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We consider the dynamical system, which phase space containes a closed submanifold filled by periodic orbits.
The following problem is analysed. Let us consider a small perturbations of the system. What we can say abont
the number of periodic orbits, survived under perturbation, and about their location in the neighborhood of the
submanifold under consideration? We obtain the solution of this problem for the perturbations of general type
in terms of avereged perturbation. The main result of the paper is as follows. Theorem: Let us consider the
Hamiltonian system with Hamiltonian function H on a symplectic manifold {M> w?). Let A € H~1{#k) he the
closed nondegenerate submanifold filled by periodic orbits of this system. Then for the arbitrary perturbed function
H, which is C”—close to the initial function H, the system with the Hamiltonian H has at least two periodic orbits
on the isoenergy surface H ~'(h). Moreover, if either the fibration of A by closed orbits is trivial, or the base
B = A/S" of this fibration is locally flat, then the number of such orbits is not less than the minimal number of
critical points of smooth function on the quotient manifold B.

1. Introduction

This papers contains two main results. The first one can be considered as the new and more
simple proof of partial results of A. Weinsiein [16]. The second one is the generalization of the main
result of the paper [8] obtained by J. Moser, and it was obtained by Weinstein in the paper [9].

Our results also confirm the well-known V. 1. Arnold conjecture that the geometric H. Poincaré
theorem [1], [12], [27] can be generalized on the case of arbitrary symplectic manifolds and arbitrary
perturbations. Let us note that our result do not give yet the complete generalization of Poincaré
theorem for the arbitrary perturbations, because we have proved this general result only for small
perturbations. It is possible that this result can be extended with the help of technique of papers [8],
[16]-[26].

Besides, the first our result (theorems 1, 3) generalizes the result of [24] by P.L. Ginzburg. The
difference hetween our work (see also works [9], [10], [15], [16] by Weinstein} and the paper [24] is
as follows. Ginzburg in [24] had considered the periodic systems and obtained the estimation for the
number of periodic orbits for perturbed systems. It turns out (see [9]) that the same estimation take
place also in general case. Namely, when the system has submanifold filled by the periodic solutions
of the unperturbed system.
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The second our result (theorems 2, 4) is formulated as the averaging principle on a submanifold [9].
This result is the generalization of the averaging principle on a manifold, obtained by Moser in the
paper [8]. In this paper Moser had considered periodic systems.

Further, we formulate two statements {propositions 2, 3) generalizing theorem 1 in the following
cases. 1) When the submanifold, filled by periodic orbits, contains equilibrium points of the system.
2) When the symplectic structure is perturbed analogously to Hamiltonian. In the first of this
statements we consider the situation which partial cases had been studied by Weinstein [9], [10]
and Moser [13]. In these works the submanifold considered by us coincides with an equilibrium point,
and some spetial estimation is proved for the number of periodic orbits near an equilibrium. The
second our generalization is illustrated in separate chapter, when we discuss some author’s result
on celestial mechanics. In this situation the initial symplectic structure is degenerate, while the
generalised Poincaré theorem remains valid under admissible perturbations of the symplectic structure.

Then, we give the formulations of both our theorems 1 and 2 (i. e. generalized geometric Poincaré
theorem and the averaging principle on the submanifold) for dynamical systems of general type, i. e.
not necessarily Hamiltonian ones. The close resulis have been obtained also by F.B. Fuller [6] and
Moser [8].

Both results of the present paper are applied not only for the case of standard, regular fibrations,
but also for the fibrations with singular fibers {(i.e. singular fibrations}. Namely, for the multidimensional
Seifert fibrations. Such fibrations appear, for example, in the analysis of periodic solutions far from
the equilibrium points of the system (see works [9], [10], [L3] and [15]}. In our paper we introduce the
notion of the circular functions on Seifert fibration. We give an estimation for the numher of periodic
solutions of the perturbed system in terms of such functions.

Let us note that for arbitrary fibrations our estimation seems to be weaker than Weinstein’s
one [16], because circular functions not always can be projected onto the base of Seifert fibration.
In addition, in the paper [16] Weinstein had considered more wide class of perturbations. Namely,
he assumed that C'-norm of the perturbation is small. In addition to this assumption, we assume
that C?-norm of the perturbation is also small. But our proof is more simple and more geometrie.
Developing Poincaré’s ideas, we are based on the classical implicit function theorem. In particular, in
our present paper we <o not consider the infinite-dimensional space of loops, in contrast with the paper
[16]. Let us note, that, by our technique, for the wide class of fibrations we succeeded in proving the
Weinstein's estimation. Namely, this is the class of fibrations, which hases are locally flat, for example,
tori.

2. Generalized geometric Poincaré theorem

In this section we formulate the main result of the paper. In the following section we will formulate
the averaging principle and give proofs. Let us consider the Hamiltonian system with Hamiltonian
function H on symplectic manifold (M??,w?). Let A C H(h) be a closed submanifold filled by
periodic orbits of this system. We assume that the surface H~!(k) is regular, i.e. without singular
points. Let us consider the orientable smooth fibration

' ABB (1)

with fiber circle. All these fibers are assumed to be periodic orbits on A, and the hase B is the quotient
manifold with natural quotient topology. We'll assume that A is not an isolated periodic orbit, i. e.
its dimension is greater than 1.

Let us assume that there is the continnous (and consequently smooth} function on A, which is the
period function T : A — R for the periodic orbits on this submanifold. This means that on A there
is the smooth action of the circle. This action foliates A into the regular and singular fibers, which
are homeomorphic to the circle. The orbits if this action coincide with periodic orbits of the given
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system on A. The time of motion along these orbits is prorortional to the natural parameter on the
T

circle with the factor 2. In particular, this action is locally free (i. e. has no fixed points}, because
we have assumed the regularity of the isoenergy surface.

Such fibration of A by circles we call periodic fibration, or Seifert fibvation. The function T is not
necessarily minimal period for some orbits, which are called singular fibers. In this case the function
T has the form T = (minimal period) - %, where k% is some integer number depending on the fiber. In
the case of locally trivial fibration the function T is equal to the minimal period everywhere on A, and
the quotient manifold B = A/S! is smooth. Let the periodic fibration (1) has singular fibers. Then
the quotient B will no longer be smooth manifold, but it has the structure of so called generalised
manifold, or V-manifold [4], [5], [15]. Namely, the function f on B is called smooth if the inverse
image p*f : A — R of this function is smooth function on A. Thus, critical points of the tunction f
coincide with projections of critical orbits for the function p*f. We call critical point of function f
nondegenerate, or Morse point, if the corresponding critical orbit of function p* f is Bott critical circle.
Let us note that there is natural well-defined closed 2—form on the considered V-manifold. Namely,
it is the "projection” on B of the restriction of the symplectic structure to the submanifold A. This
2-form can also be a symplectic dtructure on B, see below.

Let us consider for arbitrary orbit 4+ C A the small transversal cross-section o C M called
Poincaré section. Then we consider the Poincaré mapping A : ¢ — o from this cross-section into
itself. This mapping is determined by the flow corresponding to the initial system. The time of the
motion along the orbit from the initial point on the cross-section to the image of this point under
Poincaré mapping is approximately equal to the period T|,. It is clear that the intersection point
m = No of initial orbit ¥ with the cross-section o is a fixed point of the Poincaré mapping A. Let
us consider the linearization dA(m) of this mapping in the fixed point m.

Definition 1. The submanifold A is called nondegenerate if the fibration (1) is periodic, and for any
orbit ¥ C A the kernel of the operator dA(m) — I coincides with the tangent space Tp,(A No) to the
submanifold A Ne:

ker(dA{m) — I) = T\, (AN o),

where I is the identity operator in the tangent space T,,o to the Poincaré section o.

Let us consider on (M?",w?) the perturbed system with the Hamiltonian H, which is close to H
with respect to the norm C2.

Definition 2. In the present paper, speaking about a closed orbif of the perturbed system, we
always assume that this closed orbit satisfies an additional condition of ¥almost T-periodicity”. This
means that this orbit is close to the submanifold A, and its period is close to the period T|, of some
unperturbed orbit ¥ C A, which is close to the orbit 4.

We call the manifold {or generalized manifold) locally flat, if this manifold has locally flat affine
connectedness. We consider at first the case of periodic fibrations of special type. Namely, the case of
trivial fibration and the case of fibration with locally flat hase.

Theorem 1. Let the submanifold A C M), be filled by the closed orbits of the unperturbed system.
Let this submanifold be closed (i. e. compact and without boundary), and is nondegen-rafe. Let
the fibration (1) of the submanifold A by periodic orbits be periodic and has special type, namely:
A) either this fibration is trivial, B) or the base B = A/S' of this fibration is locally flat (for example,
is diffeomorphic to the multidimensional torus).

Then the number of geometrically different closed orbits of perturbed system on the isoenergy
surface ﬁ‘l[h) is not less than the minimal number of critical points of the smooth function on the
guotient manifold B. Besides, the number of such orbits with their multiplicities is not less than the
manimal number of critical points of Morse functions on B.
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As the corollary, we obtain, that if the fibration p is of special type (either trivial fibration or the
fibration with locally flat base), then the number of geometrically different orbits of the perturbed
system is not less than the Lusternik-Schnirelman category cat B of the quotient manifold B. Becides,
if such fibration is locally trivial, then the number of such orbits is not less than the sum > 3;(B) of
Betti numbers of the manifold B.

REMARK 1. Locally flat manifolds, different from the tori, veally exist, and their number is sufficiently
large, see Wolf’s book [29]. Let us remark also that the periodic fibvation over locally flat manifold is
not necessarily trivial. The restrictions on the topology of the fibration (1) are indeed not so important,
i. e. the theorem 1 is valid also for arbitrary periodic fibrations, see [16].

Now we consider in more details the case when Seifert fibration p is not necessarily trivial. We
introduce the notion of circular functions on the manifold A. Let us denote by v the vertical vector
field on A, tangent to fibers of the fibration p, i. e. » is the restriction of the given unperturbed system
on the submanifold A. Let # be some vector field on A, which is close to the vertical field #. Speaking
about the nearness of vector fields, we always mean their nearness with respect to the C°-norm. The
definition of almost T-periodic orbits of the field ¢ is analogous to the definition 2. Let ¥ he a smooth
function on A, which is the first integral of the field o, i. e. the function ' is constant along each orbit
of this field.

Definition 3. Such function F on A is called circular function for the field @, if any orbit of this field,
which is critical for F, is closed orbit. In other words, this orbit is closed and almost T—periodic orbit
of the field v. We call such an orbit eritical eircle of the circular function F. If, in addition, all critical
circles of the function F are Bott critical submanifolds for this function, then we call the function F
Bott circular function.

Further, we will call a function ' on A circular, if there exists some vector field ¢, close to vertical
field v, and satisfying to all properties listed above. In other words: 1) the function F' is constant
along all orbits of the field @, and 2) the function F' if the circular function for this field.

Let us note some properties of circular functions on the space A of Seifert fibration. a) The class
of circular functions includes the class of all smooth functions on the quotient manifold B, because
any function on B is "the image” of some circular function on A for vertical field ». b} Critical
submanifolds of arbitrary circular function with finite number of critical circles, are smooth closed
curves (circles) which are close to the fibers of the fibration p. c¢) It is easy to see, that for any
nondegenerate singular fiber « of Seifert fibration there exists the close orbit 4 of the field . And such
a orbit is critical for circular function F. Here we call the fiber -y of Seifert fibration nondegenerate, if
the following conditions are valid. Let us consider the small cross-section in A for +, and consider the
Poincaré mapping of this cross-section onto itself, which is determined by the flow of field v on A. If
the spectrum of the differential of Poincaré mapping does not contain 1, then such an orbit is called
nondegenerate for the fibration (1). In analogous way, we can define the notion of nondegenerate
submanifold in A, filled by singular fibers.

Theorem 1*. Let A C My, be the submanifold, filled by closed orbits of the system with Hamiltonian H.
Let this submanifold be nondegenerate, closed (i. e. compact, without boundary) submanifold as in the
theorem 1. Buf, in contrast with the theorem 1, the periodic fibration (1) of this submanifold is not
necessarily trivial. Then: A} There are at least two closed orbits of the perturbed system on the surface
H-YR). B) Moreover, the number of such orbits is not less that the minimal number of the critical
civeles of the circular function on the manifold A. Also, the number of such orbits, counted with their
multiplicities, is not less than the minimal number of critical circles of Boit circular function on A.

As the corollary, we obfain the following rough estimation for the number of closed orbits of the
perturbed system on the surface H ‘j(h). Namely, the number of geometrically different closed orbits
of perturbed system on the surface H~!(h) is not less than %cat A. If the fibers of the fibration p can
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be contracted into the point, then the number of such orbits is not less than cat A. If the fibration
p is locally trivial, then the number of such orbits, counted with their multiplicities, is not less than
%E Bi{A). Let us note, that the estimation in terms of the base B, analogous to the estimation

obtained from the theorem 1, does not follows fromn this result, because the following inequalities are
cat A

valid: %Eﬁi(f\) < Y 5i(B), Y < cat B, where 51 is the fiber of the fibration (1). There are
fibrations, for which these inequaﬁties become strong.

Actually, as it was mentioned above, the estimation from the theorem 1 is valid for arbitrary
fibrations, because the estimation in terms of critical points of smooth functions on the hase B is valid
in general case. See [14]. Let us note that the item A} of the theorem 1 is the simple corollary of the
theorem 1%,

Let us underline that we do not restrict the structure of the quotient manifold B with natural
2—form on it, and do not restrict its dimension and its topology, except of the case B} of theorem 1. In
particular, our manifold B is not necessarily symplectic, not necessarily isotropic, and not necessarily
orientable. But in some special cases the theorem 1* gives us more convenient and more concrete
estimation. For example, Moser [13] and Weinstein [15] noted that cat B >  dim B+1 = $(dimA+1)
in case when either the quotient manifold B is symplectic, or (which is the same) the multiplicity of 1
in the spectrum of the operator dA(m) equals dim B. More surprising and interesting fact is that, the
previous estimation is valid also in the case when A is homotopically equivalent to the odd-dimensional
sphere. See the papers of Krasnosel’skii [3] and Weinstein [10]. The second of these papers proves the
corresponding estimation for the number of closed orbits of perturbed system, without the complicated
technique used in the paper [16]. Here we call the quotient manifold B symplectic with respect to the
natural 2-form on it, if the restriction of the initial symplectic structure w? to the intersection of the
cross-section o and A is nondegenerate 2—form.

REMARK 2. Let the fibration (1} be not locally trivial, i. e. it has singular fibers. It turns out that
many closed orbits of perturbed system has minimal period close to the number T/k, but not to T,
where k is an tnteger number gregter than 1. Indeed, let us consider all orbits on A, which periods
are factors of T/k. Let us assume that the periodic fibration is nondegenerate, 1. e. for any k each
connected component of union Ay of all such singular fibers is smooth submanifold in A. Besides,
let this union be nondegenerate in the fibration (1) with respect to natural sense. Then periods of
corresponding closed orbits of perturbed system be close to T/k. Indeed, we can apply theorem 1 to
each of this components with period function T/k on Ar. Thus, for nondegenerate periodic fibrations
minimal periods of many closed orbits of perturbed system will be close to T/k, but not to T, where
k > 1. In particular, each isolated nondegenerate fiber remains under perturbation. In other words,
this orbit generates the closed orbit of perturbed system with period closed to minimal period of the
unperfurbed orbit.

3. The averaging method on a submanifold. Proof of main results

Let us assume that, under the hypothesis of theorem 1%, the initial Hamiltonian system is included
into one-parameter family of perturbed Hamiltonian systems depending on small parameter € with
Hamiltonian

H=H+eH +ole), e — 0. (2)

It turns out [9], that in the case of general perturbation under small [¢| we can estimate the number
of closed orbits of perturbed system on the surface H~1(h) more exactly. Namely, we’ll "average”
the perturbation Hy over the periodic orbits on A and look for critical submanifolds of the obtained
function on A. These critical orbits generate closed orbits of perturbed system. This is essentially the
content of the averanging method on a submanifold which was given in this formulation by Weinstein
in [9]. In the present paper we give the proof different from Weinstein’s one. Our technique goes back
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to Poincaré [1]. Also it has been exploited by G.Reeb [2], Moser [8] and G. A. Krasinskii [11]. Let us
note that this method generalises the averaging method in Euclidean space [2], on a manifold [8] and
on Liouville tori [1], [11].

We pass now to more exact formulations. Let us consider the restriction H = Hi|p of the
perturbation to A. The following function:

_ “I{wn)
H{m) = / Hiv{m,t))dt, meA, (3)
0

we’'ll call averaged perturbafion on A. Here v(m, f) meens the periodic solution of unperturbed system
with initial value ¥(m,0) = m, and T : A — R is the continuous function of periods on A. It is clear
that the obtained function # on A is constant along each fiber of fibration (1). Consequently, there
is well-defined "projection” of this function onto the quotient B. The following theorem shows that
Bott critical orbits of function A give rise to closed orbits of perturbed system.

Theorem 2. Let A C My, be o submanifold, filled by closed orbits of the unperturbed system. Let
this submanifold be nondegenerate, but mot necessarily compact. Let the perturbed Homiltonian H
depends smoothly on o small parameter €, 1. e. it has the form (2). And let vy C A be Bott critical
orbit of the averaged perturbation H, see (8). Then there exists one-parameter family of closed orbits
e C H7L(R) of the perturbed system. This family depends smoothly on the parameter of perturbation
¢ under small €, and v, coincides with vy under ¢ = 0.

In cases when the function H is not constant and not necessarily Bott, one can apply the following
statements.

Statement 1-A. Let, under the hypothesis of theorem 2, v C A be some orbit of the unperturbed
system. Let this orbit be not critical for the averaged perturbation H, see (3). Then there exists such
a neighborhood U of this orbit in M>", that for sufficiently small € on the surface U N H™1(h) there
are no closed orbits of the perturbed system with Hamiltonian H.

In order to formulate the second the statement, we introduce the following notion.

Definition 4. Let m be an isolated critical point of the smooth function F : R¥ — R, F(m) = 0.
Let us consider the subcritical set M = {& € R¥|F(z) < 0} of this function. The following integer
numbers: G;(F,m) = rank H;(M, M\{m}), 0 <i{ < k, we call Betti numbers of the function ¥ in the
point m.

It can be shown that the index of gradient of this function in the point m equals the alternated
sum indy (7 F) = S{—1}5;(F,m)} of Betti numbers. Besides, if m is Morse critical point, then only
one of Betti numbers is nonzero. More exactly, in this case §;(F,m) = 1 if ¢ is equal to the index of
Hessian d?F{m), and 3;(F,m) = 0 for all other i.

Statement 1-B. Let, under the hypothesis of theorem 2, v C A be (not necessarily Bott) isolated
critical orbit for the function H on A. Let us consider the restriction F = H|z of this function
onto the cross-siction A to v in A. Let B;(F,m) be Betti numbers of the obtained function in the
intersection point m = YN A of y with this cross-section. Let us suppose, that at least one of this
numbers is nonzero, and consequently their sum 8 =5 B;{F,m) is positive. Then for any preassigned
neighborhood U of the orbit v in M2", for sufficiently small €, on the surfoce U N H™1(h) there is at
least one closed orbit of system with Hamiltonian H of the form (2). In addition, the number of such
orbits in U N I?_l(h.); counted with their multiplicities, is of least 3.

Proof of theorems 1-A, 1%, 2 and statements 1-A, 1-B.

Now we’ll formulate the last statement, which implies all statements listed here. Let us assume,
that Hamiltonian H of the pertuthed system is close to H with respect to C"—norm, where r > 2. Let
is denote € = ||H — H||c-.
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Statement 1-C. Let A C M}, be nondegenerate submanifold, filled by closed orbits of the unpertur-
bed system. Then theve exists such a neighborhood U of this orbit in M2, depending only on the
unperturbed system, that for ony sufficiently small € > 0 there exists an embeddmg itA—=Uanda
civeular function S on the submanifold A, which have the following properties:

1) The image A = i(A) of the submanifold A under the embedding i lies on the surface H-1{h).
2) Images under the embedding i of all critical circles of function S coincide with closed orbits of
the perturbed system on U N H=Y(K). In particular, the submanifold A containes all closed orbits of
perturbed system on UNH™(h). 8) The embedding i is close to identity mapping, and the function —5
is close to function H, obtained by averaging (3) of the perturbation Hy = (H — H)/e over the closed
orbits of the unperturbed system on A. 1) If the perturbed Hamiltonian H smoothly depends on the
small parameter, then both embedding 1 : A — M end function S on A together with the corresponding
to it vector field 0, close to the vertical, depend smoothly on this parameter.

Here we call two mappings or functions close to each other if they are e—close with respect to
C"1-metrics, and the nearness of two vector fields we consider with respect to C*~?-norm.

Proof.

We split the proof of statement 3 into several steps. Step 1. Let us fix some affine connectedness
on the isoenergy surface H~1(h). Let o, C H~(h) be a small cross-section in the isoenergy surface
to the orbit passing through the point € A. Let us consider (depending on m} Poincaré mapping A
of the cross-section oy, into itself. Further, let us construct the co-kernel of the operator dA{m) — I.
More exactly, let us denote by D,,, = Im{dA(m) — I) the image of this operator. Let surface 8,, C o,
be transversal to this the image D, in ¢y, and has the same dimention as A Ny, - We'll assume that
both constructed surfaces ¢, and 6, C o, are composed hy geodesics passing through the point m
and depend smoothly on the point m € A.

Now let us fix a small neighorhood U of the submanifold A in M and denote by U, the intersection
of this neighborhood with the isoenergy surface H=1{h}. We’'ll assume that hoth of these surfaces o,
and &y, C oy, are determined for all points m € U, composed by geodesics and smoothly depend on
the point. Let us transfer the affine connectedness and both constructed fields of surfaces onto the
»perturbed” isoenergy surface H—1(h), using some diffeomorphism H~1(h) — H1(k) close to the
identity mapping. Let us denote Uy = U N H~L(k).

Step 2. Let us consider in the neigborhood U the restriction of the perturbed system onto the
isoenergy surface I;I‘l(h) From each point m € Uy = UNH- 1(h) of this surface we’ll move along the
integral curve ¥, 3 m of the perturbed system during the time, close to the period T|, of the orbit
¥ C A close t0 . Let us denote by A(m] the intersection point of this orbit with the cross-section ,y,.
The obtained mapping A : U — Uy we call the perturbed Poincaré mapping. It is clear, that for the
unperturbed system this mapping coincides with unperturbed Poincaré mapping A : Uy — Uy, Let
us note several properties of Poincaré mapping: A) Fixed points of Poincaré mapping A coincide with
points in Uh} lying on the closed orbits of the perturbed system. B) Poincaré mapping is symplectlc
e A preserves the restriction of the Symplectlr structure onto the isoenergy surface H- (h) C)
Poincaré mapping ' preserves the center of mass”. More exactly, for any closed curve 4 C Uy, the
integral of 2-form w = w? over a chain T, 8T = v — A(v), "relating” this curve and its image A(y)

under Poincaré mapping, vanishes:
/ / w =10
r

Here 2—chain I' is homologous to the "cylinder”, which is composed by the geodesic segments relating
each point m € « with its image A(m) in H~1(k).

To prove the last property of Poincaré mapping (i. e. preserving of the center of mass), let us
consider the differential 2—form € = w — dH A df in the extended phase space M2 x R,. As far as the
whole 2—chain T' C M2 x R; lies intirely in the isoenergy surface I;I‘l(h,) in the extended phase space,
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the results of integration over this chain of forms £ and w will be equal to each other. Let us close
the chain I by the tube composed by orhits passing through the initial curve 4. The obtained 2—cycle
we denote by [[]. By virtue of Hamilton’s principle of the least action, the restriction of 2-form Q
on the added tube is zero. Therefore, we actually must prove that the integral of this 2—form over
the obtained 2—cycle [I'] vanishes. For proving this fact let us notice, that 2-form €} is co-homologous
to unperturbed 2-form & of the same type, and that homologous curves v give rise to homologous
2-cycles [['] in M?" x R;. From these facts we conclude that it is enough to verify the ”preservation
of the center of mass” only for the unperturbed system. And moreover, we may restrict ourself only
to curves ~ lying in A, because the value of the integral under consideration depends only on the
homology class of the curve v C M?". Tt remains to notice that for any such curve v C A the chain T
is "degenerate”, since it turnes into the curve . Thus, the integral of the symplectic structure over
such a chain vanishes.

Step 3. Let us determine the perturbed submanifold A as the set of all points m & I}h} such
that A(m) € 6,,. It is easily to see that for the unperturbed system this set coincides with A. By
the implicit function theorem, for sufficiently small ¢, this set has the form A = i(A), where ¢ is an
embedding close to the identity mapping. Indeed, the implicit function theorem is applicable, because,
in according to the construction of the surfaces @,,, m € A, their tangent spaces T,,8,, are tranversal
in T,00, to images of operators dA(m) — I, where A is the unperturbed Poincaré mapping, [ is the
identity operator in Tjo,.

Let us note that, by definion of the set A C Uy, the embedding ¢ satisfies the property 1) from
statement 1-C, and all closed orbits of the perturbed system in Uy, are automatically contained in the
constructed submanifold A = i(A).

Step 4. The following our constructions are completely analogous to Ginzburg’s ones, see [16],
where only periodic systems were studied. Let us construct in I, the smooth function ¥ by the
following way. This function is determined up to an additive constant. The difference of its values in
any two points mg,mi € [}h, is equal to the integral of 2—form w over the chain I'(rrg, my), composed
by geodesic segments relating each point m,; with its image fl(mt) under Poincaré mapping, where
mye, 0 < 1 < 1, means any path in Up, relating points ymy and my:

U(mg) — ¥(m) = f/;{fno,m”w

The last property C) of Poincaré mapping (preservation of the center of mass) implies that the smooth
function ¥ is global single-valued function in iy although it is determined up to an additive constant.
For definiteness, let us assume, that this function vanishes in the point #{rmng), where g is some
fixed point in A. Tt is clear that the determined in such a way unperturbed function ¥ identically
vanishes on A. Let us denote hy ¢S the function ¥ o4 on the submanifold A, where i is the embedding
constructed on the previous step.

Step 5. On this step we give an explicit representation for differential of the function S, and
show that this function is circular. Let us denote by g(m,t),0 < ¢ < 1, the geodesic segment relating
the point m = g(m,0) € Uy with its image A(m) = g(m,1). For any curve g(f), 0 < ¢ < 1, in Ux
we denote by & € {t)Uh_, 0 <t < 1, the parallel carry of the tangent vector & € TyyUp along
this curve. Tt follows from the definition that the differential of the function ¥ in an arbitrary point
m € [}h, is equal to

b dg(m,t) dglm,t) -
dlII(m)n—/O w( T n)dt, 7 € Ty,

We conclude that this differential has the form d\¥(m)n = Q{Qﬂg%’tlh:g, 7), where @ is the following
bilinear form on Uy:

Qéo,m) = / w(ép, ——— (m g(m, 1) n)dt.
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We see, that in any fixed point 1 of the mapping A we have Q{&g, 1) = 2w(éo, dA(m)n+n), d¥{m) =0,
U (m)n = Q(dA(m)n —n,n) = w(dA(m)n,n). In partlcular, for unperturbed system, for every point
m € A and tangent vector 5 € T, A, we have Q(x,7) = w(*,7n).

From the last equality we make the following important conclusion, which we prove below.
Namely, we conclude that the "orthogonality” of a vector & € Tmt?m to all tangent vectors n € TmA
(with respect to the bilinear form Q] implies £y = 0. Using the dimentional reason, we obtain that the
bilinear form Q gives rise to some non-degenerate coupling hbetween tangent spaces of the surface Bm
and the surface A N &y, for any point m € A. Thus, on A there exists single-valued field of directions
7€ Tm}}} m € A, close to vertical field, and orthogonal (with respest to the form Q] to all vectors
S0 € Tbm: Q&,7) =0.

We see that the function § = W[ is indeed circular for the unit vector field &, tangent to the
field 7 of directions. It remaines to prove the conclusion from the formula Q(*,n} = w(*, %), n € TR A,
mentioned above. It is enough to give the proof only for the unperturbed system. Let us notice
that the image of the operator dA(m) — I is skew-orthogonal to its kernel (by virtue of symplecticity
of mapping A}. Consequently, by the nondegeneracy condition on A, this image coincides with the
skew-orthogonal complement to T, (A Nopy) in oy, From this fact and by construction of the surface
B, m € A, we see that any tangent vector to this surface, which is skew-orthogonal to the subspace
Ton(A Nayy,), is equal to zero.

From the implicit function theorem we obtain the property 4) from statement 1-C about the
smooth dependence on the small parameter of the embedding 7, the vector field ¢ and the function
€5, This implies the smooth dependence on parameter of the function 5.

Step 6. Now let m € A be any critical point of the function ¥|;. We'll show that this point is
dg{m, t)

ot .
this vector is tangent to the surface 6, in according to the construction of the submanifold A. From
the other hand, we have really assumed that vector £, is orthogonal to all tangent vectors to A (with
respect to the firm @) Hence, in agreement to the conclusion on the previous step, £, = 0. We have
proved the property 2) from statement 1-C and, consequently, theorem 1-A.

Step 7. Let us prove the rest property 3) of statement 1-C, which implies the averaging method
on the submanifold. Let us consider the direct product of the extended phase space M?* x R; on
the real axis R with the coordinate ¢. On the isoenergy surface of each system with Hamiltonian
Hos = H+Hy, 0 <€ < ¢ let us consider the smooth function ¥, constructed above. By analogy
with the second step, we'll "close” 2—chain (g, m1) by the chain, composed by orbits of perturbed
system on the isoenergy surface, and integrate 2—form € on the obtained chain. Let us subtract from
the function S, determined by this way, the unperturbed {identical zero) function, and let ¢ — 0. To
show that the limit equals — H, we’ll apply Stokes’ theorem to the integral of the form Q. = w—dHAdt
over the boundary of the infinitesimal 3-chain, composed by infinitesimal 2—chains corresponding to
systems with Hamiltonians Hs = H + ¢/H,, 0 < ¢ < e. According to Hamilton’s principle of the
least action, the part of this integral corresponding to the hoth infinitesimal "sides” of such 3—chain
vanishes. Consequently, the required limit of the function S is equal to the limit of the integral of the
differential —de’ A dHy A dt of the form §2 over the 3—chain under consideration, devided by e. But
the last limit coincides with the function —H. This implies property 3) from statement 1-C.

Statement 1-C is completely proved. From this statement one can obtain by standard technigue
the averaging principle {theorem 2) and statements 1-A, B.

Theorems 1-A, 1% 2 and statements are proved. Tt remaines to give a proof of theorem 1-B. B

fixed under Pioncare mapping fi, i. e. the vector of "translation™ & = lt=0 vanishes. Indeed,

Proof of theorem 1-B.

Let us assume, that the quotient manifold B = A/S? is locally flat. We claim that in this case
the embedding 7 and the function S (see statement 1-C) can be constructed in such a way that the
function S is constant along every orbit of the unperturbed system on A. The proof will be analogous
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to one given above.

Step 1. Let o, C H1(h), by analogy with the previous proof, be a small cross-section in the
isoenergy surface to the orbit passing through the point m € A. Let us consider (depending on m)
Poincaré mapping A of the cross-section oy, into itself. Further, let us construct the co-kernel of the
operator dA(m) — I. More exactly, let us denote by D, = I'm(dA{mn} — I') the image of this operator.
In contrast to the previous proof, let us denote by 8., C T,0, a subspace (but not a surface), having
the same dimention as A N @y, and transversal to the subspace Dy, in Th,0,,;. We'll assume that both
conctructed transversals: the surface o, and the subspace 8, C T},0,, depend smoothly on the point
m € A.

Let us consider the obtained fibration over A with fibers #,,, m € A. Let us notice, that the
subspace 8y, is naturaly isomorphic to the co-kernel of the operator dA(m) — I, i. e. to the quotient
space Ep, = (Timom)/Dm, m € A. Let us note some properties of this quotient fibration E — A with
fiber By, m € A,

A) The rank of the fibration E — A is equal to the dimention dim B = dim A — 1 of the quotient-
manifold B.

B) The natural action of the circle on A can be extended to the whole fibration E, with use of
the tangent flow of the given system. In other words, the field of subspaces D,,,m € A, is invariant
under the tangent flow, so that the action of the flow on the fibration £ is well-defined. Besides, the
mapping "over the period” is the identity operator on the fibration E.

() There exists natural isomorphism (related with coupling mentioned above) between the fibration
E and the subfibration of the cotangence fibration T*A, consisting of all covectors vanishing on the
tangent vector to the fiber on A. Namelly, under this isomorphism any vector £ € F,, is mapped to
the covector, which value on the arbitrary vector 5 € Ty, A equals w?(€,7). Tt is clear that such an
isomorphism of fibrations is well-defined and commutes with natural action of a circle §! on these
fibrations.

These properties permit us to realise the following construction. Let us consider some locally flat
(affine) connectedness on the quotient manifold B. Let us consider the corresponding connectedness
on the cotangent fibration T B on B, and "lift” the last connectedness on A. As a result we obtain
the locally flat connectedness on the subfibration of the cotangent fibration T*A described in property
C). Finally, using the isomorphism between this subfibration and the fibration E, see C}, and the
natural isomorphism between the fibration E and the field of subspaces 8,,, m € A, we obtain the
corresponding connectedness on the last field of subspaces 8,,, m € A.

By construction, we have that this connectedness is flat, and that the action of the circle, see B),
on the fibration is the parallel carry with respect to this connectedness. It implies, that for any closed
curve in A, homotopic to the fiber S, the holonomy operator is identical.

Now, by analogy with the previous proof, let us prolonge the described construction on the whole
neighborhood of A in M. Namelly, let us fix a small tubular neigborhood U of the submanifold A in
M and denote by U the intersection of this neighborhood with the isoenergy surface H~1(h}. We'll
assume that both transversals: the surface o, and the subspace 8, C T,,04 are determined for all
points m € U, and smoothly dependent on the point. Let us denote by © the fibration over the
neighhorhood U, with fibers 8,,,,m € Up. Let us consider some retraction U, — A of the tubular
neighborhood onto A. Using this retraction, one can easely construct some locally flat connectedness
on the fibration © over Uy, such that its restriction on A coincides with the connectedness constructed
above.

Let us underline ones more the following special property of the constructed connectedness on
the fibration @: the parallel carry along any closed curve in I/j,, homotopic to the fibers on A, is the
identity operator.

Finally, similarly to the previous proof, let us transfer both constructed fields of transversals (o,
and 8y, C T,,0.,) and the connectedness (on the fibration ©) onto the "perturbed” isoenergy surface
Up = UNH1(h), with use of some diffeomorphism H~!(h) — H~1(h) close to the identity mapping.
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Step 2. For the both systems {i. e. unperturbed and perturbed ones) we here construct in the
space © D Uy, some "extended” dynamical system and "extended” Poincaré mapping A : © — ©. For
convenience of notations we’ll describe the construction only for the unperturbed system.

Let V' be the vector field in Uy, corresponding to the initial dynamical system. We'll define the
dynamical system on the "extended” space © by presenting the integral orbits of this system. Namelly,
a smooth curve m(t) € U, &(t) € 6, in the space of the fibration © we call integral orbit, if:

1) The "projection” m(#) of this curve in Uy has the velocity dm(t}/dt = Vi + £(%).

2) The field £(t) is parallel along this curve m(¢).

One can show that these conditions give us the well-defined dynamical system on the space of the
fibration ©. Tt is clear that the zero section of © is invariant under this system, and the restriction of
this dynamical system to the zero section ceincides with the initial system V on U,

Now we can define the extended Poincaré mapping. From each "point” m € Uy, & € 8, of the
space & we’ll move along the integral curve m(t), £(f) of the described system (1:(0) = m, £(0) = &)
during a time 7{m, £}, close to the period T'|., of the orbit v C A close to m{¢). Let the curve it}
intersects the cross-section oy, over the time 7(m,&). Then we denote by A the mapping from the
space © into itself, which moves the "point™ (m, &) to the value of the orbit {(;(2}, £(f)) in the moment
t = 7(m,£). The obtained mapping A : ©® — O we call the extended Poincaré mapping. It is clear,
that the restriction of this mapping to the zero section of the fibration O coincides with the usual
Poincaré mapping A : Uy — Up. )

In analogous way, one defines the extended Poincaré mapping A for the perturbed system.

Let us add to the properties A)-C} of Poincaré mapping {see step 2 of the previous proof) some
property of the extended Poincaré mapping A:

D) Let us consider the linearization 6 A of the extended Pioncare mapping A in any fixed "point”
(m,€), m € A, £ = 0. Let us introduce on O local "coordinates™ (m, &) and consider the representation
of the operator dA in terms of "variations” {dm, 3¢) of these coordinates in the point (,0)}. Then,
under this operator, any vector {m, 6¢) is moved to some vector having the form (5m + T8¢ +d, 6¢).
Here T = T(m) > 0 denotes the value of period function T in the point m € A, d € D,,.

Let us consider the image of the submanifold A in © under the natural embedding as the zero
section. We'll denote this image also by A. It is clear, that the submanifold A C O is filled by closed
orbits of the constructed dynamical system on ©. Moreover, one can show with use of the property
D), that this submanifold is nondegenerate in the sense of the definition 1.

Step 3. Let us define the perturbed submanifold A C © as the set of all "points” {m,&) € ©,
which images under the mapping A have the form {1, +). It turnes out that this set is filled by closed
orbits of the perturbed dynamical system in @ {which has been constructed in the previous step). In
fact, it’s enough to show that the set A coincides with the fixed point set of the extended Poincaré
mapping A. But this follows immediately from the definition of A and the special property of the
connectedness on ©, see step 1.

By the implicit function theorem, for sufficiently small €, the set A is a smooth submanifold and
has the form A = i(A), where i is an embedding close to the identity mapping. Indeed, the implicit
function theorem is applicable due to the property D) of the extended Poincaré mapping, see step 2.

Since the submanifold A is filled by closed orbits of the perturbed dynamical system on ©, one
can choose such an embedding 4, that images of fibers on A under i coincide with the orbits of the
dynamical system on ©. Besides, the time of the motion along these orbits is proportional to the
natural parameter on the circle with factor %, where 7' is the perturbed function of periods on A.
Further, we’ll denote by A also the submanifold ?r(ﬁ) in I}h} where : © — I}h is the natural projection.
Tt is evident, that such A is close to A.

Step 4. Here we’ll define the smooth function % on the quotient manifold B = A/S! by an explicit
formula. Let v = {§;} C B be an arbitrary smooth curve in B. Let us consider the 2—chain p~!(7) in
A, which is the inverse image of the curve v, and integrate the symplectic structure on the image of
this chain under the embedding ¢. The obtained real number is the difference of values of the function
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Plby) — (b)) = //tzop—l(ﬁf) ’

The property C) of Poincaré mapping (see step 2 of the previous proof) implies that the smooth
function ¢ is global single-valued function on B. For definiteness, let us assume, that this function
vanishes in some fixed point by on B. Since under ¢ = 0 the function ¥ identically vanishes on B, we’ll
denote the constructed function by €5.

Step 5. Here we give an explicit representation for the differential of the function ¥, and we’ll
consider this function as determined on the whole A. One can show that the differential of the
function # in an arbitrary point m € A has the following form: dy(m)y = Qu (£, 7 0 4,1), where
(m' &) = ( ) € ©, ¢ is the analog of the vector of "translation”, Q,, is the "coupling” between
subspaces 8, and Ty (A M Gy ). The bilinear form Q is S1-invariant under the natural action of the
circle, since by definition it is obtained by ”averaging” of the symplectic structure. For the unperturbed
system we have:

¢ on the ends of the curve :

Qm(fa n) = T{m}w(f, ";")a §€by,,nE Tm{A N O'm)-

From the last equality, using the skew-orthogonality of the considered subspaces, we conclude that
the equality Q,,(£,7) = 0 under any 7 € T,y A implies £ = 0.

Step 6. Finally, let 12 € A be any critical point of the function 7. We'll show that its image (1}
is fixed under Pioncare mapping /1, i. e. the vector of "translation” ¢ vanishes. Indeed, we have really
assumed that vector ¢ is "orthogonal” to all tangent vectors to A (with respect to the firm ), see
step 5. Hence, in agreement to the conclusion on the previous step, ¢ = (. This immediately implies
the item B) of theorem 1.

Thus, theorem 1 is completely proved. [ |

4. The role of constancy for values of the energy and
the period function. Some generalization

4.1. Let us point out that theorems 1 and 1* imply the existence of the required number of
closed orhits on any iscenergy surface ﬁ_l(hﬂ') close to the initial one, but not only on the surface
H~(h). Tt follows from the fact that one can consider the energy value as the additional parameter
of perturbation. In any case, theorems 1 1 1* give estimation for the number of closed orbits lying on
the same isoenergy surface. But one can obtain the same estimation if we fix the period of required
closed orbits, instead of the energy value.

Here we give the analog of theorems 1, 1* and 2 for the case of estimation for the number of closed
orbits (of perturbed system) with given period. In contrast to the situation above, we assume here
that the period function 7" on the submanifold A is constant (for some orbits it may be not minimal
period), for example T = 1, but A does not necessarily lie on the isoenergy surface. Besides, in this
situation A can contain critical points of Hamiltonian, so that some orbits on A may be equilibrium
points. Let us define the Poincaré mapping as the flow A = g}, of the system over the time 1 in the
whole phase space (but not as the restriction of this flow to the isoenergy surface, in contrast to the
situation above). The definition of the nondegeneracy is analogous to the definition 1.

Theorem 3. Let the submanifold A, filled by [-periodic orbits of the unperturbed system, be compact
{without boundary) and nondegenerate. Then:

A) The number of 1-periodic orbits of the perturbed system is not less than the minimal number
of critical orbits of circular function on the manifold A. Besides, the number of such orbits, counted
with their multiplicities, is not less than the minimal number of critical orbits of Bott cireular function
on the manifold A,
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B} Let the fibration of the submanifold A by periodic orbits be of special type, namely: either this
fibration is trivial: or the base B = A/S1 of this fibration is locally flat (for example, is diffeomorphic to
the multidimensional torus). Then the number of geometrically different 1-periodic orbits of perturbed
system i3 not less than the minimal number of critical points of the smooth function on the quotient
manifold B. Besides, the number of such orbits, counted with their multiplicities, is not less than the
manimal number of critical points of Morse functions on B.

Theorem 4. Lef the submanifold A, filled by I-periodic orbits of the unperturbed system, be non-
degenerate. Let us assume, that the Hamiltonion of the perturbed system depends smoothly on the
small parameter €, 1. e. has the form {2). Let us consider the averaged perturbation on A, i. e. the
smooth function H(m) ju vlm, t))dt, m € A, where H = Hi|pn. Let v be Bott critical orbit of
this function. Then there e;msts one-parameter family of I-periodic orbits y. C H™ L(h) of perturbed
systems. This femily depends smoothly on the paramefer of perturbation e, where € is sufficiently
small, and v, cotnecides with vy under e = 0.

Let us show the difference hetween the averaging principle in theorems 3 and 5. In fact, in theorem
3 we consider not standard averaging over the time, because we do not divide the value of the integral
(3} by the period function T'. This is essential because the period function T is not necessarily constant
on A C H™!(k). But in some of the important cases the period function turnes to be constant.

Statement 2. Let T be a connected submanifold of the phase space (M*®,w?), filled by closed orbits of
Hamiltonian system with Hamiltonian H. Let the differential d(H|x) of the restriction of the function
H to ¥ does not vanish anywhere on X. Let T be some continuous function of period (not necessarily
minimal period} of the orbits on . Then this function is the smooth function depending on the value
h of Hamiltonian H on ¥. Moreover, the period function has the form T = dI{h)/dh, where value
I(h) is equal to the integral of the form w? over any 2-chain, composed by periodic orbits of the one-
parameter family v C TOHTYR), ho < B < h, where hy is some fized value of the Hamiltonian H.

In other words, in this situation the period function T equals the derivative with respect to b of
the "area” I(h), "swept” by periodic orbits of the form «y,, C TN H1(A'), where hg < b/ < k.

Proof.

There is geometric proof of this statement. In our situation this proof is completely analogous
to the standard proof [7], [8], although in this papers it had been done only for periodic systems. We
give here the another proof of the first part of the statement, based on the averaging principle. We'll
impose some additional condition on X, namelly that each submanifold A = & N H~!(h) is almost
everywhere nondegenerate in the sense of definition 1. Let H = H — ¢ be the perturbed Hamiltonian.
Then the perturbed system on the initial energy level H=1(h) is similar to the unperturbed system
on the close energy level H=!(h + ¢). It is clear, that the averaged perturbation on A coincides
with the period function T. Thus, from statement 1-A, we conclude that if T is not constant on
the submanifold A C €2, then this submanifold can not be included into the family of analogous
submanifolds A, € H1{h + ¢), Ay = A. This contradict to the condition that the differential of the
function H|z does not vanish anywhere on A.

Thus, under the hypothesis of proposition 1, the period functlon T w1ll be constant on A. Con-
sequently, in this case we can use the usual averaging: H(m) = =% fu v{m, t)}dt, m € A, so that
theorem 2 and statements remain valid.

4.2. Now we pass to formulate some generalizations of theorems above. At first, we consider
the sets, filled by closed orbits, which lie on the singular isoenergy surface. Further, we consider the
case when the symplectic structure also is perturbed under the perturbation of the system. And in
the following section we describe the problem from the celestial mechanics in which the generalised
Poincaré theorem is successfully applied, although the unperturbed 2—form of the symplectic structure
is degenerate.
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By analogy with the situation of theorem 1, let A be sorme invariant closed subset of the isoenergy
surface H1(h), filled by closed orbits. Let the fibration of A by closed orhits is periodic, i. e. there
exists some continuous positive function T on A, such that g?m} (m) = m, where g%, is the flow of
the system over the time ¢. In other words, every orbit ¥ on A is "closed” over the time T|,. But,
in contrast to theorem 1, we'll assume that some orbits on A are equilibrium points of the considered

Hamiltonian system. In particular, the given isoenergy surface H~!(h) is singular. [ ]

Definition 5. We call such a singular subset A C H~!(k) nondegenerate if all its singularities are of
Morse type. More exactly, A is called nondegenerate if it satisfies the following conditions:

1) Firstly, all equilibrium points in A are Morse critical points of the Hamiltonian function H.

2) Secondly, the complement to the set of equilibrium points in A is nondegenerate in the sense
of definition 1, see chapter 2.

3) Finally, for any equilibrium point € A and tangent vector { € T,, M to this point, the
following equalities under ¢ = 0:

dgg(m) (m)¢=¢ and  d*H(m)é =,

implies that vector £ is tangent to the subset A.

Here d?H(m) denotes Hessian (i. e. "quadratic part®) of the function H in the critical point
m. Besides, here we call vector £ € T, M tangent to the subset A if this vector has the form £ =
dm(t)/dt);=y for some smooth curve m(f) C A, 0 <t < L.

Let us apply a small perturbation to the Hamiltonian H, under which the "energy level” becomes
regular. In other words, the perturbed isoenergy surface H ~1(h) does not contain critical points.
Before the formulation of the result, we’ll construct the smooth submanifold A C M, obtained from
A by some surgeries near each equilibrium point m € A, analogous to the usual Motse surgery.

To every equilibrium point m € A we attach a sign ¢, = +1 in the following natural way. This
sign depends on that: if the value h is greater or smaller than the critical value of the perturbed
function H in a small neighborhood of the point m. The set {m — €, } of these signs we call the type
of the perturbation. The following construction we'll apply to each equilibrium point m € A:

1) Firstly, we remove from A the point vn both with a small ball D,,, having m as the center.

2) Secondly, we consider the smooth submanifold in T, M, consisting of all tangent vectors & €
T M, satisfying equations above with the corresponding value ¢ = ¢,,.

3) And finally, we replace the removing part of A in D, by the smooth "handle” described just
now. In other words, we paste this "handle” to A\D,, by natural one-to-one correspondence of their
boundaries.

As the result, we obtain a closed smooth submanifold A ¢ AU D,, C M close to A. We see
from the construction of this manifold, that it depends only on the type of the perturbation. Besides,
there exists a natural fibration A — B on this submanifold with fiber the circle. Finally, under the
natural projection A — A all fibers are transfered to orbits of the initial system on A. The obtaned
submanifold A we call Morse surgery of the initial set A under the given perturhation.

Proposition 1. Let A be a compact nondegenerate singular subset of the isoenergy surface H1(R),
see def. 5. filled by closed orbits. Let A be the Morse surgery of this set under a perturbation of the
given type. Then the estimation above for the number of periodic orbits of the perturbed Hamiltonian
system (see theorem 1) remain wvalid. More exactly, in the estimation of theorem 1 the set A (both
with fibration on it) should be replaced by the manifold A with corresponding fibration on it.

Actually, any submanifold A, which doesn’t contain equilibrium points, can be considered as the
partial case of subsets containing such points. From this point of view, proposition 2 generalizes
theorem 1.
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REMARK 3. Partial case of the deseribed situation had been studied by Moser [13] and Weinstein [9],
[10], [15]. Namelly, if speaking in our notations, in these works set A was an equilibrium poin, the
submenifold A was diffeomorphic to sphere, and the perturbation of the Hamiltonian was the identical e.

4.3. Let us note that in all theorems formulated ahove we assumed that the symplectic structure
w? is fixed on the manifold M?". Sometimes in applications the symplectic structure changes under
perturbation. In turnes out that in some of such cases our theorems remain valid. For example, it is
so if either H?{A) = 0, or H'(B) = 0, or the topology of the fibration (1) satisfies some more weak
condition than the previous ones. Here H%(A) is the 2-dimentional de Rham cohomology group of
the manifold A.

But in many cases, important to applications (for example, when A is torus), our theorems will
not remain valid for arbitrary small perturbations of the symplectic structure. Nevertheless, one
can generalise them, imposing some restriction to the perturbations of w?, natural for Hamiltonian
mechanics. Namelly, using proofs of our theorems, one easily proves the following statement.

Proposition 2. Theorems 1, 1*, 2, 5, 4 remain valid, if under the perturbation of the system we
permit Cl-small perturbation of the symplectic structure w?, such that the cohomology cless of w? does
not shange under perturbation. Moveover, the last condition can be replaced by the following (more
weak) condition, called “preserving of the center of mass”, see chapter 3 (and also works [12], [18],
[24]). Namelly, this condition means that for any closed curve v in B the integral of the form & over
the 9-chain p~'(y) vanishes, see [24]. Let us note that for the unperturbed 2-form w* this condition

18 alweys satisfied.

Let us underline ones more that we don’t impose any restriction to the initial symplectic structure
w?, since all of required conditions will be satisfied automatically. Moreover, it turnes out that even if
the unperturbed structure w? is degenerate, but the perturbed one is "admissible”, then our theorems
remain valid. For example, such situation appears in study of relatively periodic motions of planet-
satellite system, which we discuss in the following section. The similar result for planet system with
double planets is discussed in the author’s work [28]. Another examples illustrating such an application
of the generalized geometric Poincaré theorem are 5.V. Bolotin's and A. I Neishtadt’s results on the
existence of periodic motions of a charged particle in multidimentional strong magnetic field (or
periodic motion of mechanical system under large gyroscopic forces).

5. Periodic motions of a planet-satellite system

Let us consider the problem of celestial mechanics, about the motions of the system of N +
1 material points in Euclidean plane, attracting to each other due to Newton's law. We ussume
that one of these points M, (sun) is central point of mass 1. Further, we ussume that all other
points My, ..., My are decomposed into two groups: n "planets” with masses of order u, and N — n
"gsatellites” with masses of smaller order pv, where 4 and v are small parameters. Let the attraction
between points be Newtonian with the potential

MMy
v=- Yy DM

7
0<i<g<N W

Here m; denotes the mass of the point M;, and ry; = |M; — M|, 0 < 4,5 < N, are mutually
distances between the points. Thus, the motion is described by the following equations: m;d”>M;/dt* =
—oU/OM;, 0 <i<N.

Let us pass to the frame of reference rotating with constant angular velocity, and set up the
problem of looking for T-periodic motions of the described gynamical system {with respect to the
rotating coordinate system). Such motions are specified by the following property: over the time
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T > 0 the configurations together with velocities of all points of the system can be obtained from the
initial ones by the rotation over the same angle a(mod 27} around the origin.

Definition 6. Such a motion we call relatively periodic with paraemeters T, . Let us consider the
other motion which can be constructed from the initial one by the following way. At first, one can
move the origin of the time axis, and then one can rotate the plane around the origine over some
angle. It is clear that all the motions ohtained by such a way remain relatively periodic with the same
parameters T, . All of these motions we’ll consider as the same relatively periodic motion. Let us
note that the set of these motions is diffeomorphic to the two-dimentional torus.

Put ¢ = 27/T. We'll assume that the positive numbers u, v and e are small, functionally
independent parameters. Another parameters of our problem will be the fixed number o and the set
of N —1 integer numbers which orders will be dependent on e. Let us describe these parameters more
precisely.

At first, let us introduce more convenience numeration of points. Let us remind, that we implicitly
assume that each satellite is associated with some planet. For notation of such a correspondence we
introduce the new numeration of points with use of two indexes: M;;, 1 <¢ < n, 0 <7 < n;. Here
Mo is the sun,

M,‘,g} 1 < % < 1, and )Mrij} 1 < ,J' < TEi,

are planets and their satellites, respectively. Satellites with their planet compose the so-called i—th
satellite system. We’ll also designate the masses of planets as pmjo, and masses of satellites as prm;;,
where my;; = const > 0,1 <i<n, 0< 7 <ny.

Let us note, that we study special solutions of the described N + 1 body problem. Namely, we
assume that the mutual distances between each planet and its satellites have the order 1, while the
mutual distances between the sun and all planets have the more greater order R >> 1, which is
computed by the formula ¢ = 1/v/pR3, and consequently, it is automatically large. In accordind to
this, we introduce the "relative coordinates”. Narelly, from each planet we draw radius vectors

yij = My; — Mo, 1 <7<,
to all its satellites. Besides, for each satellite system we consider the normalized radius vector
X.gz(ci—ﬂfog)/R} lgtgﬂ,

drawing from the sun to the center of mass C; = (oM, + uZ}il i Mi;)/{mio + vZ;};l mj) of
this satellite system. (Actually, it should be considered one more radius vector: drawing from the
origin to the center of mass € of the whole system of points. But since €' is "cyclic variable™, one can
either eliminate it, or pass to the frame with origine in €', which is equivalent.)

Further, we assume that "months” are much smaller than "years”. More exactly, after rescaling
the time, we assume that "mean frequencies” of rotations of radius vectors y;; are "fast” of order 1
(months), and "mean frequencies” of rotations of radius vectors x; are "slow” of order € (years). Let
us consider the set of "mean relative frequencies” of rotations of described radius vectors under some
relatively periodic motion. It is clear that this set is proportional to some set of integer numbers, i. e.
this set is maximal resonance. Indeed, the set of " mean frequencies” is of the form

Wi = w + kye (1 << n} (4)
Qij =w + Kije (1 = j < ni],
where w; = ea/2m, and k;, K;; are some integer numbers. Namely, each of these numbers is the
number of rotations of the corresponding radius vector over the time 7' (with respect to the potating
frame). Here we assume, without loss of generality, that k) = 0, so that the real number o = T
equals the whole angle on which the first planets rotates over the time T. Thus, all the integer
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numbers &k = 0,ks,... ,k,, corresponding to slow frequencies (of planets) are bounded, while the
integer numbers K;; corresponding to fast frequencies (of satellites) have the order 1/¢:

ki =0ko =, .=l =1, Kij = 1/e, 1<i<n1<j<n;. (5)
Let us consider as the unperturbed system the set of N independent Kepler problemns:
<i<n)

d>x; Jdi® = —*x; /|x; (1 )
dy;;/dt? = —miyii/lyi? (1< <ny).

It is easily to see that under o 2 0 {mod 27) relatively periodic motions of unperturbed problem with
given set of mean frequencies {4) correspond to circular motions of Kepler problems with this set of
frequencies. Consequently, orbits of these motions compose the N-dimentional torus in the phase
space.

Let us fix the sufficiently small value of parameter e. Let w;, £2;;, be any set of real numbers,
having the form (4), (5). Let us specify values of parameters T, « in definition 6, setting T' = 2n /e,
a=wT.

Proposition 3. A} Under any o Z 0 (mod 2x), i p, v arve sufficiently small, then there exisi
at least 2V =2 (counted with their multiplisities) velatively periodic motions of planet-satellite system,
with parameters T, «. Besides, among these motions there are at least N — 1 geometrically different
molions.

B} Under each of these motions, the mean values of the radius vectors x; = (C; — My)/R and
Yij = My — Myp are exactly equal to wy, Qy;, and the motion of each of these radius vectors is close to
the circular motion with the same frequency of the corresponding Kepler problem (6).

Here the nearness means as follows. The motion x; = x;(7/¢) differs from the circular motion
with frequency (w;/€) by the value of the order v/R?. The motion y;; = y,;(¢) differs from the circular
motion by the value of the order €2. Here we imply that the corresponding coordinate functions are
close with respect to C''-norm over the "own time” 7 and f respectively.

Proof.

Let us fix some value € > 0, and consider the unperturbed problem, corresponding to = v = 0.
One shows that such an unperturbed problem is decomposed into n Kepler problems, corresponding
to planets, and N — » prohlems corresponding to satellites and coinciding with the unperturbed Hill
problem. More exactly, the unperturbed system has the form

d?x; /dt? = —e?x; /|xq)? (1<i<n)
d*y ;i /dt = —myi /|y + €mi/my 0P[Oy (xiyy) (1 <3 <),

3<X1 Y)Q — X|‘2|y|2
2[x[?

the action of sun on a satellite”. We obtain, that, under small ¢, variables x and y are automatically
slow and fast, respectively.

The rest of the proof is based on the geometric Poincaré theorem, namelly, on theorem 3-B. The
difficulty lies in the fact that this theorem can not be applied directly, since the unperturbed system
is not Hamiltonian. In particular, we must verify the condition "preservation of the center of mass”.
But in our case it is evident, hecause the perturbed symplectic structure is the standard one on the
cotangent space of the configuration space, and automatically is exact. More detailed proof the author
hopes to public in the nearest future. u

where the function P(x,y) = , multiplied by €2 is the unperturbed "potential of

REMARK 4. In the case of the planet system without satellites (n; = 0) the analogous result had been
obtained by Krasinskii in the work [11]. In this work Krasinskii not only proved the existence of the
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relatively periodic solutions, but at first he also found their “generatives” (namely, 2¥ =2 solutions, for
which there exists such a moment when ell points lie on the same line). But here he used the additional
reason about the "reversibility” of the N + 1 body problem. And, following Poincaré technique [1],
Krasinskit partially proved the stability of one of these solutions. Let us note also, that in the case of
the system with double planets, the smallness condition on the parameter v is unessential {see author’s
work [28]). If, in addition, the number N + 1 of poinis equals 3, i. e. the system is of the type Sun-
Earth-Moon, then the statement remains valid without smallness condition on perameters p and v.
The corresponding solutions are well known and colled generalized Hill solutions.

6. Non-Hamiltonian case

In conclusion, we give formulations of our main results for dynamical systems of general type
(not necessarily Hamiltonian). Let us consider on an arbitrary smooth manifold A" the dynamical
system, defined by some vector field V. We assume, that in the phase space Af™ there exists a smooth
submanifold A, which does not contain singular points and is filled by periodic orbits of the system.
We also assume, that the fibration (1) of this submanifold by periodic orbits is periodic, i. e. on A
there is a continuous function T', which is equal to the {(not necessarily minimal) period of the orbits.

By analogy with Hamiltonian case, for an arbitrary point m € A we consider a cross-section
T 2 m and define the Poincaré mapping A4 : ¢, — 04, of this cross-section onto itself. Namely, this
mapping is defined by the flow of the vector field V' over the time close to the value T'(m) of period
function in point m. Without loss of generality, we'll assume later that the period function T on A is
the identical 1.

We assume, that the submanifold A is nondegenerate in the sense of definition 1, i. e. in each
point m € A the space of all tangent vectors, fixed under the tangent mapping dA(m), coincides with
the tangent space to the surface A N oy, in the point m. As in proof of theorem 1-B, we consider
on A a field of the subspaces E,, = (Tihom)/Im{dA(m) — I), ma € A, which really are co-kernels
of the operators dA(m) — I, m € A. The obtained field E of the quotient spaces is some linear
fibration E — A over the submanifold A. Tt is easily to see that this fibration does not depend on
the surfaces ¢,,,. More exactly, the fibration E is well-defined up to a natural fiber isomorphism of
fibrations.

As it was noticed above, see section 3, the natural action of the circle on A can be extended to
the whole space E hy the evident way. Namely, this action is defined with use of the tangent flow of
the given dynamical system. In particular, the mapping ”over the period” is the identity operator on
the fibration E. This implies that the fibration £ can be "projected” onto some fibration over the
quotient B = A/S'. The resulting fibration we’ll denote by pF.

From the nondegeneracy condition on A we obtain, firstly, that the rank of the linear fibration
pE over B equals the dimention dim B = dim A — 1 of this quotient manifold, and, secondly, that the
total space pE of this fibration is orientable. Consequently, the Euler class e{pE) of this fibration is an
integer number, which is called Euler number of the fibration pE. Let us remind the "geometric” sense
of the Euler number. Tt is equal to the algebraic number of zeros for any general section 5 : B — pFE
of the linear fibration pF over B.

Let us consider on the phase space the perturbed vector field V', which is close to V with respect
to the norm €. The following theorem is analogous to theorem 1.

Theorem 5. Let the submanifold A C M be filled by the closed orbils of the unperturbed system. Let
this submanifold be closed (i. e. compact and without boundary), and nondegenerate. Let us ussume
that:

A} either the periodic fibration (1) of this submanifold by periodic orbits is trivial,

B) or the constructed above fibration pE over the quotient manifold B = A/S' possesses locally
fat connectedness.
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Then the number of geometrically different closed orbits of perturbed system is not less than the
minimal number of zeros of section 5§ : B — pFE of the linear fibvation pE over B. Besides, the number
of such orbits, counted with their mulliplicities, is not less than the mintmal number of zeros of the
general section of the fibration pFE.

In particular, if the Euler number e(pFE) of the fibration p& does not vanish, then the perturbed
system has at least one closed orbit. Besides, the number of such orbits with their multiplicities is at
least equal to the absolute value |e{pF’)| of the Euler number of this fibration.

Let us now describe the averaging method on a submanifold for arbitrary dynamical systems. Let
the perturbed vector field has the form

V=V +eVi +ole), (7)

where € is a small parameter. Let us consider the restriction V = Vi|p of the perturbation Vi to A,
and define the averaging V' of the obtained vector field by the formula

1
= ] glvd,  where  gl|gV = dg~V(ga).
0

where ¢ denotes the flow along the vector field V' over the time . Let us remind, that we assume
without loss of generality, that the period function T on A is the identical 1. The obtained vector
field V on A we project onto the quotient fibration B = Uyea(Tynom)/Im{dA(m) — I) with use of
the natural projections m, : Tmo = E,,, m € A. One can show that the obtained section «V of the
fibration E is invariant under the natural action of the circle §! on E. Hence, this section can be
"projected” onto some section prV of the linear fibration pE. Let us call this section the averaged
perturbation, since it is analogous to the averaged perturbation H in Hamiltonian case. One proves
that this definition of the averaged perturbation is well-defined, i. e. it does not depend on the surfaces
T

The following theorem is analogous to theorem 2 for dynamical systems of general type {not
necessarily Hamiltonian).

Theorem 6. Let the submanifold A C M. filled by closed orbits of the unperfurmed system. is
nondegenerate, but not necessaridy compact. Let us assume, that the perturbed vector vield 1% depends
smoothly on a small parameter e, i. e. it has the form (7). And let by € B be a nondegenerate
zero of the averaged perturbation pa(V). Let v = p~1(bg) C A be the orbit of the unperturbed system,
corresponding to the point bg. Then there exists one-parameter family of closed orbits v, of the perturbed
system. This family depends smoothly on the parameter of perturbation e under small €, and =y,
cotncides with vg under € = 0.

We see that in the case of dynamical systems of general type, i. e. not necessarily Haomiltonian,
one must know the topology of some linear fibvation pE over quotient manifold B. This fibration
depends only on the unperturbed system. It turnes out that in meny important cases this fibration is
fiber-isomorphic to the tangent fibration T. B of the manifold B.

Statement 3. In the following cases the linear fibration pE over the manifold B = A/S' constructed
above is fiber-isomorphic to the tangent fibration T, B of this manifold B:

1) when the unperturbed system is either Hamiltondan, or it is the restriction of some Hamiltonian
system to the veqular isoenergy surface My, = H71(h);

2} when the unperturbed system is gradient, 1. e. V =y F, where F is some smooth function on
M;

3) when for each point m € A the mullsplicity of 1 in the spectrum of the operator dA(m) is
exactly equals to the dimentional of the quotient manifold B.
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In particular, in all of these cases Euler number e(pE) of the fibration pFE coincides with the Euler
characteristic x(B) of the quotient manifold B. Thus, if the Euler characteristic of manifold B for
such a system does not vanish, then, according to theorem 5, the perturbed system has at least one
closed orbit.
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E.A.RYIPABIEBA

OBOBIIEHHE TEOMETPHYECKOI TEOPEMbBI IYAHKAPE
B CJIYUAE MAJIBIX BO3MYIIEHHA

Hocmynuaa 6 pedanyuio | uwan 1948 e

PaccmoTpiM IHHaMHYECKYIO CHCTeMY, B ¢az0BOM NMPOCTPAHCTEE KOTOPON HMeeTCH 3aMEHYTOe NOIMHOT000pastie,
CINIONIEL 3aN0MHEHHOE 3aMEHY THIMH TpaeKkTopiuAMH. Hocmenyercs Bopoc, CRONMBKO H KaKHE H3 BTHX TPaeKTOPHIT Co-
XPaHATCA, MHUIE clerka MpofedopMHPpOBABLIMCE, DPH MANOM BO3MYIIEHHH CHCTeMBl. B caydae BoamymweHni obiero
BHA3 OTBeT N4aeTCA B TePMHHAX YCPeTHEeHHA BO3MYIIEHHA MO 38MKHVTBIM TPaeKTOPHAM HCXOOHOH cHeTeMul. Oc-
HOBHEIM pesyILTATOM AAHHOH paBoThl ABAAeTCA cleavioman TeopeMa. IlycTh Ha cHMNIeKTHYeCKOM MHOrOOBPa3UN
(M, w?) 3agaHa raMHILTOHOBA CUCTeMa ¢ raMuabTonnamom H. Ilyers A € H™'(h) — »aMEHYTOE HEBBIPOM-
JeHHOe NOoAMHOTO0Gpa3He, CIVIOME 3aNOMHeHHOe 3aMRHYTHEIMH TPaSKTOPUAMH 3Toll cHcTeMbl. Torna ama mioooi
Ppyusmm H, C*-6uskoit k pyHsuuy H, CHCTEMa ¢ raMINIETOHHAHOM H UMeeT He MeHee JBYX 38MKHYTBIX Tpack-
TapHit Ha neeepxnocTH H (k). TIpn 3ToM, ecH paccroeHte A Ha 3aMKHYTble TpackTopHi TPHEHANLHO, MMBe Gasa
B = A/&' atoro paccroenus ofnafaeT mrockoit addUHHON CBAIHOCTBID, To YHCAO TAKHY TPAaeKTOPHIT He MeHbMIe,
Yen! MHUHWMANbHOE YHCTo KEPUTHYECKHX ToUek CIagkoil GYHKUMH Ha dakTop-MHoroobpasiu B.
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