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Fomenko Invariants for the Main Integrable
Cases of the Rigid Body Motion Equations

A. A. OSHEMKOV

Introduction

One of the best known problems of mechanics is that of a rigid body
moving about a fixed point. Such great mathematicians as Euler, Lagrange,
Kovalevskaya have investigated it. They have found integrable cases and have
devised methods for reducing this problem to quadratures. Many papers in
which integrable cases have been found are also devoted to the investigaton
of different generalizations of this problem (motion of a gyrostat, motion of
a rigid body in fluid, motion of a charged rigid body in a magnetic field,
etc.). It is known that in the general case these problems are not integrable
(see, for example, [7, 8, 10]). However, the investigation of integrable cases
is important in order to understand the general laws of behavior for the
solutions of these systems.

The qualitative investigation of the system is of great significance, because
expressions of precise solutions are rather complicated and so do not give
any visual understanding of how the body moves. One of the main results in
the qualitative investigation of integrable Hamiltonian systems is Liouville’s
theorem, which states that the nonsingular compact level surface of first in-
tegrals of a completely integrable Hamiltonian system is the disjoint union
of tori filled with almost-periodic (=quasiperiodic) trajectories.

Liouville’s theorem shows how the system is arranged on the nonsingular
level surfaces of the first integrals (i.e., on Liouville tori). But it says nothing
about how the system behaves on the singular level surfaces of the first inte-
grals and about the imbedding of the Liouville tori in the phase space of the
system. A theory of “Morse type” for integrable Hamiltonian systems has
been constructed by Fomenko [2, 3]. These articles present a complete inves-
tigation of how Liouville tori of completely integrable Hamiltonian systems
transform in the neighborhood of critical level surfaces of the first integrals.
An invariant for integrable Bott nonresonant Hamiltonians is constructed
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and a topological classification of the isoenergy surfaces of integrable Hamil-
tonian systems is given in [4, 5].

The purpose of this paper is to describe this invariant (Fomenko invariant)
for the problem of rigid body motion and for some of its generalizations. As
a result, we obtain the topological classification of all major cases of integra-
bility for the rigid body motion equations. Also we calculate the exact num-
ber of rough topological integrable Hamiltonians. Our results are presented
in the Table which shows* the distribution of the values of the topological
invariant. Integrable systems of differential equations are roughly topologi-
cally equivalent iff their invariants coincide. So we describe all topologically
equivalent and all topologically nonequivalent integrable Hamiltonians (for
all these famous cases of integrability).

§1. Description of equations for the problem of rigid body motion

A brief description of the different problems of rigid body dynamics is
given in this section. It has been shown that all these problems are described
by Euler’s equations for the Lie algebra e(3) of the transformation group of
the 3-dimensional Euclidean space. A detailed description of these problems
and the history of this question may be found, for example, in [9, 10].

The Euler-Poisson equations describing the motion of a rigid body about
a fixed point in a gravitional field
A b, = (4, — A3)w,05 + P(ryv, —r,v,),

A0, = (A3 - Al)a)3a)1 + P(r1u3 - r31/1) ,
Ay = (4 — 4,))w 0, + P(ryv, —1v,),
V) = V003 — V30,

Uy = V30, — V0,

V3 =V, =)0y,

are well known in mechanics. The phase variables of this system are the
projections @, , w,, @, of the angular velocity vector on the principal axes
of inertia of the body and similar projections v, , v,, v, of the unit vertical
vector. The parameters of system (1.1) are the principal moments of inertia
A, A,, Ay of the body, the weight P of the body, the projections 7, , r,, r,
of the vector with the fixed point as the origin, and the body’s center of
gravity as the terminus on the principal axes of inertia.

Introducing the diagonal matrix 4 = diag(4, , 4,, A,) and the vectors

W= (W, 0, W), V=(V,0,V), r=(r,r,hn)),

one can write the Euler-Poisson equations in vector form:
Aw = Aw x w — Prx v,
{ (1.2)

V=V X®.

*Editor’s note. The Table and figures appear at the end of the article.
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Here a x b denotes the vector product in R®.

The vector Aw in system (1.2) has the meaning of the rigid body’s ki-
netic momentum relative to a fixed point. N. E. Zhukovskii has investigated
the problem of rigid body motion when the body has cavities filled with an
ideal incompressible fluid performing nonvortex motion. In this case the
body’s kinetic momentum is Aw + A, where 4 = (4,, 4,, 4;) is a constant
vector (in the coordinate system connected with the body), which charac-
terizes the cyclic motion of the fluid in the cavities. Kinetic momentum
has a similar form in the case when a fly-wheel is fixed in the body and
its axis has angles o, a,, o, with the principal axes of inertia such that
(cosa, : cosa, : Cosay) = (4, : 4, : 4;). Such a mechanical system is called a
gyrostat. The motion of a gyrostat in a gravity field and some other problems
of mechanics are described by the following system of equations:

Ao = (Aw+A) x 0 - Prxv,
{ , (1.3)
V=V XQ.
When A =0, system (1.3) transforms into system (1.2).

The external field is considered to be uniform (force of gravity) in the
classical way of setting the problem of a rigid body’s motion about a fixed
point. The natural generalization of this problem consists in replacing an
ordinary field by a more complicated one. The field of Newton forces is the
next more complicated case that actually occurs in mechanics. The equations
of motion for this case, found by Euler, have the form:

{ A= Aw x 0 — & Av xv — Prx v,
(1.4)
V=v X,
where ¢ is some constant which depends on the gravitational force and the
distance from the center of gravity.

The equations for the motion of a rigid body with fixed point in an ar-
bitrary potential field were found by Lagrange. If this field has an axis of
symmetry, then it can be considered vertical and the equations are of the
form:

A =Aw x w+v x (0U/ov),
{ (1.5)

V=rvXow,
where U(v,, v,, v,;) is the potential function and (0U/dv) denotes the
vector with coordinates

(0U/ov,,8U/[dv,, 0U/[0v,).

The potential function has the form U = P(r, v) for the gravity field, and
U = P(r, v) + &-(Av, v)/2 for the Newton field. Here (a, b) denotes the
Euclidean scalar product in R, Having substituted these expressions in
(1.5), one obtains systems (1.2) and (1.4).

Having replaced the expressions for the body’s kinetic momentum Aw by
the kinetic momentum of a gyrostat 4w + A in equations (1.5), one obtains
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equations which describe the motion of the gyrostat in an axially symmetric
field. This mechanical system has also been examined in many papers.

M. P. Kharlamov has obtained equations of the most general form which
describe different problems of a rigid body dynamics [6]. Introducing the so-
called gyroscopic forces, he has obtained the following system of equations:

Ad = (Aw+x) x w+v x (8U/dv), L6

{ V=vxaw, (1.6)

where » = (x,, #,, #;) is a vector function whose components x,(v) are

coefficients of a closed 2-form on SO(3) (the form of gyroscopic forces).
Besides, the vector function x»(v) is not arbitrary, but is of the form

x=A+(A—divi, (1.7)

where A(v) is an arbitrary vector function, A = (94,/0v j)T is the transposed
Jacobi matrix, o1 o4 oi
v 1= 2M 2 3
divi = a—'/l + a—yz- + 57/;

From the text below the reader will understand why the function »(v) is of
the form (1.7). :

The systems (1.2)—(1.5) are special cases of system (1.6) if one puts either
A(v) = 0 or A(v) =const in formula (1.7). Therefore, the vector A(v) in
equations (1.6), (1.7) plays the role of the gyrostatic momentum. If A(v) =
ATy , Where ATv is a constant matrix proportional to the “electric inertia
tensor”, then equations (1.6) describe the motion of an electrified rigid body
in a magnetic field whose intensity is constant and collinear to the symmetry
axis of the force field.

The following integrals always exist for system (1.6):

F=(,v)=1 (geometric integral),
E=Aw, w)/2+U (energy integral).
If »(v) is of the form (1.7), then the area integral exists:
G=(Aw+4i,v),

where (a, b) denotes the Euclidean scalar product in R,

It turns out that the system (1.6), (1.7) may be presented in the form
of Euler’s equations for the Lie algebra e(3) of the transformation group
of three-dimensional Euclidean space. These systems are Hamiltonian on
4-dimensional orbits of the coadjoint representation; for the complete inte-
grability in sense of Liouville it is nessesary, as usual, to indicate one more
integral (see, for example, [1, 11]).

S. P. Novikov was the first to note [12] that the equations of motion of a
rigid body may be presented in Hamiltonian form. As shown in [6], equations
(1.6), (1.7).are also Hamiltonian relative to some symplectic structure on the
common level surfaces of the geometric integral and the area integral.
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For convenience, we write these equations in the form of Euler’s equations
f={f, H} for the Lie algebra e(3). Let us describe the embedding of the
system (1.6), (1.7) in the space e(3)" conjugate to e(3).

Let S, S,,S;, R, R,, R, be the coordinate functions on e(3). Then
the Poisson bracket is of the form:

{S;, S;} = ¢Sk {R;,R;}=0,
{S,'a Rj} = {Ri’ Sj} = siijk ’
where {i, j, k}={1,2, 3} and
B { sign of the transposition (i, j, k) if all the i, j, k are different;
ijk =

(1.8)

0 otherwise.
For arbitrary functions f, g on e(3), the bracket is defined by the formula:

{/, 8}(x) =x([df (x), dg(x)]), (1.9)

where x € e(3)"; [, ] is the commutator in the Lie algebra e(3); df(x),
dg(x) € e(3) according to the natural identification of e(3) and e(3)* (see
[11]). Using the explicit form of the bracket (1.8), we can rewrite formula
(1.9) in the following way:

_ 0f 08  p 0f 08  p Of Og

8= 2 e (Skéﬁéfs'.J”RkﬁaR. *Risras |- (11O
i,j,k i J 1 J i J

A Hamiltonian system on the space e(3)* with bracket (1.8) is, according to
definition, of the form: )

{ S;={S;, H},

R,={R,, H},

where H, which is called the Hamiltonian, is a function on e(3)*. Intro-
ducing the 3-dimensional vectors

S$=(S,,5,,S;), R=(R,,R,, Ry,

(1.11)

6H_<8H OH 6H>

35 = \35, 33, 75,
OH (0H OH O0H
dR ~ \O8R,’ OR,’ 8R, )"’
the system (1.11) may be rewritten in the form:
§20H 5 OH o
(1.12)
R= OH R
—aS )

The equations (1.12) are called “Kirchhoff’s equations™.
It turns out that system (1.12) is equivalent to the system (1.6), (1.7) for
a suitable choice of H .
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STATEMENT. The mapping ¢: ]R6(w, v) — ]R6(S, R) defined by the for-

mulas
S;=—(4,0,+4)),

R, =v, (i=1,2,3)
determines an isomorphism between the system (1.6), (1.7) and the system
(1.12) with Hamiltonian

2 2 2
(S, +4,) . (S, +4,) N (S5 +44)
24, 24, 24,
where the parameters A, , A,, A, and the functions i, 1,, Ay, U are taken
from the system (1.6), (1.7) but are defined on R*(R) instead of R>(v).
Proor. In order to prove the statement it suffices to show that the differ-
ential d¢ of the mapping (1.13) takes the vector field determined by system

(1.6), (1.7) to the vector field determined by system (1.12), (1.14). In the
chosen coordinates the differential dg¢ is defined by the (6 x 6) matrix

-4 —AT
do = ( 0 E ) .
One can see that dg is nondegenerate at all points (w, v). Thus, it is
necessary to show that for any point P € R6(w , V) we have

(54 %),0),- ().,

- OH OH

(1.13)

H= +U, (1.14)

= (AN (S+A) xS+ (A4 (S + 1)) x

R
'Ad)"AT’)=—(Aw+ﬂ+(A—div,1)1/) XW—V X (_U _
=wx (Aw+ 1)
— (Av) x @ + AT (v x ) — divA(v x @) + (&) <y

=wx(Aw+l)—(Aw)xu+<g—g> X V.

Here the formula
(Ca)xb+ax(Cb)+C (axb)=(trC)(a x b)

is used; it is valid for any matrix C and any vectors a, b € R®. Comparing
the obtained equations and taking into consideration (1.13), one gets

S(p(P)) = (—di» — AT)(P).
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2) Similarly for R we obtain:
. O0H -1
V=V XQ.

Hence, R(¢(P)) = v(P). The statement is proved.
Under the indicated isomorphism ¢, the integrals F = (v, v) and G =
(Aw + 4, v) become invariants of the Lie algebra e(3):

2 2 2
fi=RI+R+R,,  f,=SR,+5S,R,+5S;R, (1.15)

and the energy integral £ = (Aw, w)/2 becomes the Hamiltonian (1.14).
Let us note that an arbitrary Hamiltonian of the form

f=(4S,8)+(WR),S)+V(R), (1.16)

where A is a constant symmetric matrix, W (R) is an arbitrary vector func-
tion, and V' (R) is an arbitrary function, may be reduced to the form (1.14) by
a linear coordinate transformation that preserves the bracket (1.8) in e(3)".
Thus the Hamiltonian (1.14) is the most general form of quadratic function
with respect to the variables S such that the quadratic part does not depend
on R. Now the meaning of condition (1.7) about the form of gyroscopic
forces becomes clear. It is precisely the condition that system (1.6) is equiv-
alent to the Hamiltonian system on e(3)" with Hamiltonian of the form
(1.16).

Many other problems in mechanics and physics are described by equations
(1.12) with Hamiltonian (1.16). Let us enumerate some of them.

1) The motion of a rigid body in an incompressible fluid:

H=T(S,R +L(S,R),

where T(S, R) is a quadratic form with respect to variables S and R (ki-
netic energy of the system body-fluid) and L(S, R) is a linear function that
takes into account the fluid circulation in the cavities of the body and its
leakage through the holes in the body (if there are no holes and cavities, then
L(S, R) =0). Here the variables S and R have the meaning of angular mo-
mentum and momentum of the system body-fluid in the mobile coordinate
system rigidly connected with the body (see [10]).
2) The spin dynamics in A-phase of the superfluid He:

d(S; +S2+ 50
2

where S is the magnetic momentum, d is the spin part of the order param-
eter, and (h,, h,, h;) is the external magnetic field vector. For details see
[12].

3) The deformation of an elastic rod. The Hamiltonian is quadratic with
respect to S and linear in R. In this case equations (1.12) describe the equi-
librium condition of the deformed elastic rod. Besides, the partial derivatives

H= + A(S,hy + S)h, + S3h;) + U(R),
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of the variables S and R are taken with respect to the arc coordinate of the
rod instead of time. The physical meaning of the variables S, R and of the
parameters of the Hamiltonian may be found, for example, in [22].

§2. Integrable cases

The phase space of the Hamiltonian system (1.11) has dimension 6. There
are always two functionally independent integrals (1.15) for the system (1.11),
since the bracket (1.8) is degenerate. Nonsingular common level surfaces of
the integrals (1.15)

(R} + R+ R, =c; SR +S,R, + 3R, = g} CR(S, R) (2.1)

are symplectic manifolds homeomorphic to TS? (the tangent bundle of a
two-dimensional sphere). The restriction of the system (1.11) to some com-
mon level surface (2.1) is a Hamiltonian system on a four-dimensional sym-
plectic manifold (see, for example, [1]). For its complete integrability in
the sense of Liouville, the existence of two functionally independent inte-
grals on TS is necessary. Since the Hamiltonian is always an integral of the
system, the integrability of system (1.11) in the sense of Liouville on some
level surface (2.1) means the existence of an integral which is functionally
independent of the Hamiltonian on this level surface. Let us note that an
additional integral may exist only on certain level surfaces (2.1) but not on
all.

Since the linear transformation S’ =S, R' = yR (where y = const) pre-
serves the bracket (1.8), one may examine systems only on surfaces (2.1)
where c=1.

As shown in §1, the system of equations (1.11) with Hamiltonian of the
form (1.14) describes various problems of rigid body dynamics and some
other problems. Until recently, all these problems were studied separately,
and for each problem integrable cases were found (i.e., an additional integral
was indicated). The analogy between different mechanical problems (i.e., the
existence of coordinate transformations which reduce equations to equivalent
form) has been noted by different authors (on this subject see [12, 13, 15]).

The list of the main known integrable cases for equations (1.11) with
Hamiltonian of the form (1.14) is given below; we indicate who, when, and
for what problem has first found this integrable case. In all cases the Hamil-
tonian H and the additional integral K are functions of variables S, R.
The physical meaning of the restrictions put on the system can be understood
by expressing S and R in terms of the original variables of the problem.

1) Euler’s case (1750, motion of a rigid body about a fixed point).

_S L85 S
H = Z_Al + Z—Az + 2_A3 s

K=S+S+5;. (2.2)
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2) Lagrange’s case (1788, motion of a rigid body about a fixed point).

_S S§ s;
K =35, (2.3)
3) Kovalevskaya’s case (1889, motion of a rigid body about a fixed point).
s s .s
H—2A+2A+ +a,R, +a,R,;

A=A, =A4,=24,;

2
S2 -85 S, 2
K= ( o taR - alRl) - (sz—ale—ale) . (24

Also see formulas (3.5) and (5.1).
4) Goryachev-Chaplygin case (1899, motion of a rigid body about a fixed

point).

s> s 28k
H—ﬂ 2A+7+a1R1+d2R2,
A=A, =4, =44,,
K = 8,(S? +S2) — AR,(a,S, + a,S,). (2.5)

Here {H, K} = (S,R, +S,R,+S,R;)(a,S, —a,S,) . Therefore, the system is
integrable only on the surface {Rf +R§ +R§ =1; SR, +S,R,+S;R, = 0}.
5) Zhukovskii’s case (1885, motion of a gyrostat in a gravitational field).
(S, +4)° L5 + ) L 65 +4,)°
24, 24, 24, °
2 Q2 2
K =S8 +S5,+S5;. (2.6)
6) Sretenskii’s case (1963, motion of a gyrostat in a gravitational field).
ST Sy 28, +4)
74124 !
K = (S;+22)(S} +83) — AR,(a,S, + a,S,). 2.7)
Here, as in the Goryachev-Chaplygin case, the system is integrable only on
the surface {R? + Ri + Rﬁ =1; SR, +S,R, +S;R; =0}.
7) Clebsch’s case (1871, motion of a rigid body in a fluid).

H =

H= +a,R, +a,R,,

S8 s
H=5r +—+2A + (AR + AR} + 4,R5),
K =S +8+8; —e(A,A;R} + 4,4, R: + 4, 4,R}). (2.8)

Also see formulas (3.8), (3.9), and (7.1).
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8) Steklov-Lyapunov case (1893, motion of a rigid body in a fluid).

st s s
H—2/; +—2A—2+ﬁ+e(ASR + 4,8,R, + A,S;R,)

2
€

2
K = (S} +S+87) — 26(4, 4,5, R, + A;4,S,R, + 4, 4,S,R;)
2, 2 252 2 252 2 252
+ & (A (Ay — A, RE + A2(Ay — A,)'Ro + A5(A, — 4,)°RE). (2.9)

Also see formula (8.2).

Only the main cases of integrability of equations (1.12) known today are
given in this list. A complete list of Hamiltonians for which an additional
integral can be indicated does not yet exist. However, under some restrictions
on the form of the Hamiltonian and of the additional integral, one can state
that there exist no more integrable cases. On this subject see [8, 10, 14, 16].

Fomenko’s invariants for the integrable cases enumerated above will be
described in this work. A detailed description of Fomenko’s invariant can be
found in [4, 5].

As has already been noted, the system of equations (1.12) is Hamiltonian
on the symplectic manifolds

(=R +R+R =1; f,=SR, +S,R, +S,R, = g}.

The surface

2, 2\ p2 2, 2\ p2 2 2\ p2
+ 5 (4,(4; + 43)R] + 4,(45 + A))R; + A5(4] + 45)R5),

Q,={fi=1f,=¢:H= h}cR(S R) (2.10)
is called the isoenergy surface of the given Hamiltonian system with Hamilto-
nian H . An additional integral K is called Bott on Q,, if the set of critical
points of the function K = K | is the union of smooth nondegenerate crit-

ical submanifolds. The addmonal integral turns out to be nearly always Bott
for the known integrable cases.

THEOREM. For each Hamiltonian system (1.11) on the symplectic man-
ifold TS? = {fi = 1;f, = g} with Hamiltonian H in the enumerated
integrable cases (2.2)-(2.9), the additional integral K is Bott on all nonsin-
gular surfaces Q, = {f, =1; f, = g; H = h} with the exception, perhaps, of
a finite number.

The proof of this theorem will be obtained by constructing the invariant
for each integrable case. Besides, characteristics of surfaces Q, on which
the additional integral K is not Bott will become clear.

Fomenko’s invariant is a graph with vertices of special form (letters-atoms
linked by segments in the word-molecule, following the terminology of [5]).
A graph (word-molecule) is assigned to each nonsingular surface Q, with
Bott integral K = K 'Q;.’ Nonsingular level surfaces of the function K are
2-dimensional Liouville tori. They are transformed in some way at critical
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values of the function K. The word-molecule which corresponds to the
isoenergy surface O, encodes information about how Q, is stratified into
Liouville tori and how these tori bifurcate at critical values of the function
K.

All the Fomenko invariants appearing in systems investigated in this pa-
per are enumerated in the Table (see the Supplement). The isoenergy surface
(2.10) is determined by values g, 2 and the parameters of the Hamiltonian.
Therefore, the description of invariants for different Q, will be given in the
following form: curves which separate domains with different Fomenko in-
variants as well as curves which separate domains with different topological
type of Q, will be shown on the plane R? (g, h). The union of all these
curves divide the (g, /)-plane so that for all points of one domain the isoen-
ergy surfaces Q, = {f, = 1; f, = g ; H = h} have one and the same topo-
logical type and identical Fomenko invariants. Besides, the type of invariant
is designated in figures by number from the Table (see the Supplement).

For some integrable cases, the separating curves may have qualitative dif-
ferences for different values of the Hamiltonian’s parameters. In this case
several figures with separating curves corresponding to different ranges of
the Hamiltonian’s parameters are given. In the integrable cases when only a
special integral exists (in Sretenskii’s case, for example, only when g = 0),
the separating curves are shown on the plane R’ (A, h), where A is a certain
parameter of the Hamiltonian.

Let us note that the figures with separating curves, presented in this pa-
per, make it easy to understand how the Fomenko invariant changes when
h changes (for fixed g or A). One must construct the line g =const (or
A=const) on the plane with separating curves and see what domains it tra-
verses.

§3. Topological type of isoenergy surfaces

Before constructing Fomenko’s invariants for integrable Hamiltonian sys-
tems, let us describe (following the outline given in §2) the curve separating
domains with different topological type of isoenergy surfaces Q,. These
curves are in no way related to the integrability of the system and so can be
constructed, generally speaking, for arbitrary Hamiltonians. This method of
investigation of mechanical systems was first time proposed by Smale in [17].
It consists in the following.

The isoenergy surface Q, is the common level surface of the function
S, =S8R, +S,R, +S;R, and the Hamiltonian H defined on the set

S*x R ={f,=R*+ R, + R, =1} CR%S, R). (3.1)
Let us examine the mapping

F=f,xH:S§ xR =R’ (3.2)



78 A. A. OSHEMKOV

determined by the formula
F(P)=(f,(P), H(P)) e R*(g, h),

where P € S? x R®. The image of the set of critical points of the mapping
F is a certain subset X in ]Rz(g, h) called the bifurcation diagram. The
preimage of an arbitrary point (g, ) ¢ ¥ is a nonsingular surface

Q,={/i=1:f,=8;H=nh}.

Besides, for all points (g, #) from one of the connected domains into which
T divides R? (g, h), the topological type of Q, is the same. What is more,
sometimes one can determine how the topological type of Q, changes while
passing through X if the indices of critical points which belong to the preim-
age F'l(y) for all y € £ are known (see [18]).

In [19, 20, 21] the topological type of the surfaces Q, was determined and
the separating curves on the plane (g, #) were constructed for the motion of
a rigid body about a fixed point in a gravitational field and a linear force field.
A rather general case was investigated in these works, but we are interested
only in those Hamiltonians for which an additional integral K exists. These
Hamiltonians have a certain symmetry, and the separating curves for them
are of simpler form than in the general case. Bifurcation diagrams and the
topological type of @, will be described for the following Hamiltonians:

5.8 8 :
H= i + 24 + H (Euler’s case); (3.3)
S1 + S2 + —I,s" s
H= — + R, (Lagrange’s case); (3.4)
2, 2 2
H= w +R, (Kovalevskaya’s case); (3.5)
(S A (S A (S5 4,)] ,
H= 2 + 24, + o, (Zhukovskii’s case); (3.6)
248244 2 v
H=2112 +2 (S +4) + R, (Sretenskii’s case); (3.7
s: S (4,R’ + A,R} + 4,R}) ,
H= 2A 1472 24 +ﬁ + 5 (Clebsch’s case);
(3.8)
2 2 2 2 2 2
A
H = Si 214 P2 Sy +i3_ _ AR+ AR+ ARy (Clebsch’s case).

2A 2A 24, 2
(3.9)
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The critical points of the function defined on the common level surfaces of
other functions must be found, and the indices of these critical points must
be calculated. Let us describe one of the possible methods of calculation to
be used further.

Let the functions Ay, A, ..., h, be given in R", and let

M ={h =p,, ... h =1}
be their common nonsingular level surface. Then the vectors
gradh,, ..., gradh,
are linearly independent at every point x € M "~k = R". The point x; €

M" ¥ s a critical point for the function 7:0 =h iff there is a collection
of coefficients (4,, ..., 4;) such that

ol

k
grad hy(x,) = Y _ A, grad h,(x,). (3.10)

i=1

Let us examine the matrix

k
G=G,-> 4G, (3.11)

i=1

where G, is the Hessian of the function 4, at the point x,(i=0, 1, ..., k)
and the 4, are taken from (3.10). The Hessian at a critical point is the sym-
metric matrix whose elements are the function’s second partial derivatives.
It transforms according to the tensor law under coordinate transformation
and correctly determines a certain quadratic form on tangent vectors at the
critical point. The number of negative eigenvalues of this form is called the
index of the critical point, and the number of zero eigenvalues is the degen-
eracy index of the critical point [18]. It is easy to check that matrix (3.11)
does also correctly determine a quadratic form in R”.

LEMMA. Let condition (3.10) be valid for the point x, € M”:k c R".
Then the quadratic form determined by the Hessian of the function h, = ho| ”
at the point x, is the restriction to the tangent space TXOM n—k of the form in
R" determined by the matrix (3.11).

ProOF. Let y(t) Cc M "~k be an arbitrary smooth curve such that 7(0) =
X, . Then the value of the quadratic form determined by the Hessian of the
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function Zo = hy|,, on the vector a = (0) € T, xOM”_k is equal to

Gyla, a)=d*1de|,_o(hy(»(1)))

= d*/de|_(hy(»(2)))
= o(a ,a)+ (gradho(xo) » $(0))

k
=Goy(a, a)+ ) _ Agradh(x,), 7(0))

i=1

k
= Gyla, a)+ 3 4,(d*/dL|,_o(h,(»(2))) - G,(a, a))

i=1

= G(a, a),

because /,(y(f)) = p;. Here by G,(a, a) we denote the value of the quadratic
form with matrix G; on the vector a and by (grad /,(x,), 7(0)) the pairing
in R"” of the vector #(0) and covector grad 4,(x,) (i.e., the value of the
covector on the vector from R"). The lemma is proved.

The given method of calculation is convenient, because one need not in-
troduce local coordinates on the common level surfaces of the functions in
order to find the indices of critical points. It is sufficient to choose some basis
in the tangent space of this surface and calculate the value of the form (3.11)
on the basis vectors.

Let us describe the topological type of Q, for the Hamiltonians (3.3)-
(3.9).

The bifurcation diagram for Hamiltonian (3.3) is of simple form (see Fig-
ure 1). It consists of three parabolas 4 = g2 [24,(i=1, 2, 3), which divide
the plane into six domains. For each domain the topological type of Q, =
{fi=1; fy=g; H = h} forall points of the domain is given. The symbol &
means that for every point (g, #) from this domain, (f, x H) g, h=0.
The bifurcation diagram in Figure 1 is drawn for the case 0 < 4, < 4, < 4,.
If 4, <0< 4, < 4,4, then there are noncompact surfaces among the Q,
and we shall not examine this case. If 0 < 4, = 4, < 4,, then the two
upper parabolas merge into one. When 0 < 4, < 4, = A4,, then the two
lower parabolas merge. When A4, = 4, = A4,, the Hamiltonian (3.3) be-
comes degenerate, i.e., there exist several functionally independent integrals,
for example, S; and S, . Such cases will not be examined.

For the Hamiltonian (3.4), the bifurcation diagrams qualitatively differ in
the following cases: (a) 0 < B < 1;(b) B =1;(c) 1 < pB < 4/3;(d)
B > 4/3. They are shown in Figure 2. All diagrams are symmetric in the
line g = 0 and consist of two parabolas

2
=&
h=3g*l (3.12)
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and the curve (except for the case (b)) given in the following parametric form:

1 t 3 2 1
d B -1 2 2814 1B =1

The curve (3.13) is tangent to the parabola at the points with coordinates

£ 38-2 )
(\/Il—m’ 21— 8 |) €eR(g, h).

In case (d), the curve (3.13) has two cusps with coordinates

(i )

For each domain into which the plane R? (g, h) is divided by the bifurcation
diagram, the topological type of Q, is given in the figure.

The bifurcation diagrams for the Hamiltonian (3.5) have the same form
as for the Hamiltonian (3.4) (they are obtained by contraction with coeffi-
cient /B along the axis g ) but there is another topological type of surfaces
Q,, in this case. We are interested in this Hamiltonian in connection with
Kovalevskaya’s case, so the bifurcation diagram in Figure 3 is given only
for # > 4/3. When B = 2, the coordinates of points where the curve is
tangent to the parabola are (+v2, 2); the coordinates of the curve’s cusps
are (£(4/ 3)3/ 4, v3); the coordinates of points where the curve transversally
crosses the parabola are (+2v/v/2 — 1, 2v/2—1). The topological type of Q,
is given in Figure 3. The surface denoted by K 3 may be described in the
following way: it is a fiber bundle with base the sphere S% with three “holes”
(i.e., three open disjoint two-dimensional disks removed from it), and whose
fiber is the circle S’ , but the fiber is contracted to a point over every bound-
ary point of the base. The surface K 3 may be also obtained by removing
three submanifolds D x S’ (from s x §* ) whose axes are fibers in the
product S Py SZ, and gluing them back in S! x $? via the diffeomorphism
that exchanges base circles on boundary tori. One can also show that X 3 s
homeomorphic to the connected sum (S % Sz) # (Sl X S2) .

The described bifurcation diagrams for Hamiltonians (3.3)—(3.5) are well
known (see, for example, [19]).

Now let us construct the bifurcation diagram for the Hamiltonian (3.6).
Let 0 < 4, < 4, < 4; and 4, 4,, 4, differ from zero. Critical points of

the mapping f, x H: S? x R — R? are determined from the condition
{ grad H = y, grad f| + u, grad f,,
fi=1,

where f, f, are the functions (1.15) on ]RG(S, R) and u,, u, are certain
numbers. Introducing the vectors

S=(8,,5,,8), R=(R,R,,R), A=(A,h,4),

(3.13)

(3.14)
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and the matrix 4 = diag(4,, 4,, 4,), let us rewrite the system (3.14) in
vector form: 1
A (S+4)=u,R,
2u R+ pu,S=0, (3.15)
(R,R)=1.
If u, =0, then u, = 0 (because R # 0). One can obtain the following
solution of system (3.15):

S=-i, (R,R)=1, p =u,=0. (3.16)

The set (3.16) is a two-dimensional sphere in R6(S , R). The Hamiltonian
H vanishes and the function f, is equal to g = —(4, R) at the points of
this sphere. Therefore, the image of the set (3.16) under the mapping f, x H
is the segment {h =0, |g| < v/(4, 4)} on the coordinate axis # = 0 of the
plane R’ (g, h). The preimage of every interior point of this segment is a
circle, which is minimal for the function

, where |g| < (4, 4).

~

|{f1=1,f2=g}

Now let u, # 0 in system (3.15). Then
S =—Q2u,/u,)R. (3.18)
This implies
-1

(4yA+ (2, /py)E)R = 4,
where E is the 3 x 3 unit matrix. From (3.18) one also obtains
g= (S, R) = _(Zﬂl/ﬂz)(R’ R) = _(Zﬂl/ﬂ2)~

Substituting (—2u,/u,) for g in (3.19) and (3.18), one obtains a solution
of system (3.15) in the following form:

A8 A
S =—-—, R = ! i=1,2,3),
PoAt-g PoAt-g ( ) (3.20)
U, =-gt/2, Uy =1,
where ¢ is some parameter and g(¢) is given by
2 2 2
A
4 5+ ! 5 + i =1
(Alt_g) (Azt_g) (A3t"g)
At the points (3.20), the Hamiltonian H has values
2 2 2 2
A AA
h:L( LT e S 332). (3.22)
2 (Alt_g) (Azt_g) (A;;t_g)

Thus, for any values of ¢ and g which satisfy condition (3.21) there is
only one point (3.20) at which the gradients of the functions f, and H are

(3.21)
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dependent. The image of this point under the mapping f, x H is the point
with coordinates (g, &) € R?, where A is determined by formula (3.22). So
it is neccessary to construct the curve (g(t), A(t)) implicitely determined by
formulas (3.21), (3.22) on the plane ]Rz(g, h).

Let us note that for these functions the following relation is valid:

dh dg
= tﬁ' (3.23)
This can be directly checked by differentiating equalities (3.21) and (3.22)
with respect to ¢. As a matter of fact, it follows from the fact that parameter
t is equal to the coefficient u, in the presentation of grad H in the form
of a linear combination of grad f; and grad f, (3.14). Actually, the set of
points (3.20) can be presented as the curve y(¢) C R6(S , R) at all points of
which formula (3.14) with some u,(2), u,(f) is valid. Then
dh d .
77 = i HO @) = (erad H(y(1)), (1))
= (u,(¢) grad f,(y(2)) + ,(2) grad f,(¥(1)), 7(1))
d d d
= 1, (O OO + O LEO) = 1O,

because f,(y(¢)) = 1. By (,) we denote the ordinary pairing of the covector
grad f and the vector y in ]R6(S, R).

In this case u,(f) =t and so (3.23) is valid. A similar relation is valid in
an even more general case. Without going into details, we note that in this
paper, the following relation is always valid for the bifurcation curve given
in parametric form with some parameter p:

dh _ .dg
- ﬂz(p)ﬁ, (3.24)

where u,(p) is the coefficient of grad f, in the decomposition of grad H into
grad f; and grad f,. This relation very often simplifies the investigation of
the bifurcation curve.

From the above it follows that it is sufficient to construct the curve (3.21)
in the plane R’ (¢, g). After this, by using (3.23), the bifurcation diagram
on the plane ]Rz(g , h) can be easily obtained. Introducing polar coordinates
t=rcosp, g =rsing, from (3.21) one obtains a relation between r and
Q:

A2 A2 22
r= 1 + 2 + 3 ,
(A2 + 1)sin*(p —p,) (42 +1)sin’(p —9,) (43 +1)sin’(p — @5)

where tang; = A4, (i=1,2,3). The curve determined by this relation
is shown in Figure 4. It is symmetric in the origin and has asymptotes g =
A;t £ 4;, the dotted lines in Figure 4.
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Formula (3.22) defines a mapping of this curve into the plane Rz( g, h).
Its image, combined with the segment (3.17), is the bifurcation diagram of the
examined mapping f,xH . Taking into consideration (3.23), it becomes clear
that cusps of the bifurcation curve correspond to points of local minimum
and maximum of the function g(¢) (see Figure 4) and points of inflection of
the bifurcation curve correspond to points of local minimum and maximum
of the inverse function #(g). If the point that moves along the curve shown
in Figure 4 asymptotically approaches (as ¢ — oo ) the line g = 4,1+4;, then
the image of this point on the bifurcation curve asymptotically approaches

the parabola
2)? 24 224
h=(g;FA,) +% Yl s+ k“k -, (3.25)
j (4;,-4)" (4,-4)

1
where {i, j, k}={1, 2, 3}.
Summarizing all the above, one obtains the bifurcation diagram of the
mapping f, x H for the Hamiltonian (3.6) shown in Figure 5. The diagram
is symmetric in the line g = 0. Points where the segment is tangent to the
curve have coordinates

(¢\/1f+1§+12, o) €R’(g, h)

and the point where the two branches of the curve intersect has coordinates

Af l; l§ 2
(O, EA—1+§1_4;+2_A3 € R(g, h).

The topological type of Q, in each domain may be defined by examin-
ing the projection of Q, on the Poisson sphere, using the method of [17]
(see also [20, 21]). The same thing may be done by another method. Let
us change 4; to lg = ad,, where o tends to zero. At the limit the bifurca-
tion diagram shown in Figure 5 transforms into the bifurcation diagram for
the Hamiltonian (3.3) shown in Figure 1. Further, the unbounded domains
in Figure 5 for which the topological type of Q, is 283 , S x s2 , or RP®
become the corresponding domains in Figure 1. For the “triangle” near the
origin (in Figure 5), the topological type of Q, is S' x $? and for its bound-
ary domains it is S*. This follows from Morse theory [18], because in the
preimage of each point of the segment there is only one minimal circle of the
function H = H | Ui=1, f=g} and in the preimage of other boundary points

of the image of TS? there is only one critical point.
Now let us proceed to the Hamiltonian (3.7). This is the Hamiltonian of
Sretenskii’s case, and an additional integral exists only on the surface

{f,=1, f,=0} cR%S, R).

Therefore, one need not examine the mapping f, x H in order to describe
Fomenko’s invariants for this integrable case. The topological type of Q, and
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Fomenko’s invariants in this case depend only on the value of the parameter A4
and the value of 4 determining the isoenergy surface Q, for the Hamiltonian
(3.7). So, for Sretenskii’s case we shall construct separating curves on the
plane R? (4, h) and determine the topological type of @, in each domain.

The topological type of the surface Q, = {f, =1, f, = g, H = h}, where
H is a Hamiltonian of the form (1.14), may be examined using the projection
on the Poisson sphere ,
n:TS* - 8%, (3.26)
where TS” = {f; = 1, f, = g} C RS, R) and S’ = {f, = 1} C R*(R).
This method has been developed in [17] for certain natural mechanical sys-
tems and has been carried over in [6] to the case of systems with gyroscopic
forces. Under the projection (3.26), the surface Q, transforms into a domain
on the Poisson sphere. It can be shown that this domain is distinguished by
the condition

0, (R)<h, (3.27)
where ¢ g(R) is the function on the Poisson sphere determined by the for-
mula
(g + AR, + 4,R, + A,R,)’
2(4,R} + A,R} + A,R})

The function (3.28) is the analog of the reduced potential examined in [17].

The topological type of Q, is completely determined by the form of do-
main (3.27). If the domain (3.27) is the entire sphere, then Q, is homeomor-
phic to RP?. If the domain (3.27) consists of several connected components,
each of which is either a two-dimensional disk D* or a two-dimensional disk
D? with m holes (i.e., m disjoint open disks removed from it), then the con-
nected component of @, homeomorphic to s? corresponds to each disk D?

and the connected sum of m copies of S I'x 52 corresponds to each disk D>
with m holes. For example, the surface K 3 described in the study of the
Hamiltonian (3.5) is obtained when m = 2.

For the Hamiltonian (3.7), the function (3.28) is of the form:

0 (R) = + U(R). (3.28)

2)’R}
R)= 3 +R,. 3.29
(00( ) 4_ 3R§ 1 ( )
In order to determine the type of domain for
po(R) < A, (3.30)

let us find the critical points of the function (3.29) defined on the sphere
{R}+R3+R: =1} CR'(R).
They are determined by the system of equations

99, ._
{a_R’_z.uRl (l_1a2,3),

RI+R3+R; = 1.
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Its solutions are two critical points which exist for any value of A:
R, =#1, R,=R,=0, u==1/2, (3.31)
and also two critical points which depend on the value of A:

R =1/2, R,=0, Ry=#+\/1-1/4%, u=¢, (3.32)
where A= (4 +3)21288%, Ex1)2.
The value of the function (3.29) at the points (3.31) is equal to 1. Since
A is arbitrary, one obtains two lines 4 = +1 on the plane R? (A, ) which
separate domains with different topological type of Q,. At points (3.32),
the value of the function (3.29) is equal to (16&* + 402 — 3)/64¢> . Thus,
these points determine in parametric form the separating curve on the plane
R*(A, h) :
h=1654+403€2—3’ lzzm’ es L (3.33)
64¢ 128¢ 2
Putting together the lines 4 = +1 and the curve (3.33) we obtain the diagram
on the plane R? (A, h) shown in Figure 6. It is symmetric in the line A =0.
The coordinates of the cusps of the curve (3.33) are:
(£1/v3,7/9) e R*(A, h);

the coordinates of points where the line £ = 1 is tangent to the curve are:
(1, 21) € R? (4, h). The curve (3.33) asymptotically approaches the parabola
h=2A".

One critical point of the function (3.29) corresponds to each point of
the lines 2 = +1, and two critical points correspond to each point of the
curve. Having calculated their indices, one can see that the index is equal
to O for the line # = —1, and it is equal to 2 for the segment of the line
h = 1 between the points where this line is tangent to the curve, and to 1
for the remaining part of the line; for the curve, the index is equal to 1 for
parts between the cusp and the point where the line 4 = 1 is tangent to the
curve, and it is equal to 2 for the remaining part of the curve. Knowing the
indices of the critical points, it is easy to determine the domains (3.30) on
the Poisson sphere. They are: &, the disk D? , the annulus s! x R! (the
disk D? with one hole), the disk D? with two holes, the entire sphere S2.
The corresponding surfaces Q, are shown in Figure 6. We denote by K 3
the same surface as for the Hamiltonian (3.5).

Now let us construct the curves that separate domains with different topo-
logical type of Q, for the Hamiltonians (3.8) and (3.9). Let 0< 4, < 4, <
A, . One may assume that the functions

5, =8R, +S,R, +S;R,,
s> 8 8

ag 2 2 2
H= 2—/il+2—%+—2—[3 + 5 (4, R + 4,R; + A,R))
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are defined on the set
S’ xR’ = {f, =1} cR%S, R),
where ¢ = 1. The condition grad H — u, grad f, — u, grad f, = 0, which

determines critical points of the mapping f, x H : S2x R} - R? , may be
written in the form

1/4, 0 0 —l, 0 0 S,
0 1/4, O 0 —ly 0 S,
0 0 1/4, 0 0 -, Sy ~0
—U 0 0 o4, -2u, 0 0 R, )
0 —U, 0 0 oA, —2u, 0 R,
0 0 - 0 0 oA, -2 R
) 37 <My 3 (3.39)

Since Rf +R§ +R§ = 1, equation (3.34) is valid only in the case when the
matrix in this equation has nontrivial kernel. This matrix decomposes into
three 2 x 2 blocks with determinants

D=0 -2u /4, -ps (i=1,2,3). (3.35)
If D, # 0, then S; = R, = 0. Therefore, if only one of the conditions

D, =0 is valid, then, taking into account the relation Rf+R§+R§ =1, one
obtains the following critical points:

(t,,0,0,%1,0,0), (0,%,0,0,+1,0), (0,0,t,0,0,l)
eR%S,R), (3.36)

where ¢, t,, t; are certain parameters.
Calculating the value of f, and H at these points, one obtains three

parabolas on the plane Rz(g ,h) :
g2 g4,
h= 2_A; + )
There are only two critical points of the mapping f, x H in the preimage of
every point of the parabolas (3.37). It is easy to understand that if ¢ = -1,
no two determinants (3.35) can be simultaneously equal to zero (because
A, # A4 when i # j). Thus, one obtains a bifurcation diagram which
consists of three disjoint parabolas (3.37) with ¢ = —1 for the Hamiltonian
(3.9). It is shown in Figure 7.
Let us examine the case ¢ = 1. If two determinants (3.35) are equal to
zero, then u, =0, /ui =1, and so the third determinant is also equal to zero.
From (3.34) the following system of equations is obtained:

(i=1,2,3). (3.37)

S, = +4,R,,
S, = +4,R,, 538)
S, = +4,R,, '

R+R3+R;=1.
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Equations (3.38) determine two two-dimensional spheres in ]R6(S , R), which
are completely filled with critical points of the mapping f, x H. The values
of f, and H on the set (3.38) are

g = (4R} + 4,R} + A,R}),
2 2 2
h=AR} + 4,R; + A,R.

Therefore, under the mapping f, x H, the two-dimensional spheres (3.38)
transform into two segments

{h=lgl, 4, < |g| < 45} CR(g, h). (3.39)

The preimage of every point of these segments is a set of two circles consisting
of critical points.

Combining the parabolas (3.37) (when ¢ = 1) and the segments (3.39),
we obtain the bifurcation diagram shown in Figure 8. The segments (3.39)
are tangent to all three parabolas at the points (£4;, 4,) € Rz(g , h). The

parabolas (3.37) intersect at the points (:l: A,-Aj , (Ai+Aj)/2) € Rz(g, h).
The topological type of Q, = {f, =1, f, = g, H = h} in each domain in
Figures 7 and 8 may be determined by examining the projection of Q, on

the Poisson sphere. The image of Q, under the projection on the Poisson
sphere is determined by the condition

g /z+02<2h, A <z<A4,, (3.40)

where z denotes the expression AlRf + A2R§ + A3R§. The graph of the
function ¢(z) = g2/z + oz is shown in Figure 9(a) for ¢ = —1 and in
Figure 9(b) for 0 = 1. When ¢ = 1, the function ¢(z) has a minimum at
z = g. One of the possible versions of how g may be situated (on the z-
axis) relative to A4, , 4,, 4, is given in Figure 9(b). It is easy to investigate all
the possibilities and find out in every case what form the domain (3.40) has
on the Poisson sphere. After that the topological type of @, is determined
by the standard method. The manifold (S’ x S*)#(S' x S*)#(S' x §?) is
denoted by N * in Figure 8. Its projection on the Poisson sphere is the disk
with three holes.

§4. The Euler-Zhukovskii case

The Hamiltonian in the Euler case (2.2) is the special version of Zhukov-
skii’s Hamiltonian (2.6) when A, = 4, = A4, = 0. The additional integral in
both cases is K = S12+S§+S§ .

Bifurcation diagrams for the mapping

HxK:TS* - R, (4.1)

where TS* = {i=1,f,=8}C R6(S, R), are constructed in [6]. They
are of the form shown in Figure 10 when A, 4,, 4, differ from zero (in
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Figure 10(a) when g = 0, in Figure 10(b)-(e) when g # 0). Under the
change of g which determines the manifold TS* where the system is de-
fined, the bifurcation diagram transforms in the following way: the segment
of the line k = g2 moves to the right and gradually “strikes off” parts of
the bifurcation diagram on which cusps lie. Besides, these parts can be
“struck off” in different order (this depends on the Hamiltonian’s parame-
ters 4,, A,, A5, A, 4,, 43) . Therefore under the change of g one obtains
either the diagrams (a) — (b) — (c) — (e) or (a) — (b) — (d) — (¢) shown in
Figure 10. For the domains in the plane Rz(k, h) whose preimage is not
empty under the mapping (4.1), the number of Liouville tori in the preimage
of every point of the corresponding domain is indicated. The bifurcation
curve is tangent (when g = 0) to the line k = 0 at the point

Ao e, A
ho_-Z_AI+_2_1§+§Z; (4.2)

and (when g2 < Af+l§+l§) to the line 2 = 0 at the point k, = l§+l§+l§ .
Six branches of the curve have the asymptotes

k vk
ety iy

4

(4.3)

as they approach infinity.

If the point moving along the plane Rz(k , h) crosses the bifurcation dia-
gram, then the Liouville tori which lie in the preimage of this point bifurcate
in some way. The form of their bifurcation for Zhukovskii’s case is defined
in [6). They can be described as follows. Let us examine the line 4 = ¢,
where ¢ is sufficiently large. Then, because (4.3) is valid, this line crosses
branches of the curve in some definite order. Let us enumerate them in this
order: x,, X,, X3, X, , X5, X, (see Figure 11(a)) and consider the function
K= Kch ,where Q. ={f, =1, f, =g, H=c}. Suppose the critical values

of the function K are €;s...,Cs. The graph I" which demonstrates how
Liouville tori bifurcate along the line 4 = ¢ is shown in Figure 11(b). The
heavily drawn vertices denote minimax circles, vertices in which three edges
meet correspond to saddle circles (for a detailed definition, see [2, 4]). Thus
for all points of the curve, the bifurcations of the Liouville tori are described.
Only minimal circles lie in the preimage of points of the segment belonging
to the line k = g2 .

In order to describe all possible types of Fomenko invariants, one must
determine how the line 4 = ¢ crosses the bifurcation diagram for different
¢ . First of all let us examine the case g = 0. Suppose the cusp which divides
the branches x, and x; has coordinates (k,, #;) on the plane R’ (k,h)
and the cusp which lies between the branches x, and x; has coordinates
(k,, h,). It is easy to see that the Fomenko invariant has type 1 (see the
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Table) when 0 < ¢ < min(k,, h,). It has type 4 when ¢ > max(h,, &,). If
min(h, , h,) < ¢ <max(h,, h,), then the invariant is of type 2.

We see that the form of the invariant depends on which of the cusps is
“lower” on the bifurcation diagram. The case g # 0 may be examined in
a similar way. Here several variants also appear, depending on the position
of the points 4,, h,, and A, (4.2) on the h-axis. Finally, we see that two
horizontal segments ending in cusps must be added to the curves that sep-
arate domains with different topological type of Q, in Figure 5. Then the
topological type of Q, and the Fomenko invariant will coincide for all points
of one domain.

Let us draw curves separating domains with different topological type of
Q, by solid lines, and curves which divide domains with different Fomenko
invariants by dotted lines. Let us indicate in each domain the pair (the
topological type of Q,—Fomenko invariant of Q, ), where the invariant is
denoted by the corresponding number from the table.

ProrosITION 1. For the system with Hamiltonian (2.6), when we have
Ay s Ay, Ay # O (Zhukovskii’s case), the separating curves on the plane Rz(g ,h)
for different values of the Hamiltonian’s parameters are of the form shown in
Figure 12(a)-(f). For every domain in Figure 12 the topological type of Q,
and the Fomenko invariant are indicated. The complete list (for different pa-
rameters of the Hamiltonian) consists of 9 pairs:

S -1, §7-2, $°—4, §'xs5*-1, S'xs*-2,
S'xs*-4, RP’-1, RP’-2, RP’-4.

Invariants with numbers 2 and 2’ appear in Figure 12. These invariants
exchange places when the sign of the additional integral changes, i.e., the
words-molecules for invariants 2 and 2’ coincide but the graph I" for the
invariant 2’ is obtained from the graph I for the invariant 2 by symmetry
in some horizontal line. What invariant is realized for a given integral will
be indicated further in the figures, but they must be considered coinciding in
the list of invariants for integrable cases.

Let us note that in [6] the question: “Is the additional integral K = S12+
S22 +S32 Bott?” was not examined and the Liouville tori bifurcations were
obtained by another method. However, one can check that this integral is
Bott on almost all

Q,={/i=1,f,=¢,H=h}
and precisely this is stated in the theorem of §2. A more exact formulation of
the theorem for the Zhukovskii case is that the additional integral is Bott on
all nonsingular Q, except those corresponding to points on horizontal seg-
ments that separate domains with different values of the invariant in Figure
12. So, the additional integral is Bott on

Q,={/i=1,f,=8,H=h},
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if the point (g, £) does not lie on the separating curve.

Now let us examine the Hamiltonian (2.2) obtained from the Hamiltonian
(2.6) when A, = A, = A; = 0 (Euler’s case). The bifurcation diagram for
the mapping (4.1) is obtained from Zhukovskii’s case by passing to the limit.
Besides, the curve’s branches shown in Figure 10 are combined pairwise: x,
and x,, x; and x,, x; and x,. As a result, we obtain the bifurcation
diagram shown in Figure 13. It consists of the segment

k=g, g"/2max(4,, 4,, 4,) < h < g°/2min(4,, 4,, 4,)}

and three rays

{h=kJ24,, k> g%}
The number of Liouville tori is indicated by digits on the figure. Here the
invariant changes only at critical values of the function

H=H|_ ;g

and the separating curves are only those shown in Figure 1.

When branches of the bifurcation diagram for Zhukovskii’s case unite,
critical circles transform into one level and the invariant of type 5 which
does not exist for Zhukovskii’s case arises.

PROPOSITION 2. For the system with Hamiltonian (2.2) (Euler’s case) the
separating curves on the plane Rz(g, h) are shown in Figure 14. The list of
pairs in this case is: S3—1 , St x S§2—5 , RP*—5. The additional integral
K=5+S; +S§ is Bott on all nonsingular surfaces Q, .

§5. The Kovalevskaya, Goryachev-Chaplygin, and Sretenskii cases

The Hamiltonian in Kovalevskaya’s case (2.4) can be reduced to the form
(3.5) by a linear coordinate transformation which preserves the bracket (1.8).
Besides, the additional integral will be of the form

2
s §?
k= (71 - 72 - Rl) +(5)8; - Rz)z- (5.1)

Curves which separate domains with different topological type of Q, for the
Hamiltonian (3.5) are described in §3 (see Figure 3). In order to describe
all separating curves in Kovalevskaya’s case, one must add to the curves in
Figure 3 curves that separate domains with different Fomenko invariants.
Therefore, it is necessary to determine how the invariant of the isoenergy
surface

Qh={.f1=1:.f2=g:H=h}>
changes when % changes and g is fixed. This may be done easily by exam-
ining the bifurcation diagrams for the mapping

KxH:TS* >Rk, h), (5.2)
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where H is the Hamiltonian (3.5) and K is the integral (5.1), both defined
on
TS’ ={f, =1, f,= g} CR%S, R).

Bifurcation diagrams for the mapping (5.2) are constructed in [6]. Bi-
furcations of Liouville tori at critical values of the mapping (5.2) are also
described there. The form of the bifurcation diagrams for the mapping (5.2)
depends on the value g . Qualitatively different diagrams are obtained in the
following cases :

(a) 0<|gl<1;
(b) 1<|g|<(4/3)%;
© (4/3)%? < gl <V2;

(d) lgl> V2.
They are presented in Figure 15. The bifurcation diagrams consist of the ray
(k=0,h>g", (5.3)
part of the parabola
2,2 g2 2 1
=(h- S -1<h< — .
{k (h g),2 1<h g+2g2} (5.4)
and the curve given in parametric form by
£ g £t
h=5—7, k=1+tg+—, te€]-00,0[U[g,+oo[. (5.5)
The cusp of the curve (5.5), when |g| < (4/ 3)(3/ 4 | has coordinates
(4/3) (2/3)
1387 387 ) Rk, ), (5.6)
4 2
the point where the curve is tangent to parabola has coordinates
1 2 1 2
—, 8 +— | €R(k, h). 5.7
(4g4 g Zgz) (k. h) (5.7)

Bifurcations of Liouville tori at critical values of the mapping (5.2) are
also given in Figure 15. If the point which moves along the plane R? (k, h)
crosses the corresponding branch of the bifurcation diagram in the direction
marked by the arrow, then the bifurcation of Liouville tori in the preimage
of this point is described by the letter-atom written near the corresponding
arrow (for the description of letters-atoms, see [5]). The bifurcation dia-
grams (a), (b), (c), (d) in Figure 15 transform one into another when the
parameter g changes continuously. The parts of the bifurcation diagram
which transform one into another when g changes determine the same bi-
furcations of Liouville tori.

Knowing the bifurcations of the Liouville tori for all points of the bifur-
cation diagram, one can describe the Fomenko invariant of the surface Q,
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for all fixed g and /4. In order to do this, we must construct the line 4z = ¢
and examine how Liouville tori bifurcate at the preimage of the point which
moves along this line. Let us change the parameter ¢ that determines this
line. Then the Fomenko invariant which corresponds to the surface Q, will
change in some way. From the explicit form of the bifurcation diagram, one
can easily undestand for what values of ¢ the invariant will change. This
happens in the following cases:

(1) when c is a critical value of the function H = H |7s2 (in this case
the topological type of Q, also changes);

(2) when the line 4 = ¢ passes either through the cusp of the curve (5.5)
or through the point where the curve is tangent to the parabola or
through the origin of the ray (5.3).

The images of critical points of the function H are heavily drawn points
in Figure 15. The separating curves corresponding to them have been already
constructed (see Figure 3). Taking into account (5.3), (5.6), and (5.7), one
obtains equations of the remaining separating curves on the plane Rz(g , h):

h=g” (origin of the ray),

3¢/ 4\ G/ ,
h= > lg] < (3) (the cusp on the curve),

h=g"+ 2L (the point where the curve is tangent to the parabola).
g

2

(5.8)
Having combined the curves (5.8) with those shown in Figure 3, we obtain a
complete collection of separating curves for Kovalevskaya’s case.

PROPOSITION 3. For the system with Hamiltonian (2.4) (the Kovalevskaya
case) the separating curves on the plane Rz(g, h) are shown in Figure 16.
For all points (g, h) which do not lie on the separating curves, the additional
integral is Bott on the surface

Q,={f,=1,f,=¢g,H=h}.

For each domain in the plane ]Rz(g, h), the pair (topological type of Q,,
Fomenko invariant) is given. The list of invariants in this case consists of 10
pairs:
$°-1,8-2,8-4,8-6,8" x5 -2,8" x5 -6,
K*-6,RP’-6,RP’-7,RP’ 8.
Now let us pass to Sretenskii’s case. The Hamiltonian of Sretenskii’s case
(2.7) is taken to the form (3.7) by the linear coordinate transformation which
preserves the bracket (1.8) in ]RG(S , R) . Besides, the additional integral K

is of the form: ) ,
K =(S;+ 21)(‘_5'1 +8;) = S| R;. (5.9)
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The Goryachev-Chaplygin case is obtained from the Sretenskii case when
A=0.

Bifurcation diagrams of the mapping H x K : TS? - Rz(h , k) are con-
structed in [6]. Here H is the Hamiltonian (3.7) and K is the integral (5.9)
both defined on

TS*={f, =1, f,=0} cR%(S, R).

The bifurcation diagrams for different values of parameter A are shown in
Figure 17:

(@) A=0;
(b) -1/v/3<i<0;
() —1<i<—-1/V3;
(d A< -1.
When A is changed to —/, the bifurcation diagrams reflect in the line k = 0.
The bifurcation diagrams consist of the ray {k = 0, 2~ > —1} and of the
following curves in parametric form:
34 2 3 2
h=7+4,1t+2/1 +1, k=t +2t.

Bifurcations of Liouville tori are shown in Figure 17 in the same way as
in Kovalevskaya’s case. The notation (4", B) means that the two bifurca-
tions of Liouville tori corresponding to the letters-atoms 4* and B occur
simultaneously. The notation (4, 4') means that there are one minimal and
one maximal circles of the integral K in the preimage of these points of the
bifurcation diagram.

As in Kovalevskaya’s case, having found the projections of cusps and tan-
gency points of bifurcation curves on the 4 axis, one obtains equations for
the separating curves on the plane Rz(l, h) :

2

h=1- % (cusp),

h=2>%1 (points of tangency).

Combining them with the curves shown in Figure 6, we get the answer for
Sretenskii’s case.

PROPOSITION 4. For the system with Hamiltonian (2.7) (Sretenskii’s case)
the separating curves are shown in Figure 18. The additional integral is Bott
for all (A, h) not on the separating curves. The list of invariants for the given
case consists of 8 pairs:

S -1,8-3,8°-10,8" x5*-2,8" xs*-11,
RP’—9,RP’— 11, K> - 10.
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When A = 0 (Goryachev-Chaplygin case) the additional integral is Bott for
all nonsingular surfaces Q, . The list of invariants for this case consists of 2

pairs: s3 - 3, RP? -9,
Let us note that the Fomenko invariant for the point (-4, A) coincides

with that for the point (4, /), but the graph I" (see Supplement) “flips” in
this case as shown in Figure 18 (for example, observe 10 and 10').

§6. Lagrange case

The classical Lagrange case is a system with Hamiltonian (2.3). Under a
coordinate transformation in R%(S, R), this Hamiltonian may be reduced
to the form (3.4). Different generalizations of the Lagrange case are known.
For example, the Hamiltonian with quadratic potential may be examined

2, 2, 2
PRERL A TLN S (6.1)

or the gyrostatic momentum may be added

2, o2, o2
H= M22—+§3—/-’3 + 1S, + R, (6.2)
We shall examine the Hamiltonian
1

H=5(S+8;+55/B)+ V(Ry), (6.3)

where V' is a certain smooth function. For the Hamiltonian (6.3) the addi-
tional integral is K = S, as in the classical Lagrange case.

Let us consider the momentum mapping H x K : TS? - Rz(h , k), where
H is the Hamiltonian (6.3), K = S,, and describe critical points of this
mapping. Fixing the value S; = k, we look for critical points of the function
H = H|ps, where

PP={f=1, f,=g,K=k}. (6.4)

The surface P° is nonsingular when k # +g (for a while, we exclude the
case k = +£g from our examination). Critical points of the function H can
be found from the conditions
grad H = A, grad f| + 4, grad f, + A, grad X,
fi=1, H=¢g, K=k
Denoting R, by x, let us express all the unknowns of system (6.5). We
obtain:

R, = \/l—xzcos(t), R2=\/1—x2sin(t), R,=x,

g —kx &KX Gin), S, =k,

S, = 2—=cos(t), S,=-"—=
Ve BT

__(g-kx) . _g-kx . _k_x(g—kx)
7 2a0=-x3?" 2 1-x*" B 1-x?

(6.5)

(6.6)

>
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where ¢ is some parameter and x is determined from the condition:
- -k
V(x)+ & kx)(g2x2 )_0, i<l (6.7)
(1-x7)
The derivative of function ¥ at the point x is denoted by V’'(x). _
Conditions (6.6) determine just one critical circle of the function H =

H|,s for every fixed point x satisfying (6.7). The value of the function H
at points of this circle is

2 2
h_(g—kx) k

==————+ —+ V(x).
2(1-x% 2B )
Let us introduce the function
(g—kx)* K’
Wx)=——+75+V(x).
(x) 21— 2B (x)
Then h = W(x) and condition (6.7) can be rewritten in the form
W(x)=0, |x|<lL. (6.8)

Therefore, critical circles of the function H are parametrized by critical
points of the function W(x). The function W(x) is the analog of the
reduced potential, and the projections of Liouville tori on the Poisson sphere
are determined in this case by the condition W(R,) < h.

Now let us define the indices of critical circles (6.6) of the function H . In
order to do this, we follow the outline sketched in §3 (see the Lemma), write
out the matrix G, = G, —4,G, —4,G, — 4,G,, and then restrict the form de-
termined by this matrix to the space orthogonal to grad f|, grad f,, grad X .
The matrix G, is of the following form in this case:

1 0 0 -4 O 0
0o 1 0 0 -4 0
0 0 1/8 0 0 i,

—4, 0 0 -2, 0 0 ’ (6.9)
00 -4, 0 0 -2 0
0 0 -4, 0 0 V(x)-24

where X
_ _(g—kx)" q = 8kx
: 2(1 = x%)*’ 2 1—x?
and V"(x) is the second derivative of the function ¥ (x) at the point x.
The gradients of the functions f;, f,, K at the critical points (6.6) are equal
to

grad f; = (0, 0, 0, 2y cos(¢), 2ysin(z), 2x) ,
grad f, = (y cos(t), ysin(t), x, £—7k_x cos(t), g —ykx sin(?), k) ,
gradK =(0,0,1,0,0,0),




FOMENKO INVARIANTS FOR RIGID BODY MOTION 97
where y denotes the expression V1 — x?. The basis in the space orthogonal
to these gradients can be chosen, for example, in the form:

e, = (sin(¢), —cos(t), 0,0, 0, 0),
e,=(0,0,0,sin(t), —cos(t), 0) ,

e, = (li — g); cos(t), ]i:;i;c sin(¢), 0, x cos(t), x sin(t), —y) .

Calculating G, (e;, e;) , one obtains the following matrix:

kx—g

1 : 0
1—-x
G =| kx-g (kx-g)
A 2 25\2 0
l-x (1-x9
0 0 (1=xHW (x)

Its eigenvalues are:

kx — 2 "
u=0, m=1 +ﬁ, by = (1= X)W (x).

The zero eigenvalue corresponds to the fact that the Hessian of the function
H is degenerate along the direction tangent to the critical circle. The eigen-
value u, is always positive, and the sign of the eigenvalue u, coincides with
the sign of W”(x) (because |x| < 1). This means that critical circles of the
function H = H| p> may be either saddle or minimal. Since critical circles
are determined by condition (6.8), local maxima correspond to saddle circles,
and local minima of the function #(x) on the segment [—1, 1] correspond
to minimal circles. This gives us the opportunity to describe bifurcation dia-
grams for an arbitrary Hamiltonian of the form (6.3). Only the case when the
function V' (x) in the Hamiltonian (6.3) has nonnegative second derivative
on the segment [—1, 1] will be examined in this work.

It is easy to check that if ¥"(x) >0 forall x € [-1, 1], then W"(x) >0
on the segment [—1, 1] for any values of the constants g, k, . This im-
plies that the function W(x) has only one local minimum and has no lo-
cal maxima on the segment [—1, 1]. Thus for any value of the constant
k (other than possibly k = +g that we have not yet examined) the func-
ton H determined on the surface (6.4) has only one minimal critical circle.
Therefore, every line k = const intersects the bifurcation diagram of the
mapping H x K: T, 2 ]R2(h, k) at precisely one point. The prereim-
age of this line is the surface (6.4). An approximate picture of the bifurca-
tion diagram is presented in Figure 19. The images of two critical points
(0,0, +g,0,0, £1) € R*S, R) for the functions H|, and K| are
the heavily drawn points in Figure 19. They may not lie on the bifurcation
curve (see Figure 20). The preimage of every point (4, k) which lies to the
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right of the bifurcation curve is a two-dimensional torus T? , the preimage
of every point (k, k) which lies to the left of the bifurcation curve is &.
So in case when V”(x) > 0, Fomenko’s invariant is of a simple form.

PROPOSITION 5. For the system with Hamiltonian (6.3) in the case when
V"(R3) is nonnegative, Fomenko’s invariant for any connected component of
the surface

O={fi=1. /=8, H=h}
is of type 1. The additional integral K = S, is Bott on all nonsingular
surfaces Q,, .

COROLLARY. For the system with Hamiltonian
_(ST+85+S55/B)
- 2

in the case when V" (R,) > 0, the additional integral K = S, is Bott on all
nonsingular surfaces Q, , and the Fomenko invariant is of type 1.

H +8, + V(R,), (6.10)

The proof of the Corollary can be easily obtained if one takes into account
the fact that the Hamiltonian (6.10) is a linear combination of the Hamilto-
nian (6.3) and the integral K = S, . Thus the momentum mapping HxK for
the Hamiltonian (6.10) is the composition of the momentum mapping H x K
for the Hamiltonian (6.3) and the linear mapping of the plane Rz(h , k) into
itself with matrix L2

(0 1)

The Hamiltonian (3.4) for the ordinary Lagrange case is a special case of
the Hamiltonian (6.3) when V(R,) = R,. Besides, V"(R,) = 0, ie., the
assumption of Proposition 5 is valid. Therefore, in Figure 2 a complete col-
lection of separating curves for Lagrange’s case is given. Fomenko’s invariant
for all domains in Figure 2 is of type 1. In Figure 20 several possible (un-
der different values of g and B) bifurcation diagrams of the momentum
mapping H x K for Hamiltonian (3.4) are given.

§7. Clebsch’s case

Four parameters 4,, 4,, 4,, & appear in the Hamiltonian in Clebsch’s
case (2.8). Putting 4; = +/[e|4,, and dividing the Hamiltonian by +/[e[,
we obtain the Hamiltonian in Clebsch’s case with parameters A, 4;, 43,
and ¢ = 1. So one can examine only the Hamiltonians (3.8) and (3.9) for
which the curves on the plane Rz(g , h) separating domains with different
topological type of Q, have already been constructed in §3.

As has already been mentioned, if we know the bifurcation diagrams of
the momentum mapping H x K: TS? - R (h, k), we can easily obtain
the bifurcation diagram for the system with Hamiltonian H' = oH + K,
where a, f are constants. It is obtained from the original diagrams by a
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certain linear nondegenerate transformation of the plane ]Rz(h , k). We are
interested only in how the Liouville tori bifurcate when the point moves
along the line 4 = const. Thus, Fomenko’s invariant for the Hamiltonian
H' can be described by defining how the line ak+ Sk = const intersects the
bifurcation diagram of the mapping H x K .

All the Hamiltonians in Clebsch’s case may be obtained, for example, in
the form of a linear combination oH| + BK, of the following commuting
functions:

Hy = (S;+8;+82) + (¢, R} + ¢,R; + ¢;R3)
2 2 2 2,2 2.2 2.2
Ky = (¢, 8] +¢,8; +¢353) — (] R + 6, R, + 63 Rj) ,

where ¢, +c,+c; = 0. What Hamiltonians in Clebsch’s case are obtained for
different values of a, # is shown in Figure 21. If the line ah+ 8k = 0 liesin
the domain I, then aH+ BK, is the Hamiltonian of the form (3.8); if it lies
in the domain II, then aH;+ K|, is the Hamiltonian of the form (3.9). If
the line lies in the shaded domain, then there are noncompact surfaces among
the isoenergy surfaces Q, . These linear combinations are not examined.

Bifurcation diagrams for Clebsch’s case were constructed and studied in
[23-25]. They are shown in Figure 22 for the mapping

Hyx Ky: TS* - R(h, k).

(7.1)

Three qualitatively different cases are possible:

2 2 2
(a)g” >Dp,; (b)p; < & <D, (©)g" <py,

where p, and p, are certain constants depending on the parameters ¢, , ¢,,
anfl ¢ of the Hamiltonian H, - When f, = g and f, = —g the diagrams
coincide completely. The three lines

k=ch+cyy, k=ch+csc, k=ch+cc,

are asymptotes of the bifurcation curve. The three heavily drawn points in
Figure 22 are images of points at which grad H, and grad K, vanish on

TS . Their coordinates are
(8" +¢;c(g" —c) eRi(h, k) (i=1,2,3). (7.2)

The bifurcations of the Liouville tori are shown in Figure 22.

Examining different lines ah + fk = c, one can define the Fomenko
invariant for the Hamiltonians oH, + BK,, for different ¢. The invariant
may change either when ¢ is a critical value of the function aH; + BK,
or when the line ah + Bk = ¢ passes through a cusp of the curve. Having
constructed the separating curve corresponding to cusps of the bifurcation
diagram, one obtains a description of the Fomenko invariant for Clebsch’s
case (which of the two Hamiltonian (3.8) or (3.9) is obtained for different
a, B is indicated in Figure 21).
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PROPOSITION 6. The separating curves and the Fomenko invariants for the
Hamiltonians in Clebsch’s case (3.8) and (3.9) are indicated in Figure 23,(a),
(b). The additional integral is Bott on all surfaces

Qh={f1=1’fz=gaH=h}

if the point (g, h) does not belong to separating curves. The list of invariants
for Clebsch’s case consists of 10 pairs:

$°-1,8-2,8"x8*-1,8" x8*-2,8" x8*-5,
§'xs*-12,RP’ -5, RP’ - 12, N’ -5, N’ - 12.

REMARK. The dotted curve (which separates domains with different Fo-
menko invariants) may be of “lesser size” and hence intersect a lesser number
of curves separating domains with different topological type of Q, . In Figure
23, (a) and (b), the case when the dotted curve intersects the largest possible
number of curves separating domains with different topological type of Q,
is shown.

§8. Steklov’s case

There are four parameters 4, , 4,, 4,, ¢ in the Hamiltonian for Steklov’s

case (2.9). Let us examine the following functions:

H,=a,S +a,S; + a,S: + 2(a°S,R, + &3S, R, + d2S,R;)
+ a?RT + a;Ri + agRﬁ ,
K, =S’ +S82+83 - 2(a, SR, + a,S,R, + a,S,R;)
- 3(a12Rf + agRi + aiRi) ,
where a, +a, + a, = 0. As in Clebsch’s case, the arbitrary Hamiltonian H
in Steklov’s case can be represented in the form:

H=aH + BK,+ 7/ +01,, (8.2)

(8.1)

where

3a, = (24,4, — A, A, — A 4)), 3a,=eRA;A, — A, A, — A,4,),

1 1 1
3a; = e(24, 4, — 4,43 - 434)), B = 64 Tert

A, 764, " 64,
1 2 (24,4, + 4,4, + 4,4,)°
L N = —A
*= %4, 4,4, 8( 274,4,4, 14ds )
_ ¢ A4y A4, A4,
6_§(S(A1+A2+A3)—2<A1 + 4 + 4, .

In this section bifurcation diagrams of the mapping

K, x H : TS* > R*(k, h) (8.3)
0 0
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will be constructed; here H, and K|, are defined on

TS ={f,=1, f,= g} cR%S, R).
Knowing the bifurcation diagrams of the mapping (8.3), we can describe the
Fomenko invariant for the Hamiltonian (8.2), determining how the Liouville
tori bifurcate in the preimage of the point moving along the line ak + Bk =
const. Let us assume that the parameters a,, a,, a; contained in expression
(8.1) satisfy the condition:
a,<0<a,<a, (8.4)

The general case can be reduced to this one by a coordinate transformation.
Besides, a,+a,+a; = 0. Let us find critical points of the function K, on
TS?. Solving the system

grad K, = A, grad f, + 4, grad £, ,

RI+R+R: =1,
- SR, +S,R,+S;R; =g,
we see that for any g six critical points exist:

(+g,0,0,+1,0,0),(0,+g,0,0, 1, 0),

6 (8.5)
(0,0,+g,0,0,£1)e R (S, R).
Besides, for different values of g the following critical points exist:
6
(Oa (al _a3)u1 s (al _a2)v1 s 0: ul s v]) ER (S’ R)a
2 g+a,—a 2 g&+a;—a )
where u1=a2+a31, Ul=_a3——a2_l’ al—a3<g<a1—a2,

6
((ay — ay)v,, 0, (a, — a))u,, v,, 0, u,) ER(S, R),
2 gta;—a,

2 g+a, —a,

where u Vy,=——= a,—-a,<g<a,—a,;
. 2 — > U _ v T3S ESA 4y,

a;—a a, —a,

6
(a3 — ay)uy, (a3 —a,)vs, 0, uy, v5,0) €R(S, R), (8.6)
2 g+a,—a 2 g+a,—a

where z@:#, v3=#, a;—a, < g<a;—a.

L a4 4 a, —a

The number of critical points of the function K, on TS? for different values
of g is indicated in Figure 24.
Now let us find points (S, R) € TS*> c R®(S, R) at which

grad H, = ugrad K, + u, grad f; + u, grad £, , (8.7)
where u,, u,,and u are certain coefficients. Condition (8.7) can be rewrit-

ten in the form:
S
©u (R) =0

f](SaR)=1,
fz(S,R)=g,

(8.8)
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where Gﬂ is a 6 x 6 matrix. The matrix Gﬂ consists of two blocks,

G,=(4B), (8.9)
( a, —u 0 0 \
0 a,— p 0
0 0 a,—u
4= @’ + pa, — /2 0 0 ’
0 a; + pa, — piy/2 0
\ 0 0 & + ua, —uz/zJ
(af+ual—y2/2 0 0 W
0 @ + pa, — /2 0
B 0 0 a§+ua3—,u2/2
- a?+3uaf—,u1 0 0
0 a +3ua; — u, 0
\ 0 0 a;+3ua§—u1 J

The system (8.8) has nontrivial solutions only when det G, =0. This is
equivalent to one or more of the following three conditions:

2
(af + 3#“? —u)a —u) - (af + pa, — %) =0,
2
(@5 +3ua; — p)(ay — 1) — (af + pa, — %) =0, (8.10)
(@ + 3pa; — uy)(a; — ) - (a§ + pa; - %) =0

If only one of the conditions (8.10) is valid, then the solutions of system (8.8)
will be the points (8.5). If exactly two of the conditions (8.10) are valid, then
the points (8.6) are solutions of system (8.8). Thus only the case when all
three conditions (8.10) are fulfilled is left to examine.

It is easy to show that all three conditions (8.10) hold iff:

po=4u’,  p, =44t (8.11)
For the time being, assume that u # a,, a,, a;. Then, substituting the
expression (8.11) in the system (8.8), we obtain:

S, = —(a, +2u)R,,

S, = —(a, + 2u)R,,

Sy = —(a; + 2u)R;, (8.12)

RI+R4R; =1,

SR, +S,R, +S;R; = g.
Equations (8.12) determine a two-dimensional sphere S?cT18? , completely
filled with critical points of the mapping (8.3). This sphere is mapped into
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the curve on the plane Rz(k , h) defined in parametric form as follows:

k=-8ug—124°, h=-au’g-84°,
"(g+a3) <2u < ‘(g+a1)°
Now let us examine the case when u =a,, u = a,, oru = a, and (8.11) is

valid. Suppose, for example, that 4 = a,, u, = 4af ) Uy = 4af. Then the
system (8.8) is equivalent to the system

S, = (a3 —a))R,,

Sy = (a, — a,)R,,

RI+R3+R, =1,

S| R, +S,R, +S3R, = g.
Transforming this system, we obtain:

(8.13)

(S, =(a3-a))R,,
S;=(a,—a,)R,,
2
) R§= t1R1+(a3—a1)R1+a2—al—g’ (8.14)
a,—ay
R = LR, +(a, —al)Rf ta;—a,—-¢
(3 a;—a, ’

where ¢, denotes the expression (S, + 34,R,).
The system of equations (8.14) determines a certain two-dimensional sub-
set in TS> C RG(S, R) consisting of critical points of the mapping (8.3).

Calculating the values of the functions K|, and H, at these points, we get:
k= tf - 12af - 8ga,,
) 3 ) (8.15)
h=at] —8a; —4gaj.

Thus the momentum mapping H, x K, takes the set (8.14) to a subset of the
line & = a,k + 4a; + 4ga; . In order to understand what part of this line is
the image of the set (8.14), it is neccessary to determine the values of ¢, for
which system (8.14) has a solution. It is evident that (8.14) has a solution iff
LR, +(ay - az)Rf +a,—a,—§g

4 — a3

20,
) (8.16)
t,R +(a,—a;)Ri+a,—a, —g

a3 -4

The domains in the plane (R, ¢;) determined by condition (8.16) are
shown in Figure 27 (they are shaded in the figure). Different figures corre-
spond to different values of g. The range of g for each of the figures 27,
(a)-(f), is shown in Figure 25. The equations of the curves shown in Fig-
ure 27 are obtained by replacing the inequality in (8.16) by an equality sign.

= 0.
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They are hyperbolas with asymptotes ¢, = (a, —a,)R, and ¢, = (a, —a;)R,,
and common asymptote R, = 0. Intersection points of the hyperbolas have
the following coordinates

(1, £(g +3a,)) e R*(R,, 1,).

Let the image of the shaded domain under the orthogonal projection on
the axis R, = 0 be the set {¢, : |¢,| > T}, where T is nonnegative. Then
the image of the set (8.14) under the momentum mapping H, x K|, is the
ray

(h=ak+4a +4gal; k>T" —12d] —-8ga,} CR*(k, h).  (8.17)

Using Figure 27 it is easy to determine the form of the set of critical points
of the mapping (8.3) in the preimage of each point of the ray. Actually, the
shaded domain in Figure 27 is the image of the set (8.14) under the projection
7 on the plane ]RZ(R1 , t;) . From explicit formulas (8.14) for R§ and R§ ,
it is easy to understand that precisely four points belong to the preimage
of every interior point of the shaded domain under this projection. If the
point y moves in the shaded domain and reaches its boundary, then four
points in the preimage n—l(y) combine into two points (pairwise). Besides,
for different hyperbolas different pairs of points combine. Some examples of
how the set (8.14) maps into the shaded domain under the projection n for
different segments ¢, = const are shown in Figure 26.

Examining all the other cases in a similar way, one can understand how
the stratification of the set (8.14) on the circle ¢, = const is arranged. From
this it is easy to determine the form of function K, on the set of critical
points (8.14). This form may be conveniently described with the help of the
same graphs I" that code bifurcations of Liouville tori (see [2, 4]). But in this
case the graph I' codes bifurcations of circles instead of bifurcations of tori.
The corresponding graphs I" are shown in Figure 28. Since the set (8.14) is
noncompact and K, unboundedly increases on it, there are no heavily drawn
points (notation for the function’s maximum) among the end points of the
upward edges of the graph I'.

We have examined system (8.8) under the condition that (8.11) is valid
and u, = a,. The cases u =a, and u = a; are examined in the same way.
Two more rays on the plane ]Rz(k , h) are obtained as a result. In these cases
one can also determine how the circles bifurcate in the preimage of point
moving along these rays. The result for all three rays is given in the table
(Figure 29). The ranges of g are shown above the table.

Now bifurcation diagrams of the mapping (8.3) can be described. From
the above it follows that the bifurcation diagram for any g is the union of
the curve (8.13) and three rays belonging to the lines

h=aik+4a3+4gaf (i=1,2,3).
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The curve (8.13) is of the form given in Figure 30:

(a) &< —3a,;

(b) —3a,; < g<-3a,;

() —3a,<g<-3a;;

(d) g>-3a,.
The curve (8.13) is defined in parametric form with parameter u. For the
point of the curve marked by the digit i (i = 1, 2, 3) in Figure 30, the
value of the parameter u is equal to —(g + a;)/2. This is the intersection
point of the curve and the line 4 = a,k + 4a? + 4gaf . For the cusp of the
curve we have

u=-g/3 (when —3a, < g <-3q)).
Besides, at all points of the curve the relation
dh/du = pdk/du (8.18)

is valid, where A(u) and k(u) are functions from (8.13) (this is a special
case of relation (3.24)). Let us also note that the “angles” in Figure 26 (the
points R, = £1, ¢, = £(g+ 3a,)) correspond to the intesection of the curve
(8.13) with the ray (8.17). The situation is analogous for the other two rays.
Points of local extremum of the function #,(R,) (and the similar functions
t,(R,) and f,(R,)) correspond to the intersection of rays on the bifurcation
diagram. The ray is tangent to the curve when the graph I" corresponding
to this ray is either I'y, or I'y, or I'¢ (see Figure 28). The parameter u is
equal to a; at the point where the ray is tangent to the curve.

Summarizing all the above, we obtain the bifurcation diagrams shown in
Figure 31. Cases (a)-(j) in Figure 31 correspond to values of g indicated in
Figure 29 (below the table). In order to simplify the figures, the coordinate
axes (k, h) are not shown. Liouville tori bifurcations indicated in Figure 31
will be defined below. 5

Let us now calculate the indices of critical circles of the function H, =
H,| 0, where

Qk={f1=1’f2=g’Ko=k}'
Critical cicles which lie in the preimage of the curve (8.13) are determined

by the system of equations (8.12). In addition, k = —8ug — 12;42. Let us
examine the vectors

e, =(0, (@, —a3)R;, (ay—a))R,, 0, Ry, —R,),
e2 = ((a3 _az)Rg}’ 0, ((12 _al)Rl ’ _R3a 0’ R]),
e;=((a;—a,)R,, (a,—a,)R,,0,R,, -R,, 0)

in R6(S , R). It is easy to check that these vectors form a basis in the tangent
space to
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at all points determined by the system (8.12), except at critical points (8.5)
of the function K, on TS?.

Let us examine the matrix

3 2
G#=GH—,uGK—ulG1 — UGy =Gy — uGp —4u G, - 4u"G,,
where G, Gy, G,, G, are the Hessians of the functions H, K, f,, f,.
We must restrict the form with matrix Gﬂ to the tangent space to Q, . In
the basis (e, , e,, e;), the matrix of the restriction of this form is G 4 where
(f?ﬂ) = Gu(el. , € j) . The matrix G u always has a zero eigenvalue, because the
vector which is tangent to the critical circle belongs to its kernel. Calculating,
we see that the product of other two eigenvalues is equal to
A(p) = 16(g +3u)(u — a,)(u — ay)(u — a,)
2,2 2,2 2.2
x (- a,) 'R} + (1~ a)) 'Ry + (1 — a;)"R),
and their sum is equal to
~ 3 2
trG, =—48u" +3gu" +a,a,a; + (& +2p)(a,a, + a,a; + a3a,)).
Taking into account that u = —g/3 corresponds to the cusp of the curve,
and u = a; corresponds to the point where the curve is tangent to the line
3 2
h = ak + 4a; + 4ga;,

it is easy to determine signs of the eigenvalues of the matrix éﬂ (and thus
the indices of critical circles of the function H; ) at all points of the curve.
Now let us examine critical points of the function H, in the preimage of

the line 4 =ak + 4“13 + 4gaf . They are determined by the system

S, =t —3aR,,

S, = (a3 — a,)R,,

S, =(a, - al)R3?

RI+RI+R; =1,

SR, +S,R, +S8;R; = g.
The basis in the tangent space to the surface

Q.={f,=1,f,=g,K,=1 —12a; —8ga,}
may be chosen, for example, in the form:
e, =(0, (a, —a,)R,4, (a,—a,)R,,0,R;, -R)),
e, =((a;—a,)R,,0, (a,—a,)R, +t,,-R;,0,R)),
e;=((a;—a,)R,, (@, —a;)R, —¢t,,0,R,, —R,, 0).
Restricting the form with matrix

3 2
Gal(tl) =G, —a,Gy —4a,G, - 44]G,
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to the tangent space to Q, , we obtain the matrix Gal(tl). Calculating, we

obtain that the product of two nonzero eigenvalues of the matrix éal (¢,) is
equal to

2 2 2,2 2,2
At) = t(a; — a))(a, — a))(t] +4(a, — a,)" R, + 4(a; — a,)°R;),
and their sum is equal to
~ 2
trG, (1) = 4(a, — a,)(ay — a,)((a, — a,)R; + (a, — a,)R3) - 3ay1].

From the expressions for A(¢,) and tr (~;al (¢,) it follows that eigenvalues are
always positive in this case except when ¢, = 0 (in this case one special
eigenvalue is zero and the other is positive). Making analogous calculations
for the two other rays, we finally conclude that the index of the critical circle
of the function Ho which lies in the preimage of the line

h=ak+ 4a? + 4gaf

isequalto i — 1.

Thus, we have defined indices of all critical circles of the mapping H,x K.
Moreover, we have proved that all critical circles are nondegenerate, except
those which lie in the preimage of a cusp of the curve and points where the
curve is tangent to rays. Now it is not hard to determine the Liouville tori
bifurcations at the critical values of the mapping (8.3). It is evident that
the letter-atom which encodes the bifurcation corresponding to those parts
of the diagrams for which the index of the critical circle is equal to 0 or 2 is
A (see [5]). Knowing these bifurcations, it is easy to determine the number
of Liouville tori in the preimage of every point which does not lie on the
bifurcation diagram. It remains to determine the type of bifurcations arising
from saddle circles. :

Let us examine, say, Figure 31(g). This bifurcation diagram is shown
in more detail in Figure 32. The digits in Figure 32 indicate the number
of Liouville tori, the number of saddle circles (for example, 4s) and the
number of minimax circles (for example, 2m ). Bifurcations along the arrows
I and II are bifurcations of two Liouville tori into four tori on two saddle
circles. There exists only one bifurcation with these properties (see the list
in [5]). This bifurcation is coded by two letters-atoms B. The bifurcation
of tori along the arrow III has the same form as the bifurcation of critical
circles in the preimage of a point which moves along the arrow III' (see
A. V. Bolsinov’s paper in this volume). The graph I'; corresponds to the
ray along which the arrow III' is directed (see Figures 28 and 29). Thus the
bifurcation along arrow III is coded by two letters-atoms C, . When the value
of g changes, the bifurcation diagram is deformed; for sufficiently large g it
has the form shown in Figure 31, (j). Besides, the rays are transformed into
corresponding rays. Therefore, the bifurcation along the arrow IV has the
same type as the bifurcation which occurs at the intersection of the middle
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ray in Figure 31, (j). It has type C, and can be obtained in the same way
as the bifurcation along the arrow III. Examining all the other cases in the
same way, one can determine all bifurcations of Liouville tori. The answer
is shown in Figure 31.

PROPOSITION 7. Let the Hamiltonian (2.9) (Steklov’s case) be represented
in the form (8.2). Then the bifurcation diagrams of the momentum mapping
H x K: TS* —» R® are obtained from the bifurcation diagrams shown in
Figure 31 via a nondegenerate linear transformation of the plane Rz(k , h).
The additional integral is Bott on all nonsingular isoenergy surfaces

ch{.ﬂ:laf:‘;:g’H:C}a
with the exception of those for which the line
ach+pBk=c—-y-4g
on the plane R? (k, h) passes through the point where the ray is tangent to
the curve or through a cusp of the curve (for the diagram in Figure 31).
Bifurcations of Liouville tori at critical values of the momentum mapping H x
K are shown in Figure 31. The list of all possible Fomenko invariants for

Steklov’s case (for different o, B, g, h) consists of 6 words-molecules of type
1,2,5,12, 13, and 17 from the Table (see the Supplement).

§9. Four-dimensional rigid body

As we showed in §1, different generalizations of the classical problem of
rigid body motion (introducing the gyrostatic momentum, changing the po-
tential, and so on) are described by Euler’s equations (1.11) for the Lie alge-
bra e(3). Analogous equations may also be examined for other Lie algebras.
In this section Euler’s equations for the Lie algebra so(4) with quadratic
Hamiltonian will be examined.

Elements of the Lie algebra so(4) are represented as skew-symmetric ma-
trices X with the ordinary commutator

[X,Y]=XY-YX. (9.1)
Let the matrix X be of the form:
0 -M;, M, p
X = M, 0 -M p,
-M, M, 0 by
-p, -p, -p3 O
Then the Poisson bracket on so(4)" corresponding to the commutator (9.1)
is of the form:

{M;, M;} =¢,, M, {M;,p;} =¢; Dy, (b0} =¢; M. (92)
The Hamiltonian system for the Lie algebra so(4) is written in the form of
the Euler equations )

M, = {M,, H},

9.3
1.71-={P,',H}, ( )
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where the function H(M, p) is the Hamiltonian.
The bracket (9.2) in R6(M , ) is degenerate. Invariants of the Lie algebra
so(4)
2 2 2 2, .2, 2
f‘l = Ml +M2 +M3 +p1 +P2+p3 )
fo=M,p, + M,p, + Myp,
commute with all functions f(M, p). The common level surfaces of the
functions f; and f, are the orbits of the coadjoint representation:

(9.4)

0, , d,) ={f,=d,, f,=d,} cR(M, p). (9.5)

The restriction of the Poisson bracket (9.2) to these orbits is nondegenerate.
The orbits are nonsingular when d, > |2d,|. They are homeomorphic to
§* x S*. When d, = |2d,|, singular orbits homeomorphic to S* are ob-
tained. If d, < |2d,|, then O(d,, d,) = ©@. Therefore, the bracket (9.2)
determines a symplectic structure on the orbits S* x §*. The system (9.3)
determines a Hamiltonian system with two degrees of freedom on these or-
bits. Its complete integrability in the sense of Liouville is equivalent to the
existence of one additional integral K, which is functionally independent
with the Hamiltonian H on the orbits.
Let us examine the Hamiltonian of the form

H=a M} +a,M} + a,M, + ¢,p" + ¢, + ¢,3. (9.6)

In [26] it was shown that an additional quadratic integral for the Hamiltonian
(9.6) exists only in the case when the parameters of the Hamiltonian satisfy
the relation

a,c(a, + ¢, —as—¢3) +a,c,(a; +¢3—a; —¢)
+ascs(a, + ¢y —a, —¢,)=0. (9.7)

Let us note that the Hamiltonian (9.6) satisfying condition (9.7) is the Hamil-
tonian of the normal series for so(4) (see [1]). The equations (9.3) with
Hamiltonian (9.6), (9.7) are sometimes said to be the equations of 4-dimen-
sional rigid body motion (it is the analog of the ordinary Euler case). Some
problems of physics and mechanics are also described by these equations (see,
for example, [1, Supplement 2]).

Let us examine relation (9.7). It is easy to show that it is equivalent to
one of the following two conditions:

ate=a,+c,=a;+¢; (9.8)

or
a,c,=q+r(a +c)),
a,c,=q+r(a,+¢,), (9.9)
a,c; =q +r(a;+¢),
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where ¢ and r are certain constants. If the first condition (9.8) is valid,
then the Hamiltonian (9.6) is of the form

Hy= b M} + b,M} +b,M; — (b0’ +b,ps + bypl).  (9.10)
The second condition (9.9) may be rewritten as:
(r—a)(r—c)=r'+gq,
(r-a)(r-c,)=r+aq, (9.11)
(r—a;)(r—cy) = r*+q.

If ¥+ g = 0, then at least three of the coefficients 4;,¢; (i =1, 2, 3)

are equal to zero. Then a linear coordinate transformation in R6(M ,D),
preserving the bracket (9.2), reduces the Hamiltonian (9.6) to one of the
following: -

H, = b,M; +b,M, + b, M, (9.12)
H, = b,p} + b,p5 + b,p}. (9.13)

Let r* + q # 0. Then the Hamiltonian (9.6) may be written in the form
H=AH,+rf|, (9.14)

where

H, = b,M; + b,M; + b,M} + b,b,p} + b,b,p> + bb,ps,  (9.15)

po@e=n y _Gmne-n o @-nle-n)
r'+gq r’+gq r'+gq

(a,—r)(ay,—r)(a;—7r)

r +4q ’
The equation (9.14) easily follows from (9.11). Since the addition of the
invariant f; to the Hamiltonian does not change the system (9.3), we see
that the Hamiltonian (9.6) is transformed to Hamiltonian of the form (9.15)
if (9.11) is valid and r* +¢ #0.

Thus, we have proved that an arbitrary Hamiltonian of the form (9.6),
(9.7) is equivalent to one of the Hamiltonians H,, H,, H,, H;, each of
which depends only on three parameters b, , b,, by (in fact we can assume
that H,, H,, H, depend on two parameters only, because multiplication by
constant does not change their form).

Now let us examine the Hamiltonian H,. The function

b

A=

K, = (b, +b,)(b, + b)p; + (by +b3) (b, + b,)p2 + (by + b, ) (b + b,)p5 (9.16)

may be taken as an integral which is functionally independent of H, on
the orbits (9.5). It is easy to check that all the Hamiltonians (9.6), (9.7),
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except Hamiltonians of the form (9.12), can be represented as the linear
combination
H=oH,+ BK,+7f, , (9.17)
where a, B, and y are some coefficients. Further, one may assume that
0< b, < b, < b,

Therefore, the bifurcation diagrams for an arbitrary Hamiltonian (9.6), (9.7)
are obtained from bifurcation diagrams of the mapping

Hyx Ky: S* x §* = R:(hy, ky)

under a nondegenerate linear transformation of the plane IRZ(h0 , ko) (see
887 and 8).
The case H = H, differs from all other cases. The integral in this case is

K, = M+ M, +M;.
It is evident that the Hamiltonian system (9.3) with Hamiltonian (9.12) de-
termines exactly the same phase flow as in the ordinary Euler case (coordinate
transformation: S = M, R = p). The bifurcation diagram for the momen-
tum mapping
K, x H: S x §* - R'(k,, h))
is shown in Figure 33. It consists of five segments which lie on the lines

hy=bk (i=1,2,3), 2k =d +\/d?-4d?,

where d,, d, determine the orbit (9.5).
The bifurcation diagram of the mapping

fyx H: 8 - R d,, h),
where
S’ ={f,=d,} CR°(M, p),
is shown in Figure 34. It consists of three ellipses and two vertical segments
{2d, ==d,, bd <2h< by},

which are tangent to all three ellipses (we assume that 0 < b, < b, < b;).
This is the complete collection of separating curves for this case. The topo-
logical type and Fomenko invariant of Q, are indicated for each domain in
Figure 34.

Now let us examine the Hamiltonian H,. Bifurcation diagrams of the
mapping H; x K|, are presented in [27]. Let us describe their construction.
We assume that the coefficients of H; satisfy the condition

0< b, <b, < b, (9.18)
Cases when there are negative values among the b, are reduced to (9.18) by

a linear coordinate transformation in R6(M , p) which preserves the bracket
(9.2).
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The orbit (9.5) is determined by two parameters ¢, and d,. When [2d,| <
d, , the orbit is homeomorphic to S? x §%. Critical points of the function
Hy= Hy|, . are obtained from the condition

grad Hy = A, grad f| + 4, grad f,,
fH(M,p)=4d,, (9.19)
LH(M, p) =d,.
Twelve critical points are the solution of the system (9.19):
(£4,0,0, £B,0,0), (+B,0,0,+4,0,0),
(0,+4,0,0,+B,0), (0,+B,0,0,+4,0), (9.20)
(0,0,+4,0,0,+B), (0,0, +B,0,0, +4) e R’ (M, p),
where 24 = \/d, +2d,+\/d, - 2d,, 2B = \/d +2d, - \/d, - 2d,.
Let us now find the critical points of the function I?O = Ko| 0. where
Q ={h=d, f=d), H=c},

and c is a noncritical value of fIO . As in Steklov’s case (see §8) let us write
the condition

Is2

grad K, = u, grad f| + u, grad f, + pgrad H,

in the form M
o (4) -
b 9.21)
£(M,p)=d,, ©®.
fz(Ma p) =d2:

where G, =G K, uG H, ~ u,G, — u,G, is the matrix obtained as the linear
combination of the Hessians of the functions f, f,, H;, K,. From the
explicit form of G, it is easy to determine that the dimension of the kernel
of the matrix G# is equal to 1 or 3. In the case when the kernel of Gﬂ is
one-dimensional, only points (9.20) are solutions of the system (9.21). If the
kernel is three-dimensional, then the system (9.21) may be transformed to
the following form:

(=" — (b, + by +by),

1= du(u+by +b)(u+by+b)(u+by+b),

Hopy =20 + by + )M

UyDy = 2u(l+ by + b))M,, (9.22)
Uypy = zﬂ(lu + b] + bz)M3 >

MMM + P4l =,

M\p, + Myp, + Mypy = d,,

where d, # 0. The case when d, = 0 will be examined separately.
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While solving the system (9.22), three qualitatively different cases appear:
(a) ¢,<D<1;
(b) &, <D<egy;
(c) 0<D<eg,,
where [2d,|/d, is denoted by D, and ¢,, &, are some constants which de-
pend omnly on the parameters b, b,, b, of the Hamiltonian. The second
equation from system (9.22) determines the curve on the plane (4, 4,) which
is shown in Figure 35. The system (9.22) has solutions iff the point (u, u,)
lies on the heavily drawn segments of the curve in Figure 35. Cases (a), (b),
and (c) in Figure 35 correspond to different ranges of D indicated above.
If the point (u, u,) lies on the heavily drawn segments of the curve and
does not coincide with any of heavily drawn points denoted in Figure 35 by
numbers, then the solution of system (9.22) consists of only two circles in
RG(M , p) . Under the mapping H x K, both these circles transform into
the point

(ho() s ko)) € R (hy s Ky),

where
ho(u) =d,(2u+b, + b, + by) —d,du,/du,

ko) = dy i’ + dy(y — pdpy/dp).
Here u,(u) is the function which is determined by the second equation from
(9.22). So we obtain the mapping (9.23) of heavily drawn segments of the
curve into the plane ]RZ(h0 , ko) . The image of this mapping is the bifurcation
diagram of the mapping H; x K|, : St x 8% - ]R.Z(h0 s ko) -

Bifurcation diagrams given in Figure 36 (cases (a), (b), and (c¢) correspond
to cases (a), (b), and (c) in Figure 35). The fact that they are of the form
shown in Figure 36 can be proved in the following way. Points marked in
Figure 35 by numbers transform into points marked by the same numbers in
Figure 36 under the mapping (9.23). These points are the images of points
(9.20) under the mapping H xK, . Their coordinates on the plane R’ (hy» ko)

are
‘ d, 7 /d? - 4d?
(:I:b,. d} —4d;, (b;+b,)(b; + b,)— ‘ 2),

(9.23)

2 (9.24)

{i,j,k}={1,2, 3}
Thus, the bifurcation diagram is “glued” from segments of the curve shown
in Figure 35. The relation
dky/du = pdhy/du

is valid for functions A,(#) and k,(u) which define the mapping (9.23) (see
(3.24)). It is easy to deduce convexity of each segment of the bifurcation
diagram from this fact. It remains to determine when the bifurcation diagram



114 A. A. OSHEMKOV

has cusps. The existence of a cusp on the bifurcation curve for some u =¢
is equivalent to the condition

dh,
du
Using the explicit expression (9.23) for the function Ay (), one can show
that cusps appear only in case (c) and are situated as shown in Figure 36, (c).

As in Steklov’s case, one can determine the indices of critical circles and
the bifurcations of Liouville tori.

(€) = 0.

PrOPOSITION 8. For the Hamiltonian system (9.3) with Hamiltonian (9.6),
(9.7) the bifurcation diagram of the momentum mapping

HxK:S*x8* R

is obtained from diagrams shown in Figure 36 under the nondegenerate linear
transformation of the plane R? (hy, ky) . The additional integral is Bott on all
nonsingular

Qh={f1=d1’f2=d2’H=h},

with the exception of those for which the line ohy+ Bk, = h — yd, passes
through a cusp of the bifurcation curve (here a, 8,y are the coefficients from
(9.17)) . Bifurcations of Liouville tori at critical values of the mapping H x K
are shown in Figure 36.

While constructing bifurcation diagrams of the mapping H, x K, , we have
assumed that d, # 0. Now let us examine the case when d, = 0. For the
mapping Hy x K, :{f, =4d,, f, =0} — R’ (hy» k,) the bifurcation diagram
simplifies considerably. It consists of four segments and the part of parabola
which is tangent to all these segments (see Figure 37). The equations of lines
on which these segments lie are

ko= (b; + b].)(bkd1 -hy), {i,j, k}={1,2,3}. (9.25)
The equation of the parabola is
\ 4d,ky = (hy — d, (b, + b, + by))".

When d, — 0, the segment of the bifurcation curve between the cusps (see
Figure 36,(c)) “approaches” the segment of the curve with end-points 1, 6,
and when d, =0, it “combines” with it.

Let us transfer the lines which contain segments of bifurcation diagram
(for d, = 0) to the origin (see Figure 38). They divide the plane ]Rz(h0 , ko)
into domains. The type of the Hamiltonian (9.6), (9.7) represented in the
form (9.17) depends on the domain where the line ah, + Bk, = 0 appears
(here a and g are taken from (9.17)). Up to the sign, the following types
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of Hamiltonians correspond to the domains in Figure 38:

M} M} M

H, _A—1+ 4, +A—3+A1p1+A2p2+A3p3,
M M} M2 2 2 2

H, = A: +72‘+ A3 — A,py — A,p; — A4yp3, (9.26)
M: M} M. 2 2 2

H = N +A22 A—33+A1p1+A2p2—A3p3,

where 4,, 4,, 4, >0.
In fact, if the Hamiltonian H is represented in the form (9.17), then it
can be written in the following way:
2
a 2 2 2 2 2 2
H =50\ My +3,My +y, My + 29301 +Y39,0y +V17,03)+

+ (a(b, + b, +by) —* /B +1)f,, (9.27)

where y, =1-£(b,+b,), y,=1-L(b;+b,), y,=1-L(b, +b,), and
b, by, by are coefficients in H, and K. Therefore, if o and g differ
from zero, then the Hamiltonian H = aH, + BK, + 7 f, is equivalent to a
Hamiltonian of the form H, (see (9.15)). Suppose that y,, y,, y, are not
equal to zero. Let us put

(9.28)

Y)Vs3
I’

V3V, B40)

Yy V3
Substituting the expressions (9.28) into (9.27) and dividing by a constant, we
see that the Hamiltonian (9.27) is equivalent to

2 2 2

M
H=0— +o, A2 +o,—> 1, 34 aza3A1p1 + a3<71A2p2 + 0102A3p3 , (9.29)

=aq 1 A
where g, = sgn(y,) (i =1, 2, 3). The Hamiltonian (9.29) may be reduced
to the form (9.26) by a coordinate change of the form

M1/=M13 \M;:'pza Mgl):p:;, p;=p1’ p;=M23 p;=M3a
! !
(4, =1/4,, Ay =1/4,),

which preserves the bracket (9.2).

Comparing the expressions (9.27) for y,, y,, y; and the equations of
lines (9.25) (and also taking into account the fact that 0 < b, < b, < by)
one obtains domains corresponding to the Hamiltonians H,, H;, H; shown
in Figure 38. If # = 0 in formula (9.17), then the Hamiltonian H is
equivalent to the Hamiltonian H. In Figure 38, the vertical line 4, = 0
corresponds to this Hamiltonian. If either a = 0 or one of the y; is equal
to zero in the expression (9.27), then the Hamiltonian H is equivalent to
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the Hamiltonian H, (see (9.13)). The four lines which separate domains in
Figure 38 correspond to these Hamiltonians.

Now let us describe the curves on the plane Rz(dz, h) which separate
domains of different topological type, and the Fomenko invariant of

Q,={f=4d,, f,=d,, H=h},
where H is any Hamiltonian of the form H, H,, H,, H,, H;. The curves

which separate domains with different topological type of Q, are the images
of critical points of the mapping

f,x H: S > R*(dy, h), (9.30)
where 5 .
S ={f,=d;} CcR (M, p).
Calculating, one sees that for any of the examined Hamiltonians, the critical
points of the mapping (9.30) fill two 2-spheres:

(P +p +p2=d /2, M, = +p,, M, = £p,, M, = p,}
c S’ cRYM, p) (9.31)
and three circles
{My=M,=p,=p;=0, M +p; =d,},
{My=M,=p,=p, =0, M, +p,=d}, (9.32)
(M, =M,=p,=p,=0, M. +p2=d}c S’ cR(M, p).

Besides, for the Hamiltonians H, and H,, one obtains two more 2-dimen-
sional spheres:

2 2
{1+ 407 + (1 + A)p> + (1 + A)p2 =d,, M, = £4,p,,

M, =+A,p,, My = +0A4,p,} C S’ c R6(M, D),
where ¢ = 1 for the Hamiltonian H, and ¢ = —1 for the Hamiltonian H, .
The critical points (9.32) transform under the mapping (9.30) into three el-
lipses for which the line d, = 0 is an axis of symmetry and lines d, = +d, /2
are common tangents. The 2-dimensional spheres (9.31) (they are singu-
lar orbits of the coadjoint representation) are mapped into two segments
which lie on the lines d, = £d,/2. The spheres (9.33) are mapped into
two other segments which lie on the lines h = *2d,, which are also com-
mon tangents to ellipses. As a result one obtains separating curves shown in
Figure 39. Cases (a)-(f) in Figure 39 correspond to different Hamiltonians:
(a) Hy; (b) Hy; (c) Hy; (d) H,, where b, b,, by have the same sign; (e) H,,
where b,, b,, b; have different signs; (f) H,. The dotted line in Figures
39(a)-39(f) separates domains with different Fomenko invariants. As in
Clebsch’s case (see Figure 23), it may intersect a different number of do-
mains. This curve can be constructed if one determines coordinates of cusps
of the bifurcation diagram shown in Figure 36. The type of the Fomenko
invariant is given by numbers in brackets in Figures 39.

(9.33)
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PROPOSITION 9. Any Hamiltonian of the form (9.6), (9.7) (a 4-dimen-
sional rigid body) is equivalent to one of the Hamiltonians of type H,, H,,
H,, H,, Hy, H,. Separating curves and types of Fomenko invariants for
these Hamiltonians are given in Figures 39 and 34. The additional integral
in this case is Bott on Q, = {f, =4d,, f, =d,, H = h} if the point (d,, h)
does not lie on the separating curve. The complete list of Fomenko invariants
for all Hamiltonians of the form (9.6), (9.7) consists of 9 invariants of the
type 1,2,5,9,12,13, 14, 15, 16 (see the Supplement).

Let us note the connection between Clebsch’s case and the Hamiltonian
system on so(4)" just examined. Let us consider another bracket { , }’ in
R*(M, p):

M, Mj}l = &My {Mi’pj}l=8ijkpk’
2
{p,-, Pj}l = sijkMk/N .
The bracket (9.34) is obtained from the bracket (9.2) by multiplying every p,
by some constant N, and this is equivalent to changing the basis in so(4).
Taking this into account, one can see that the kernel of bracket (9.34) is
generated by the functions
M 2 +M. 2 +M. 2 )
M 2 3
= o TAhtR T (9.35)

(9.34)

Si(N)

fo=Mp, + Myp, + Myp,.

The condition of integrability for the Hamiltonian (9.6) with respect to the
bracket (9.34) is obtained from (9.7):

a,c(a, — a;) + a,c,(ay — a,) + ac5(a, — a,)

a,c (¢, = ¢;) + a,cy(c3 — ¢;) + as¢4(cy = ¢,)
N2

It is evident that as N — oo the bracket (9.34) becomes the bracket (1.8) on

e(3)", and functions (9.35) transform into invariants of the Lie algebra e(3)

(1.15). The relation (9.36) as N — oo transforms into Clebsch’s condition

of integrability for the Hamiltonian

+

=0. (9.36)

H= ale + a2S22 + a3S§ + clRf + czRi + c3R§ on e(3)".
This contraction of so(4) to e(3) is described in [12].

Let us note that the Hamiltonians H,, H,, H,, H, satisfy the relation
(9.36) for any N . Thus the bifurcation diagrams for any N are obtained
from the bifurcation diagrams shown in Figure 36 by a nondegenerate linear
transformation of the plane ]Rz(h0 , ko) . This linear transformation depends
on N. When N — oo, the following happens: the points denoted in Figure
36 by numbers 4, 5, 6 “go to infinity”, and in the limit one obtains the
bifurcation diagrams for Clebsch’s case (see Figure 22).
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A similar situation occurs for separating curves. For the bracket (9.34),
separating curves are also of the form shown in Figure 39, but the vertical
segments tangent to the ellipses lie on the lines d, = £d, N/2. As N — oo,
these segments also “go to infinity”, and in the limit the separating curves
for Clebsch’s case are obtained (see Figure 23). Cases (a) and (c) in Figure
23 correspond to cases (a) and (b) in Figure 39. For Figure 39(c) there is
no analog in Clebsch’s case, because some isoenergy surfaces O, become
noncompact under the contraction.

Supplement (List of Fomenko invariants)

The Fomenko invariants for the isoenergy surfaces Q, of integrable Hamil-
tonian systems investigated in this work are listed in the Table (after refer-
ences). For each invariant graph I', the word-molecule and the complexity
of the invariant (for the precise definition see [5]) are indicated.

For the letters-atoms B and C, the opposite segments-links which origi-
nate at these atoms correspond to Liouville tori which lie on the same level
surface of an additional integral. This allows us to distinguish different
Fomenko invariants which have “topologically equivalent” words-molecules
(for example, invariants 4 and 9).
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|
A—A*—B—B

-

TABLE
## Graph I’ Word-molecule Complexity
1 I A—A @1
2 A—B—A 4,3)
|
A
3 % A—A*—A 3,2)
4 A~1|3~A (6,5)
A—B—A
5 1"‘ (6,4)
A—fz—A
A
: 4
B— B — B
l I
A A
7 A—A*—Bl—A*—A (6,5)
A
8 fll (3, 6)
A—A* —Cy—A*—A
I
A
9 A—II‘Z—III—A (6, 5)
A A
10 - A (7,5)
/
A—A*—D —A
\
A R
T \?/ 7.6
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(Table continued)

121

#H# Graph T’ Word-molecule Complexity
12 ‘\f 4 4 A (10, 8)
B—C,—B
| | |
A A A
13 A (8, 8)
|
"
A— B B — A
L,
|
A
14 (8,6)
A—Cy—A A—C,—A
15 (12, 10)
A A
| |
A—Cy—A tf—c2_3
|
A A
16 A (12, 12)
|
A B A
| |
B—B B—B
| |
A L—B —J A
|
A
17 A (12, 10)
|
B
A—Cry—A A—Cy—A
B
|
A
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FIGURE 2
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FIGURE 7
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FIGURE 12
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