of
this vertex operator.

Finally, in our discussion of the Morse function and kinetic energy of the o-model,
we considered only a time-independent situation in which ¥ is a strip in the plane. This
makes it possible to consider A-branes and strings that preserve two supersymmetries,
namely Q. and its adjoint @C. In that context, we have shown that varying £, and L, by
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Figure 125: A pair of Lagrangian submanifolds £;, £, embedded in the u — v plane. L, and
L, intersect at the one point indicated. w is plotted horizontally and we assume that L,, L, are
embedded in the half-plane u > 0.

independent Hamiltonian symplectomorphisms is equivalent to adding to the action a D-
term — a term that is both Qg—exact and @C—exact. In a more general situation in which X
is not simply a strip (for example, in the study of tree-level amplitudes described in section
11.3), there is no time-translation invariance and one cannot maintain both Q¢ and @C
symmetry. Instead of writing the response to Hamiltonian symplectomorphisms of branes
as [y dtdzdfdf F (Where F was described in the above construction) we have to write it
simply as fz d?z i dHF where in the time-independent case F = i dOF. In general, we
would pick an F that everywhere near the boundary of 3 looks like the functional the F
that we used in analyzing the problem on a strip. In this way, we would establish the
desired invariance.

11.2.3 Branes With Noncompact Target Spaces

In the A-model with a compact symplectic manifold X as target, one defines an A-brane
supported on any (closed) Lagrangian submanifold £, subject to some mild restrictions that

are not pertinent at the moment.%

However, a compact X is not relevant for the present
paper, since if X is compact, it is not possible to introduce a nonconstant holomorphic
superpotential W.

Once X is not compact, one usually wants to impose some sort of condition on the
behavior of a Lagrangian submanifold at infinity. The most basic reason is that otherwise
the space of supersymmetric states in quantization on a strip with boundary conditions
set at the ends by a pair of Lagrangian submanifolds £y, £, will not have the expected
behavior. To see what will go wrong in general, consider the case that X = R? with the
standard symplectic form w = du A dv, and with £, and L, as depicted in Figure 125. We
assume that the u-axis runs horizontally in the figure, and that £, and £, are embedded
in the half-plane u > 0. Let us consider this system first in the ordinary A-model without
a superpotential. The classical approximation to a supersymmetric state of the (Ls, £,)
system is given by an intersection point of the Lagrangian submanifolds £, and £,. In the

550ne restriction is associated to the K-theory interpretation of D-branes (the normal bundle to £ in X
must admit a Spin, structure [24]. Another restriction, described in section 13.5, involves disc instantons.
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example shown in the figure, there is precisely one such intersection point. Since the MSW
complex is thus of rank 1, its differential necessarily vanishes and the space of quantum
supersymmetric states of the (Ly, £,) system is one-dimensional.

Now let us introduce a superpotential and quantize the theory on a strip of width
w = x, — xy. The classical approximation to a supersymmetric state of the (Ly, £,) system
is given, just as in the usual A-model, by a time-independent supersymmetric state, but
now the condition for supersymmetry is the {-soliton equation. So supersymmetric states,
in the classical approximation, correspond to solutions of the {-soliton equation that start
somewhere on Ly at * = z; and end somewhere on £, at z = z,. (For more on this,
see section 13.) In this discussion, we consider only solutions that are independent of the
usual time coordinate 7 and it is convenient to refer to the usual spatial coordinate x as
“time.” Let £} parametrize the points that can be reached by starting somewhere on L,
and evolving for time w via the (-soliton equation. Then £} is a Lagrangian submanifold
that is very close to Ly if w is small. (£} is Lagrangian because the (-soliton equation
describes Hamiltonian flow with the Hamiltionian —3Re ((~'W).) ¢-soliton solutions that
flow from L, to £, in “time” w are simply intersections of £}’ with £,. For small enough w,
the difference between £, and £ is unimportant and the classical supersymmetric states
with W # 0 correspond naturally to those with W = 0.

However, with everything being noncompact, intersection points of £ and L, can
flow to infinity at finite w. This will actually happen in the example of the figure if we
take (T'W = i¢? (where ¢ = u + iv with real u,v and we take the Kahler metric of the
¢-plane to be df? = du? + dv?). So Im(¢™'W) = (u? — v?) and the (-soliton equation is
Oyu = u, 0,v = —v. In particular, £}/ is obtained from £; by (u,v) — (e“u,e™"v). In the
figure (in which w is plotted horizontally), we can assume that £, and £, are contained
in a strip ug < u < uj with ug > 0. Then for large enough w, L} is entirely to the
right of the strip and has no intersections with £,.. Thus in this example, for large enough
w, supersymmetry is broken, even though for small w it is unbroken (with precisely one
supersymmetric ground state). For some purposes this might be an interesting example of
supersymmetry breaking. However in the present context it is a problem. What has gone
wrong is that the intersection of £ with £, goes to infinity at a finite value of w.

A related problem arises even in the absence of a superpotential if we consider the
fact that the A-model is supposed to be invariant under Hamiltonian symplectomorphisms
applied separately to each brane, as we described in section 11.2.2. This fails if we consider
branes and Hamiltonian symplectomorphisms with no restriction on their behavior at in-
finity For instance, in our example, we can eliminate the intersection point of £, with L,
by transforming £y via a Hamiltonian symplectomorphism (u,v) — (u + ¢,v) for a large
constant ¢ (the single-valued Hamiltonian that generates this symplectomorphism is simply
v). So the space of supersymmetric states of the (L;, £,) system is not invariant under
Hamiltonian symplectomorphisms applied separately to £y or L.

11.2.4 W-Dominated Branes

To avoid both of these problems, we will place some conditions on £, and L,, to prevent
their intersections from going to infinity. In the present section, we describe a class of branes

— 251 —



for which intersections are bounded and for which the machinery of the present paper
applies naturally. In defining this class of branes, we will make use of the superpotential
W. However, for Lagrangian submanifolds £, and £, obeying the conditions that we will
state momentarily, the space of supersymmetric (L, £,) states makes sense in the ordinary
A-model without a superpotential, and is unchanged when one turns on the superpotential
wW.

We simply require that Im(¢~'W) goes to +oo at infinity along £y, and to —oo at
infinity along £,.. We will refer to left- and right- branes obeying this condition as W -
dominated branes. (The reversal of sign between £, and £,, which might look peculiar at
first sight, is natural in our formalism because a 7 rotation of the plane, which exchanges
the left and right boundaries, reverses the sign of ¢ and hence of Im(¢~1W).)

One might think that this condition is required for bounding the surface terms in eqn.
(11.11). But actually, that is not necessary; the potential V' is positive-definite in any case
since it can be written as in eqn. (11.10).

The real virtue of the W-dominated branes is that the growth condition on Im(¢~1W)
prevents the intersections of left- and right- branes from going to infinity. As one varies
L, and/or L, to make an intersection point p go to infinity, Im({~'W) would have to go
to +oo (since p € Ly) and to —oo (since p € L,). So intersection points do not go to
infinity®® and the space of (L, £,) strings is well-defined in the ordinary A-model without
a superpotential. (In other words, the space of (L, £,) strings is well-defined even if we
only use W for guidance in deciding what £, and L, to allow and do not actually turn on
W as a contribution to the Lagrangian.)

Also, if Im(¢™'W) diverges at infinity on L, then the same is true on £} for any
w > 0, since the ¢-soliton equation is ascending gradient flow for Im(¢ ='W ). So intersection
points of L7 with £, do not go to infinity with increasing w. This means that intersection
points cannot flow in from or out to infinity when w is turned on, so that, at the level of
cohomology, the space of supersymmetric (Ly, £,) strings is unchanged when W is turned
on and is independent of w.

A further virtue of W-dominated branes is that the spaces of supersymmetric states
are finite-dimensional spaces. We will phrase our argument here for the standard A-model
without a superpotential; including a superpotential simply replaces £, with £}’ in what
follows. In quantization of the (L, £,) system, if £, and £, intersect in a discrete set of
points T(Ly, L), then in the classical approximation, there is one supersymmetric state
®,, for each a € T(Ly, L,). The theory has a much simpler flavor if the sets T(Ly, £,) are
always finite, and more generally the intersections £, N L, are always compact. Otherwise,
one has to deal with infinite-dimensional spaces of supersymmetric states, in the classical
approximation and perhaps in the exact theory. A simple example of what one would like
to avoid is provided by again taking X to be the u— v plane, with symplectic form du A dw,
and taking for £, and £, the u-axis and the curve v = sinu. Here the intersection £, N L,
consists of infinitely many points. It is easy to construct wilder examples involving spirals

56We consider a family of branes parametrized by a compact parameter space. In that situation, the
upper and lower bounds on Im(¢~'W) hold uniformly. The same comment is relevant at several points
below.
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in the plane. For W-dominated branes, compactness of the intersection £, N L, is insured
since Im(¢~1W) goes to +oc at infinity on £, and to —oo at infinity on £,. In this case,
the subset A C £, on which Im(¢~!W) is less than its upper bound on £, is compact.%”
The intersection £, N L, is a closed and therefore compact subspace of A and consequently
the space of supersymmetric states of the (Ly, £,) system will always be finite-dimensional.

In our example of §11.2.3 with Im(¢~'W) = (u? — v?), the brane L, of Figure 125
has the desired property, since (u? — v?) goes to —oo at infinity along £, but £, does not
obey the appropriate condition at infinity. To ensure that (u? —v?) goes to +oo at infinity
along Ly, we could rotate £y by £7/2. In this case, the pathologies noted in Section of
§11.2.3 would disappear. Once we restrict the class of branes so that Im(¢~1W) goes to
+00 or —oo at infinity on £y or £,, we must also restrict the class of gauge transformations
to include only those Hamiltonian symplectomorphisms that preserve these conditions. In
particular, a 7/2 rotation, although symplectic, is not an allowed gauge transformation.

In this section, we have explained one natural answer to the question, “For what kind
of branes Ly, £, is the space of supersymmetric (L, £,) states well-defined?” However,
this question has at least one more interesting answer, which we return to in section 11.2.6
after introducing the concept of a thimble.

11.2.5 Thimbles

Generically, for every critical point ¢;, there is a canonical example of a left-brane Lf and
also of a right-brane Ric satisfying the conditions of section 11.2.4. To construct Lg, we
consider the (-soliton equation on the half-line (—oo, 0] with the boundary condition that
the solution approaches a critical point ¢; at *+ = —oco. Regarding the (-soliton equation
as a gradient flow equation, the flows of this type are parametrized by the constants ¢;
in eqn. (10.26) with f; > 0, so the dimension of Lf is the Morse index y of the function
Im(¢~'W) at its critical point, and Lf is a copy of R¥Y. Like the real or imaginary part
of any holomorphic function that has a nondegenerate critical point, this function has
middle-dimensional Morse index, so in particular y = dim¢X. By mapping an ascending
flow on (—o0,0] that starts at ¢; to its value at 2 = 0 (here we include the trivial flow
line that sits at ¢; at all times), we can interpret the space of such flows as a middle-
dimensional submanifold Lg C X. Since the (-soliton equation is translationally-invariant,
the value ¢(x() of an ascending flow from ¢; at any point xy with —oo < 29 < oo is on the
submanifold Lg. So Lg can be viewed as the union of all ascending flow lines that start
at the critical point ¢; in the far past. If all flow lines that start at ¢; in the past flow to
infinity in the future, then LZ-C is a closed submanifold of X, and in this case we call it a
Lefschetz thimble.

There is an important circumstance in which this can fail. Suppose that ¢ = (;; for
some j. Then an ij soliton may exist. Such a soliton is a flow line that starts arbitrarily
close to ¢; in the past and flows arbitrarily close to ¢; in the future, but never reaches it.
So in this case, the point ¢; is contained in the closure of Lg but not in Lg itself. (One

5"We consider a family of branes parametrized by a compact parameter space. In that situation, the
upper and lower bounds on Im(( 71W) hold uniformly and all intersections occur in a fixed compact set
A C X that is independent of the parameters.
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could of course replace Lg with its closure, but this does not work well; for example, for
dimc X > 1, the closure is generically not a manifold, and for dim¢ X = 1 it may be a
manifold with boundary. The fundamental reason that there is no good definition of a
Lefschetz thimble at ¢ = (j; is really that in crossing such a value, the topology of the
Lefschetz thimble can jump.)

As long as ¢ does not equal any of the (;;, we do not meet this problem and Lg
is a closed submanifold of X. We have already seen that Lg is middle-dimensional and
topologically RY. To show that Lg is Lagrangian, we use the fact that the (-soliton equation
is Hamiltonian flow (eqn. (11.13)). Using the identification of Lf with the value u*(0) of a
flow at time = = 0, and writing the symplectic form of X as wgpdu®du®, the restriction of
this form to Lg is w| 6= Wapdu®(0)dul(0). But Hamiltonian flow preserves the symplectic

form, so we can equally write w| ¢ = wapdu®(z)du’(z) for any z. Taking 2 — —oo,
this vanishes for flows that start at ¢;, so w|,¢ = 0 and Lf is Lagrangian. Since Lg is

topologically RY, any closed form on Lg is exact, and Lg is exact Lagrangian. Finally,
because Lg was defined by ascending gradient flow from ¢;, Im(¢~1W) is bounded below
along Lg by its value at ¢;. If the Kihler metric of X is complete, Im({~'W) goes to
infinity at infinity along Lg. (Completeness of the metric and the fact that each ascending
flow from ¢; goes to infinity in X implies that each ascending flow line has infinite length;
this plus the ascending flow equation implies that Im({~'W) goes to infinity along each
such line.) The corresponding right-brane Rg, which we call a right Lefschetz thimble,
is defined in precisely the same way, with similar properties. It parametrizes ascending
gradient flows on the half-line [0,00) that approach ¢; for  — oo, and can be identified
with the value of such a flow at # = 0. Clearly Im(¢~'W) is bounded above along R§ by
its value at ¢;.

As a simple example we return to (~'W = i¢? so Im(¢™'W) = (u? — v?). There is a
single critical point at ¢ = 0. The left-Lefshetz thimble is the u-axis and the right-Lefshetz
thimble is the v-axis.

11.2.6 Another Useful Class Of Branes: Class T

In any Hamiltonian flow, the Hamiltonian is a conserved quantity. So in particular, the
Hamiltonian H = —%Re(( ~1W) is a conserved quantity for the (-soliton equation. More-
over, Im(¢~'W) is an increasing function of x along any non-constant solution of this
equation. Putting these facts together, the values of W along the left thimble LiC lie on a
ray that begins at the point W (¢;) and extends in the direction i¢ in the complex W-plane
(Figure 126). (The following discussion could be presented in terms of right thimbles rather
than left thimbles, but this would add nothing as it would be equivalent to replacing ¢ by
—¢)

The images in the W-plane of all the left thimbles Lg, j €V, form a collection of
parallel rays, starting at the critical values W(¢;). Assuming that V is a finite set, the
images of these thimbles are all contained in a semi-infinite strip 7 of finite width in
the W-plane. (This is sketched in Figure 127, except that, for reasons that will soon be
apparent, in the figure ( is replaced by a complex number x of modulus 1, not necessarily
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W(ei)

Figure 126: A ray in the complex W-plane, starting at W(¢;) and running in the i¢ direction.

equal to ¢.) T¢ is defined by

[Re(¢T'W)[ < e
Im (¢T'W) > ¢, (11.36)

for some constants ¢, c’. We say that a Lagrangian submanifold £ — or a brane supported
on £ — is of class Ty if W restricted to £ is valued in T;. Branes of class T; (or obeying
an equivalent condition) are considered in the mathematical theory of the Fukaya-Seidel
category [81]; see section 11.3. This is a mathematical theory related to what in physical
terms is the A-model with a superpotential W. In addition to some reasoning that is
described below, the construction of the Fukaya-Seidel category is motivated by mirror
symmetry.

Let £ and £’ be Lagrangian submanifolds of class T;. In the A-model without a
superpotential, the space of supersymmetric (£, £’) states is not well-defined, because the
strip T¢ is not compact and intersections of £ and £ can go off to infinity (if, for example,
a Hamiltonian symplectomorphism is applied to £ or £’). What happens if we turn on
a superpotential W? By itself, this does not help. In studying supersymmetric (£, L")
states on a strip of width w > 0, the effect of turning on the superpotential is that instead
of looking at intersections £ N L', we have to look at intersections £% N L', where LY is
obtained from £ by ascending gradient flow with respect to Im(¢~'W). The image under
W of L* is contained in the strip T¢ itself, so £ is again of class T; and the intersections
LY N L are not well-behaved.

However, a simple variant of this idea does work. We pick a complex number x of
modulus 1, but not equal to £¢. Then instead of branes of class T, we consider branes of
class T,. These branes are characterized by the condition (11.36), but with ¢ replaced by
k (as is actually shown in Figure 127). Omitting the points +( divides the unit circle into
two connected components, and it is convenient to make a choice that  lies to the “left”
of ¢ (meaning that 7 > Arg(¢~1k) > 0).

The classical approximation to a supersymmetric (£, L") state on a strip of width w is
now given by a solution of the (-soliton equation, starting somewhere on £ at the left end
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Figure 127: The rays in the complex W-plane that start at critical points and all run in the ix
direction fit into the semi-infinite strip 7}, which is shown as a shaded region.

of the strip and ending somewhere on £’ at the right end. Differently put, the classical
approximation to such a supersymmetric state is an intersection point of £L* with £’, where
LY is obtained from L by evolving for a “time” w via the (-soliton equation.

This evolution is in the direction of increasing Im ((~'W) (with Re ((~'W) fixed).
Because of our hypothesis that x # 4, this evolution tends to move the image of LY out
of the strip T);. As we will see momentarily, under reasonable conditions on the growth of
W at infinity, the intersection £* N £’ is bounded, so the space of supersymmetric (£, L")
states is well-defined.

To show the boundedness, we proceed as follows. Let X, be the portion of the target
space X of the o-model in which W takes values in T);. And let X" be the subset of X that
X, flows to under (-soliton flow for “time” w. The key point is now to show that under
suitable conditions, X N X, is compact for all w > 0. For if £ and £ are any (closed)
Lagrangian submanifolds of class T, then the intersection £* N L' is a closed subset of
X¥ N Xy, and so is compact if X* N X, is compact. As usual, the compactness of £* N L’
will ensure that the space of supersymmetric states of the (£, L) system is well-defined.
See Figure 128.

To understand the compactness of X¥ N X, without any excessive clutter, let us take
¢ =1 and kK = i. So the (-instanton equation is Hamiltonian flow for the Hamiltonian
H = —IRe(¢"'W) = —4ReW. The “time”-dependence of Re(x~!W) = Im W along the
flow is

d_ d 1 1.
—_ — 7:[ fry HI = —_— I = — . 11.
TRe(x W) = —ImW = {(H,ImW} = — {Re W, Im W} = —|dWW| (11.37)

Here { , } is the Poisson bracket computed using the symplectic form of the target space X,
and we have evaluated this Poisson bracket using the Cauchy-Riemann equations obeyed
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Figure 128: Illustrating the regions X,, X’ and their intersection. Here we choose a single
chiral superfield ¢ with W = i¢? and ¢ = 1. The region X, for k =i, ¢ = 5, and ¢/ = -5
is illustrated in the upper left figure. The region is noncompact, with northeast and southwest
boundaries asymptoting to the line v = w. Under the flow u — e u, v — e~ *v the region evolves
(for e** = 3) to the blue region shown in the upper right figure. Again this region is noncompact.
The intersection, shown below in purple is compact for all w > 0 and decompactifies as w — 0.

by the holomorphic function W. (In general we have %Re(&‘WV} = %Im(%)|dW|2.)

Usually, we are interested in models in which |dW|? goes to infinity at infinity along
X, and hence also along X. (For example, in the most standard Landau-Ginzburg model,
X = C" for some n and W is a polynomial that is sufficiently generic so that |[dWW|?
grows polynomially at infinity.) In this case, eqn. (11.37) implies that the rate at which
Re(k~1W) increases under (-soliton flow increases near infinity in X,. This means that
(-soliton flow for any positive “time” w maps a neighborhood of infinity in X,; strictly
outside of X (this neighborhood depends on w), and hence X N X, is indeed compact
for all w > 0.

In general, we might not want to assume that |dWW|? goes to infinity at infinity along
X, but it is always reasonable to assume that |[dWW|? is bounded above 0 near infinity.
(Otherwise, W has a critical point at infinity and one should not expect to get a good
description based only on the set V of finite critical points.) With |[dW|?> bounded above 0,
the same reasoning as before shows that if w is sufficiently large, then X N X, is compact.

Putting these statements together, under reasonable conditions, the space of super-
symmetric (£, L) states is well-defined for any £, L of class T);. In the above, we took
k = i(, but the same reasoning applies as long as k # +(. Saying that the space of (£, L)
strings is well-defined means that it invariant under Hamiltonian symplectomorphisms of
X, (applied separately to £ and L), invariant under changes in the Kahler metric of X
(as long as this is not changed too drastically at infinity) and invariant under changes in
(as long as one keeps away from k = £().
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11.3 The Fukaya-Seidel Category

Having come this far, it is not too hard to understand how to go farther and define open-
string tree amplitudes for branes of class T. (By contrast, one cannot do this for W-
dominated branes, as we will soon explain.)

These open-string tree amplitudes — when specialized to the case of just one string in
the future, as discussed below — give what would be called mathematically an A, algebra
if one considers just one brane of class Ty, or an A, category if one considers all of them.
The Ay, category that we obtain is presumably the Fukaya-Seidel category [81, 82, 83, 80],
or its close cousin, the Fukaya category of the superpotential. (These are expected®® to
have the same derived categories of branes.)

It seems that, mathematically, it is understood that the Fukaya-Seidel category should
have a definition along the lines of what we sketch below, but this has not yet appeared
in the literature because of analytical details. The existing literature is thus based on
alternative approaches that circumvent some analytical difficulties but will be less trans-
parent to a quantum field theorist. Also, some of the details of the setup we use here
seem fairly natural from a quantum field theory point of view, but a rigorous approach
might use somewhat different definitions because purely from the standpoint of partial
differential equations, one can make some more general choices and this freedom might be
useful. For example, instead of branes of class T, one could consider branes whose image
in the W-plane is the union of a semi-infinite ray and a compact set. Similarly, instead
of using the global (-instanton equation, one can consider a more general equation that
looks like the (-instanton equation near the infinite ends of the worldsheet. Despite some
detailed differences in approach, we expect the open-string amplitudes that we define to
have essentially the same content as the Fukaya-Seidel category.

To define open-string amplitudes, it is important to spell out a consequence of the
restriction k # (. Concretely, to compute the space of supersymmetric (£, £') strings, we
quantize the o-model on a strip S in the x — 7 plane that is defined by z, < = < x, with
xr —xp = w. This is a strip that runs in the 7 direction. We construct an MSW complex
as usual with a basis given by solutions of the (-soliton equation and a differential found
by counting solutions of the (-instanton equation. The reason that we specified that the
strip S runs in the 7 direction is that, unlike the equation for a pseudoholomorphic curve
that is usually considered in the A-model, the (-instanton equation is not invariant under
rotation of the x — 7 plane. If we rotate S in the x — 7 plane, so that S is at an angle 9 to
the 7-axis, this would be equivalent to replacing ¢ by ¢e”. Since the only restriction on ¢
is ¢ # +k, we may rotate S by an angle 9 as long as (e’ # +x. For example, if x = i(,
we may take S to be a strip propagating in any direction in the x — 7 plane except the
horizontal. This restriction on the slope of S means that S has a well-defined “past” (an
end with 7 — —o0) and “future” (an end with 7 — 400).

The procedure for defining the open-string amplitudes in this situation is standard,
except for a few key details. Let us recall that in the usual A-model without a superpotential

58For example, see the end of section 2 of [80], where the Fukaya cateory of the superpotential is called
F(m) and the Fukaya-Seidel category is called A. This and other matters described in the next paragraph
were explained to us by N. Sheridan.
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(or in physical string theory), to compute a tree-level amplitude with ¢ open strings, one
takes the string worldsheet to be a disc H with ¢ marked points on its boundary. The
regions on the boundary between the marked points are labeled by branes and the marked
points are labeled by vertex operators. Modulo conformal transformations, H depends on
q — 3 real moduli. To compute the usual A-model amplitudes, we count (with signs) all
pseudomolomorphic maps from H to the target space X, obeying conditions determined
by the choices of branes and vertex operators. In the counting, we do not specify a priori
the conformal structure of H and we include pseudoholomorphic curves with any values of
their moduli.

To define open-string amplitudes in the present context, roughly speaking, we do the
same thing, with the equation for a pseudoholomorphic map replaced by the (-instanton
equation. There are some changes because the (-instanton equation is not conformally-
invariant or even rotation-invariant. We take H to be a region in the complex plane,
where we know how to define the (-instanton equation.®® Without conformal invariance,
there is no direct equivalence between states and vertex operators, so we represent the
external strings by semi-infinite strips of specified widths. These strips are not allowed
to be horizontal, because then in the case of branes of class T}, the external string states
would not be well-defined, as was just explained. So in contrast to physical string theory
(or the usual A-model), there is a well-defined distinction between string states that come
in from the “past” (7 — —o0) and those that go out to the future (7 — +o00). There are
well-defined amplitudes with any number n of strings coming in from the past and any
number m going out to the future. However, in the context of the Fukaya-Seidel category
or the Fukaya category of the superpotential, it is usual to consider only the case m = 1.
(This case leads to amplitudes that can be put in a convenient algebraic framework — an Ao,
algebra — and whose counterparts under mirror symmetry are relatively well-understood.)

For brevity, we will consider only the case m = 1. The total number of external string
states is therefore ¢ = n + 1, and the number of real moduli is ¢ — 3 = n — 2. To define
the n — 1 amplitude, we need a family of regions H in the x — 7 plane that depend on the
usual n — 2 real moduli of a disc with n + 1 marked points on its boundary. These regions
are far from being uniquely determined. One convenient choice is the parametrization of
the moduli space of a disc with n + 1 punctures that in ordinary string theory is used
in light cone gauge (for the case that all incoming particles have equal p;). The strings
coming from the past all have equal width w and the string going out to the future has
width nw; as usual in light cone gauge, the moduli are the differences between the values
of 7 at which two strings join. This is depicted in Figure 129(a). If one prefers, one can
use the less singular worldsheets of Figure 129(b).

As long as all branes considered are of class T, the counting of (-instanton solutions
to define string amplitudes in this situation is well-defined, basically because the properties
of the branes that make the external string states well-defined also ensure that solutions
of the (-instanton equation cannot go to infinity. The resulting tree amplitudes have all

59Tt is possible but not necessary for our purposes here to generalize this slightly — H could be a Riemann
surface with boundary with strip-like ends with a not necessarily holomorphic trivialization of its canonical
line bundle and some conditions on how the trivialization behaves at infinity and along the boundary.
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Figure 129: (a) An open-string worldsheet H in a form familiar in light-cone gauge. n open
strings all of width w come in from the past (71 = —oc) and a single one of width nw goes out to
the future (7 = +00). There are n — 1 values of 7 at which two open strings combine to one. The
linearly independent differences between these critical values of 7 are the n — 2 real moduli of this
worldsheet. (b) The picture in (a) can be slightly modified in this fashion — if one wishes — so that
H becomes smooth. The moduli are still the differences between the critical values of 7.

the usual properties except cyclic symmetry. Lack of cyclic symmetry means that these
amplitudes cannot be derived in a natural way from a Q-invariant effective action (except
possibly by introducing separate fields to represent incoming and outgoing strings) but
can be interpreted as constructing a nonlinear Q operator (which acts on a Fock space of
open strings). Mathematically, lack of cyclic symmetry means that one gets an A, algebra
without a trace.

This construction would not work for W-dominated branes. W-dominated branes
lead to well-defined spaces of BPS states, but not to tree amplitudes. The reason is that in
trying to define a tree amplitude for W-dominated branes, there is no natural way to decide
if we should use a left-brane (with Im(¢~!W) — +oco at infinity) or a right-brane (with
Im(¢™'W) — —oo at infinity) on the intermediate boundaries in Figure 129(b). Moreover,
neither choice leads to a well-controlled counting.

On the other hand, for branes of class T}, the definition of n — 1 amplitudes by
counting of (-instantons works fine for any x € U(1) — {£(}. If k and £’ are in the same
connected component of U(1) — {£(}, the categories associated to k and ' are naturally
equivalent to each other via rotation. Thus, using branes of class T); (with the same x on
all connected components of all boundaries), by counting ¢-instantons in Figure 129 we can
define two A, categories Bry,. In Section §15 below we will argue that the two categories
By, are As-equivalent to the two categories of branes constructed in the abstract part
of this paper using left- and right- thimbles of class T;: and positive or negative half-plane
webs.
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We should stress that even for branes of class T,, while we can define tree-level am-
plitudes in parallel with standard tree-level A-model amplitudes, we cannot define analogs
of higher genus A-model amplitudes. This is basically because with W # 0, the standard
A-model twisting is not available. In the future, to avoid repeating ourselves many times,
we will use the phrase “A-model” to refer to either a standard A-model with W =0, or a
partial A-model with W = 0 in which one considers only tree amplitudes.

12. MSW Complex On The Real Line: Solitons And Instantons

Up to this point, our preliminary discussion of BPS solitons has been purely classical. We
now want to study these BPS solitons at the quantum level. Everything about this problem
will closely parallel the general quantum mechanical analysis of section 10, except that we
have to take into account certain zero-modes associated to broken bosonic and fermionic
symmetries; these do not have a close analog in the generic quantum mechanical case.

Let S;; denote the set of classical ij solitons, that is solutions of the (-soliton equation
that interpolate from ¢; at © = —oo to ¢; at @ = 4+o00. From eqn. (11.15), we know that
such solutions exist only for { = (j;, so in what follows we choose that value of ¢. The
group R of translations of the x-axis acts freely on the space of classical i solitons, and
generically an 7j soliton has no bosonic zero-mode except the one associated to translation
invariance. We will assume that we are in this situation. A classical ij soliton always has
a pair of fermionic zero-modes, one of fermion number F = 1 and one of fermion number
—1, generated by the 2 supercharges that are not in the small subalgebra. When the zero-
mode associated to translation symmetry is the only bosonic zero-mode, the 2 zero-modes
associated to broken supersymmetries are the only fermionic ones.

In this situation, the quantization of a classical ij soliton solution, in perturbation
theory, is relatively straightforward. The non-zero bosonic and fermionic modes are simply
placed in their ground state. The only subtlety here is that one must determine the fermion
number fy of the ground state of the nonzero modes of the fermions. We consider this
question presently. The quantization of the bosonic and fermionic zero-modes is slightly
subtle but is well-known. If we write a for the translational zero-mode of the soliton, then
a wavefunction e® for this mode describes a soliton in a state of arbitrary momentum p.
A quantum BPS state invariant under the small supersymmetry algebra generated by Q¢
and @C arises for p = 0. (A soliton in a momentum eigenstate with p # 0 is invariant under
a boosted version of this algebra.) The fermion zero-modes are a pair of operators xo, X of
F = +1 generating a two-dimensional Clifford algebra; the representation of this algebra
gives a pair of states of fermion number F = £1/2. So overall, the quantized soliton in
perturbation theory can have any momentum and has fermion number fy £ 1/2.

12.1 The Fermion Number

The fermion number fy of the Fock vacuum (of non-zero fermion modes) is formally the
fermion number of the filled Fermi sea. This of course diverges and needs to be regularized.
The physically natural approach is to define first the renormalized, conserved, Lorentz-
covariant fermion number current (for example, via a process of point-splitting and normal-
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ordering) and then compute the matrix element in the soliton state, in perturbation theory,
of the integral of the fermion charge density. The point-splitting and normal ordering deal
with ultraviolet divergences in the definition of fy. And even if D has infinite ends (for
instance D = R), there is no infrared problem in defining the integrated fermion number
because, by virtue of Lorentz invariance, the expectation value of the fermion charge density
vanishes in the massive vacua at x — t+oo. (It turns out that there is a subtlety at finite
distance boundaries of D rather than at ends at infinite distance; see section 13.3.)

An alternative procedure is more convenient for some purposes. In its standard form
that we describe first, this procedure deals with ultraviolet divergences but not infrared
ones, so it applies for the case that space is a compact l-manifold D = [z, x,] (with
boundary conditions as in section 11.2). In what follows, by a “fermion state,” we mean
an energy level of the single-particle Dirac equation that governs the fermions of F = 1.
(We need not discuss separately the single-particle 7 = —1 modes; they are canonically
conjugate to the F = 1 modes, and the Fock vacuum can be completely characterized by
saying which F = 1 modes annihilate it.) From fjy, which formally is the number of filled
states of negative energy, formally we subtract a constant, namely 1/2 the total number
of fermion states. Subtracting this constant can be thought of as measuring the fermion
number of the soliton relative to the fermion number of the vacuum. Still formally, with
this subtraction, fo is 1/2 of the number of F = 1 fermion modes of negative energy
(the ones that are filled in the Fock vacuum) minus 1/2 the number of F = 1 states of
positive energy (the ones that are unfilled). This result, whose quantum mechanical analog
is eqn. (10.11), still needs to be regulated. We weight a mode of energy E by a factor of
exp(—¢|E)|), for small positive e, and take ¢ — 0 at the end of the calculation. Thus if T is
the set of all non-zero energy fermion modes of F = 1, we define fy as

1. :
Jo=—3 iﬂ%%%p(—ewzw&gn(ﬂ)- (12.1)

This formula is the general formula (10.11) of supersymmetric quantum mechanics for the
fermion number of a state associated to a critical point, except that in infinite dimensions
we require a regulator, such as exp(—¢|E|), and in the finite-dimensional problem with a
nondegenerate Morse function, there is no need to discuss fermion zero-modes. The 7-
invariant of the single-particle Dirac Hamiltonian D (this is the operator whose eigenvalues
are the F;; see eqn. (12.5)), is usually defined as the “limit”

. e

n(D) = hgg)%; | Ei|~“sign(Ey), (12.2)
but the precise choice of regulator does not matter; one can here replace |E|~¢ = exp(—e¢log |E|)
with exp(—¢|E|), as in (12.1). So o)
n(D
Jo=—"5—

"Unlike the sum in (12.1), the one in (12.2) is not absolutely convergent. So we should specify that the

(12.3)

meaning of the “limit” in this equation is that the sum over states on the right hand side of eqn. (12.2)
converges for sufficiently large Re ¢ and defines an analytic function of € that has an analytic continuation to
e = 0 where it is non-singular. Also, 7 is sometimes defined to include a contribution from the zero-modes,
but here it will be more convenient to omit them.
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Including the contributions of the zero-modes, the soliton has two states of fermion number

fo £1/2. In other words, the two states, which we will call \Il,f;(p) and \P{;rl(p) (where

p € S;; labels a particular classical ij soliton), have fermion numbers f and f + 1, with
n@P+1_ _nD+e)

1
f=fo-5=-"= - (12.4)

This is the proper formula for f on a compact manifold without boundary. In our appli-
cation, D always has boundaries and/or infinite ends. In the presence of an infinite end,
an infrared regularization of 7 is required, as in eqn. (12.7) below. In the presence of a
boundary, the formula for f requires a boundary correction that is explained in section
13.3.

A shortcut to find the appropriate Dirac operator D whose n-invariant enters this
formula is to use the general formalism of supersymmetric quantum mechanics, as reviewed
in section 10. In general, the Hamiltonian operator acting on the fermions (which in
the quantum mechanical context is the fermion mass matrix 9?h/0u’du’) is the operator
that arises in linearizing the equation (9h/0u’ = 0) for a critical point. In our present
context, the equation for a critical point is the (-soliton equation and its linearization is
the condition

aaxégbl - K?I%éw =0, (12.5)
together with the complex conjugate of this equation. Writing the left hand side of (12.5) as
a linear operator acting on the pair 5¢‘I] and including the complex conjugate equation,
we arrive at a formula for the appropriate Dirac operator:

-1 _ 92 _ 92T
o=l (10) S e+ (00) S0 smmee 029

Here the Hessians of W and W are evaluated on the soliton configuration and o2 is short

7 |-
0 —0+

The standard definition of the n-invariant that we have given above assumes that D

for

has a discrete spectrum, so it applies for quantization on D = [xy, z,] (where, however, it
does not quite give the complete answer for the fermion number, as we explain in section
13.3) but not otherwise. In the case of a BPS soliton with D = R, because there is a
mass gap at infinity, D has a discrete spectrum near zero energy, but it has a continuous
spectrum above some threshold. One needs to generalize slightly the definition of the 7-
invariant in this situation (for a rigorous treatment, see [76]). The contribution of the
discrete spectrum does not need any change (there are only finitely many states in the
discrete spectrum, and their contribution to the n-invariant is actually simply the number
of positive energy normalizable eigenstates of D minus the number of negative energy
normalizable eigenstates of D). The contribution of the continuous spectrum needs to be
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defined more precisely. If P is the orthogonal projector onto the continuous spectrum of
D, the contribution of the continuous spectrum to the n-invariant is

oo

2d
7" (D) = lim dz Z<a}, s|Psign(D) exp(—¢|D|)|z, s). (12.7)
o0 s=1

e—0 J_

As usual, |z) is a state with delta-function support at a point x € R, and s parametrizes

"™l The definition of the operator sign(D)

the additional labels carried by such a state.
is potentially troublesome because of zero-modes of D, but the zero-modes are in the
discrete spectrum and so are annihilated by P, and hence there is no problem in defin-
ing the product Psign(D). The fact that is being generalized in the formula (12.7) is
that if M is an operator of finite rank or more generally of “trace class” (represented
by an z-space kernel that we also call M), then Tr M = [% dx > (z,s|M|xz,s). The
contribution of the continuous spectrum to the n-invariant is supposed to be, naively,
lim._,o Tr P sign(D) exp(—¢|D|), but this trace is only conditionally-convergent (the opera-
tor whose trace we are trying to take is not trace class) and is not well-defined. The formula
(12.7) is a well-defined, regularized version of this trace. It is well-defined because the in-
tegrand ) (z, s|Psign(D) exp(—¢|D|)|z, s) vanishes exponentially for z — £oo. This is
so for the same reason that there is no infrared problem in the approach to defining fjy via
point-splitting and normal-ordering: the fermion number density vanishes in the vacua at
Fo0.

12.2 Properties Of The n-Invariant

What can we say about the invariant n(D)? There is no simple formula for n(D) for a
particular ij soliton solution, but there is a useful general statement comparing the values
of n(D) for different ij solitons. (Since we have not yet analyzed boundary contributions to
the fermion number, the following analysis applies strictly for the case D = R, but similar
statements hold for other cases. See section 13.3.)

Suppose that p,p’ € S;; are two different ij soliton solutions, interpolating between
the same vacua at both ends. They have two different Dirac operators DP and DF and
so two different n-invariants n(DP) and n(DP') and two different fermion numbers f? and
fP'. These can differ, but their difference f? — f? is always an integer. The proof can be
expressed in either mathematical or physical language. To express the proof in physical
language first, we observe that the bosonic fields of the LG model do not carry fermion
number and hence F is conserved in the propagation of the fermion fields in an arbitrary
time-dependent background constructed from the bosons. So in particular (here we assume
that X is simply-connected), we can construct a time-dependent background that interpo-
lates from the soliton solution p in the far past to the soliton solution p’ in the far future;
moreover, we can do this with fields that are time-independent at spatial infinity. So time
evolution gives an F-conserving mapping from the fermion Hilbert space H? constructed in

"'The operator D acts on a fermi field valued in the tensor product of a two-dimensional Clifford module
with the pullback of the complex tangent bundle of the target space X, which has rank d = dim¢ X. So s
runs over an orthonormal basis of a 2d-dimensional vector space.
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the past by expanding around soliton p to the corresponding Hilbert space HP' constructed
in the future by expanding around p’. All states in H? have F = fP mod Z, since the
modes of the fermion field, which act irreducibly in HP, carry F = £1. Likewise all states
in H? have F = f? mod Z. So the existence of an F-conserving map between these two
Hilbert spaces implies that f? = 2 mod Z.

For a more mathematical version of this argument, observe first that in general, chang-
ing only finitely many eigenvalues of an operator D does not change n(D) mod 2, since
for ¢ — 0, each eigenvalue contributes +1 to n(D). In varying finitely many eigenvalues,
n(D) only changes when an eigenvalue changes sign, in which case it jumps by +2. The
same is true if one varies infinitely many eigenvalues provided that the change in the n'”
eigenvalue vanishes rapidly enough for n — oo. We are in this situation if we change D by
varying the z-dependent matrix 9?°W/9¢!d¢” in an arbitrary fashion (replacing it with an
arbitrary mys(x), not necessarily derived from an LG field), keeping fixed its behavior for
x — +o0o. Since we do not change D at spatial infinity, we do not change the energies of
states at large |z|; since we do not change the term ¢®id/dz in D that dominates at high
energies, we do not change the eigenvalues of high energy. So in such a variation, only a
finite number of eigenvalues change substantially, and 7(D) only changes when an eigen-
value passes through 0. When that happens, n(D) jumps by +2, so that f = —(1/2)n(D)
is constant mod 1. Note that in this argument (as opposed to the physical argument), we
do not need to assume that X is simply-connected; we can interpolate between the Dirac
operators DP and D whether or not we can interpolate between the solitons p and p'.

Clearly, there is a topological invariant, namely the value of —%n(D) mod Z, which
only depends on the matrices myy = 0°W /3¢ d¢’ at x = £00. How can one compute this
topological invariant? One way to compute the value of —%U(D) mod Z is to deform to the
case that mry(x) varies adiabatically as a function of x, between its given limiting values
at = +oo. The adiabatic condition is that if |m/| is the smallest eigenvalue of my;, then
|m|~2dmy;/dz is everywhere small. Under this condition, (D) can be computed as the
integral over x of a universal local expression constructed from m and its first derivative.
A straightforward computation using perturbation theory then yields the formula

1 W
f = g <argdet W

This agrees with the formulae stated in [23, 14, 15]. Incidentally, in the case of solitons on

2

¢j — arg det W

) mod Z. (12.8)
¢

the real line, one might wonder if one can write an exact formula for f, not just a mod Z
formula, as the integrated “winding number” of the matrix of second derivatives of W:

1 [ d *w
f; / dr — argdet

o dz Lo (12:9)

o

—00

This formula actually does not make sense, since in general det 9?2W/d¢!0¢” can have
zeroes; moreover, as one varies the Kahler metric of X, a (-instanton trajectory can cross
such a zero, whereupon the right hand side of (12.9) would jump, contradicting fermion
number conservation if eqn. (12.9) were valid.
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The continuous variation between the soliton solutions p and p’ can also be used, in
principle, to compute the integer fp/ — fP. This integer is the “spectral flow,” the net
number of eigenvalues of D that pass through 0 in the downward direction, in interpolating
from p to p’. This spectral flow is a regularized version of the difference in the Morse index
of the soliton p’ and the soliton p.

A standard argument in index theory says that the spectral flow of a Dirac operator in
d dimensions gives the index of a Dirac operator in d+1 dimensions. We actually explained
this argument for d = 0 in section 10.2, and this particular argument is independent of
d. The argument uses the fact that the d 4+ 1-dimensional Dirac equation can be written
Ly = 0, where L = O, + D; here D is a d-dimensional self-adjoint Dirac operator (for
d = 0, as in section 10.2, D is simply a finite rank matrix). The index is the number of
normalizable solutions of the equation L) = 0 minus the number of normalizable solutions
of the adjoint equation LTy = 0, where LT = —9, + D. By reducing to the case that the
eigenvalues of D vary adiabatically with 7 and performing the analysis of eqn. (10.17) for
each eigenvalue, one finds that the index of L is the spectral flow of D (defined as the
net number of eigenvalues of D that pass from positive to negative between 7 = —oo and
T = 400). In the context of Morse theory, the d + 1-dimensional Dirac operator L is the
linearization of the gradient flow equation. In two-dimensional LG theory, the gradient flow
equation is the (-instanton equation (eqn. (11.18)) and the analog of L is the linearization
of this equation. As is the case in supersymmetric quantum mechanics in general, L is the
kinetic operator for the fermions of 7 = 1 (and its adjoint is the corresponding operator for
the fermions of F = —1). In a process involving an instanton transition from the soliton
p in its ground state of lower fermion number to a soliton p’ in the analogous state, the
fermion number F changes by f? — f?; everything is consistent because this number is the
index of L, and therefore equals the fermion number of the operator insertions that must
be made to get a nonzero amplitude for this transition.

12.3 Quantum BPS States

The basic framework to study BPS states in the full quantum theory is the same as in

section 10. We construct a complex which additively is given by the semiclassical spectrum

of BPS solitons, and on this complex, we use instantons to define a differential @C (a

normalized version of Q¢ with the values of h for the classical soliton solutions removed).

The cohomology of this differential gives the exact quantum spectrum of BPS solitons.
So additively, the complex describing ¢j solitons is

Mij = Dpes;; (Z‘Ifzfj(p) o Z‘Ifffl(p)> (12.10)

where S;; is the set of intersection points of a left thimble of type ¢ with a right thimble of
type j. The grading of the complex is given by the fermion number F. This grading is not
really a Z-grading, since the values of F differ from integers as explained in (12.8), but it
is shifted from a Z-grading by an overall constant that depends only on ¢ and j.

Just as in section 10, the differential on the complex (12.10) arises from counting
instantons interpolating between states whose fermion number differs by +1. In other words
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we consider solutions of the (-instanton equation with ( = (;; and boundary conditions

EIEI o(x,7) = ¢ Im ;s yoo(x,T) = @5 (12.11)
together with
: _ D . _ p
Jim gle,m) =) lim olwm) = 6 () (12.12)

where ¢} (z) and ¢} (x) are two ij (-solitons. In section 12.4, we give an example showing
that in general there are (-instantons obeying these boundary conditions and contributing
to the differential @C- So not all BPS solitons give rise to true BPS states.

In the general quantum mechanical analysis of section 10, there were only two super-
symmetries, one of which was a symmetry of the instanton. The instanton therefore had
just 1 fermion zero-mode, and this mode was responsible for the fact that the instanton am-
plitude increases F by 1. In the present situation, the underlying two-dimensional model
altogether has four supersymmetries, only two of which (the ones in the small subalgebra)
are symmetries of the initial and final states. As a result, the initial and final states both
represent a rank 2 Clifford algebra of broken supersymmetries. This is responsible for the
doubling of the spectrum: a classical soliton corresponds to two quantum states of fermion
numbers f, f + 1. The instanton still preserves only one supersymmetry, so now there
are three fermion zero-modes, of which one is normalizable. The two zero-modes that are
generated by supersymmetries that are not in the small subalgebra are localized in space
but not in time, so they are not normalizable (and do not contribute to the index of the
operator L). They go over in the far future or past to the fermion zero-modes of the indi-
vidual solitons. The fact that the zero-modes of the individual solitons can be extended to
time-dependent zero-modes in the instanton background means that the instanton ampli-
tudes commute with the action of the Clifford algebra on the initial and final states. The
third fermion zero-mode in the field of the instanton is normalizable and is the analog of
the single zero-mode of the quantum mechanical analysis. It is localized in space and time
and ensures that (-instantons contribute to the matrix element of the differential @C only
in the case fP2 — fPL1 =1,

The fact that the instanton amplitude commutes with the Clifford algebra means that
we can write the complex a little more economically:

M;; = W @ M. (12.13)

Here W 22 Z & Z is an irreducible module for the Clifford algebra generated by two basis
vectors | — %>, |+ %> with F = —%, —1—%, respectively, and M;j is a reduced complex. Indeed,
we can write \I'ij(p) =|-H® m{jo(p) and ‘lfzf;rl(p) =|+5® mzfj@(p) where fo = f + 1.
Thus,

M;j = @pe&jzmzf; (p) (1214)

In Section §14.5 below, we show that in matching to the web-based formalism we should
take what there was called R;; to be the complex generated by the states of upper fermion
number:
Rij = VA R 12.15
) EBpeSij iJ (p) ( . )
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The instanton-generated differential QC acts on the reduced complexes M;j and R;;.

Once we get rid of the doubling of the spectrum in this way, the analogy with the
general quantum mechanical analysis of section 10 is much closer. As in that analysis,
each instanton solution that interpolates from a soliton p; in the past to a soliton po in the
future — and has no moduli except the minimum possible number — contributes £1 to the
relevant matrix element of the normalized differential @C acting on the reduced complex.
The sign of this contribution is given by the sign of the fermion determinant. The problem
of defining this sign — and how it should be interpreted” — is very similar in the present
context to what it was in the general quantum mechanical discussion. If mo(X) is trivial
then any two fields obeying the boundary conditions (12.11), (12.12) are homotopic, so
the fermion determinant is uniquely determined up to an overall sign. Moreover, cluster
decomposition can be used to determine all the signs except for signs that can be absorbed
in the definitions of the initial and final soliton states. More generally, if mo(X) # 0, then
the general analysis of the signs of the fermion determinants leads to the possibility of
discrete theta-angles, similarly to what happens in section 10 when (M) # 0.

Now, let us consider an ij soliton at rest with vacuum ¢ on the left and vacuum j on the
right. If we turn the picture upside-down, rotating by an angle 7 in Euclidean signature,
an 4j soliton becomes a ji soliton. The 7 rotation, which is the Euclidean version of a CPT
transformation, also reverses the sign of the fermion number current. So if a multiplet of
7 solitons have fermion numbers F = f, f 4+ 1, then the rotation gives a pair of ji solitons
of fermion numbers F = —f, —f — 1. A static picture of an ij soliton sitting at rest can be
viewed as a pairing between an 75 soliton coming in from 7 = —oo and a ji¢ soliton coming
in from 7 = 400. The path integral gives a non-degenerate and F-conserving pairing

M;; @ My; — Z. (12.16)

Since the full complexes M;; admit this F-conserving pairing, the state \llzf;rl must
pair with the state \I/j_if ~1 and the state \IJ{J must pair with the state \Ifj_if . Therefore, the
pairing on W is off-diagonal, pairing | — %) with |+ %> to give (without loss of generality)
+1. Since the pairing on the Clifford algebra has fermion number 0 and the total pairing
has fermion number 0, the induced pairing on the reduced states m;; and m;j; has fermion

number 0. That is, the induced pairing on the states of lower fermion number in each
doublet,

K':Mj; @ M, — Z, (12.17)

pairs mfjo (p) with m;if °(p) and hence K’ has fermion number 0.
When we explain the relation of the Landau-Ginzburg theory to the formalism of
Section §4 in Section §14.5 below it will turn out that we should not identify the reduced

complex of solitons M;j with what in the web treatment was called R;;. Rather, R;; will

"The most powerful mathematical framework is provided by the theory of real determinant line bundles,
as we discuss in the quantum mechanical case in Appendix F. Here we content ourselves with the following
simple remarks showing that as in the general quantum mechanical case, the theory is uniquely determined
— up to physically-understood choices — if it works.
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actually be identified with the complex of soliton states of “upper” fermion number as in
equation (12.15). The pairing K’ induces a similar pairing

K Ri]’ & Rji — 7. (12.18)

To define K we simply drop the factor | + 1) in both \I/lf]ﬂ(p) =|+3H® m{j@ (p) and
\Ilj_if(p) =|+3)® mj_ifo (p), and use the pairing K’ on mfjo (p) and mj_ifo (p). Thus, K is a
nondegenerate pairing of fermion number —1 + 0 = —1, in harmony with the definition of
a web representation in Section §4. It is symmetric by CPT invariance.

Figure 130: In a massive theory, when viewed from long distance, or in the limit that the mass
goes to infinity, the soliton solution is well approximated by a discontinuous solution, discontinuous
at some point x = zg.

Remarks

1. A soliton solution ¢;;(x) is very near ¢; or ¢; for “most” of the values of « and only
shoots from vacuum 4 to j in a very short interval Ax set by the inverse mass scale
Ly of the theory. Thus, “in the infrared limit” where we take the mass scale large the
solution can be thought of as a discontinuous function with vacuum ¢ at = < zy and
j at x > xg. See Figure 130. Similarly, the instantons can be viewed as stationary
soliton worldlines with a small dot inserted as in Figure 131. This is the beginning
of the connection to the (extended) webs of previous sections.

2. We will show below that the counting of solitons and instantons leads to web repre-
sentations. So, starting with the data defining a LG field theory, we can deduce a
mathematical structure that is defined over the integers, and this is how it was pre-
sented in the first half of the paper. On the other hand, the field theory is defined in
terms of complex amplitudes and vector spaces, and hence does not give an entirely
natural explanation of why the mathematical structures, such as equation 12.16, are
in fact defined over Z. (It is natural for topological field theory path integrals to have
integral values, but we are not discussing topological field theory here.)
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Figure 131: Left: An instanton configuration contributing to the differential on the MSW complex.
The black regions indicate the locus where the field ¢(z, 7) varies vary significantly from the vacuum
configurations ¢; or ¢;. The length scale here is {y, set by the superpotential. Right: Viewed from
a large distance compared to the length scale fy the instanton looks like a straight line x = x,
where the vacuum changes discontinuously from vacuum ¢; to ¢;. The nontrivial 7-dependence of
the instanton configuration, interpolating from a soliton p; to another soliton py has been contracted
to a single vertex located at 7 = 79. This illustrates the origin of the 2-valent vertices of extended
webs in the context of LG theory.

3. We can now introduce the Witten index, which in this context is known as the BPS
index ;7. This is just the Euler character of the complex M; of (12.10) appropriately
interpreted to take into account the fact that we are working with a slightly degenerate
Morse function. We should compute [14]

pij = Tryg, Fe™ =— Y~ ) (12.19)
PELSNRSN X,

where Xyy, is the preimage under W of a regular value Wy of the superpotential.
Here ¢ = (j; and Wy lies on the interior of the line segment between the critical
values W; and W;. As we have shown in equation (12.8) the fermion number of a
classical soliton gzﬁfj has the form f(p) = f; — fi + nij(p) where n;;(p) is an integer.
According to [14, 15, 48] the integer n;;(p), reduced mod 2, is the contribution of p
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to the oriented intersection number of the Lefshetz thimbles, and hence

[ij = eiﬂ(fj—fi+1)#L§ N RJC, — im(fi—fit1) Z (1)) (12.20)

¢ARS
PEL;NRSN X
where ((p) is the oriented intersection number.

12.4 Non-Triviality Of The Differential

Some of the literature on BPS states in two-dimensional LG models studies special cases
which might give one the impression that BPS solitons always lead to BPS states. In
this section we show that, in general, the differential Q; acting on the space of classical
(-solitons is non-trivial.
The strategy will be to adapt a simple fact in ordinary Morse theory. We consider a
family of Morse functions in one variable u that near v = 0 look like
w3

he(u) = i (12.21)

where ¢ is a real parameter. The equation for a critical point is u?

= ¢. It has no real root
for ¢ < 0 but has a pair of real roots uy = 44/ for € > 0. For £ < 0, there are no classical
vacuum states near u = 0, but for € > 0, there are two of them. However, extra quantum
vacua cannot appear as € is varied, so there must be an instanton effect that lifts the two
approximately supersymmetric states that appear for ¢ > 0. Indeed, the portion of the
u-axis between v, and u_ is a gradient flow line that connects the two critical points, and
the contribution of this gradient flow line to the differential removes from the cohomology
the states supported at u4 and u_.

Notice that at ¢ = 0, where the two critical points appear or disappear, h. is not a
Morse function, since its unique critical point at © = 0 is degenerate — the second derivative
of ho(u) vanishes at w = 0. Consider in any number of variables a critical point that is
degenerate in this way — it is cubic in one variable u and quadratic in any number of
additional variables:

3 s t
u
h(u,vl,...,vs,wl,...,wt):§+203—Zw3~. (12.22)
i=1 j=1

Under a generic perturbation, which will include a term linear in w, such a critical point
will either disappear or split into a pair of nondegenerate critical points, depending on the
sign of the perturbation. If the sign the perturbation is such as to generate two new critical
points, there can be no exact quantum supersymmetric state associated to them, since with
the opposite perturbation, these critical points would be absent even classically. So there
will always be a gradient flow line removing this pair of approximate ground states from
the supersymmetric spectrum.

The (-soliton equation on the real line is a problem of roughly this nature, with the
role of the Morse function played by the functional

1 [ i 0—5 .
h = —2/00 dzRe <;91JZI:¢1893¢J —C 1W) . (12.23)
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in the case that g;5 is constant. h is a function of infinitely many variables, and also
we should factor out by translations of x to think of h precisely as a Morse function.
We will find a situation in which, near a certain critical point (and omitting the mode
corresponding to spatial translations), h will look like (12.22), but with infinitely many v’s
and w’s. By varying one parameter that will correspond to €, we will be able to make a
pair of (-solitons