УДК 517+550.34

М. Л. Гервер, Е. А. Кудрявцева

Теорема об отношениях предшествования, генерируемых вполне положительными ядрами

Работа является итогом осмысления одной теоремы о суммах гипербол, понадобившейся в математической геофизике. И сама эта теорема, и ряд неожиданных следствий из нее, на первый взгляд, не слишком правдоподобны. Первое доказательство теоремы не снимало такого впечатления: оставалось непонятным, лочему она верна. Объяснение обнаружилось в свойствах ядра Коши C(s,x)=1/(s+x) – исходная теорема о гиперболах получена в статье как частный случай общего утверждения, верного для некоторого класса $\mathbb G$ вполне положительных ядер, включающего C(s,x).

Библиография: 14 названий.

Из восьми параграфов статьи первые три содержат формулировки результатов и определения, следующие четыре — доказательства, последний — комментарии; ссылки на них имеют вид $\langle k \rangle$, где k — номер комментария.

§1. Формулировка теоремы о гиперболах и ее обобщение

Обозначим через \mathbb{N}_n множество наборов $\mathscr{N} = \{a_1, \ldots, a_n, s_1, \ldots, s_n\}$ из 2n чисел a_i, s_i $(1 \leqslant i \leqslant n)$, удовлетворяющих условиям:

$$a_j > 0 \quad (j = 1, ..., n), \qquad \sum_{j=1}^n a_j = 1, \qquad s_1 > \dots > s_n > 0.$$

Индекс n назовем panrom набора $\mathcal N$ и обозначим rank $\mathcal N$. Объединение всех $\mathbb N_n$ $(n\geqslant 1)$ обозначим $\mathbb N$. Каждому $\mathcal N\in\mathbb N$ сопоставим renepupyющую функцию—сумму гипербол

$$g(x) = g(\mathcal{N}, x) = \sum \frac{a_j}{s_j + x}, \quad \ x \in \mathbb{R}, \ \ 1 \leqslant j \leqslant \operatorname{rank} \mathcal{N},$$

и введем два отношения частичной упорядоченности на множестве \mathbb{N} : для наборов $\mathcal{M}, \mathcal{N}, \mathcal{P} \in \mathbb{N}$ по определению

$$\mathcal{M} \prec \mathcal{N}, \text{ если } g(\mathcal{M},x) \leqslant g(\mathcal{N},x)$$
 при $x \in [0,1],$

И

$$\mathscr{P} \prec < \mathscr{M}, \ \mathrm{ec}$$
ли $g(\mathscr{P},x) \leqslant g(\mathscr{M},x)$ при всех $x \geqslant 0;$

выбор обозначения $\prec<$ будет объяснен в $\S~2$ при обсуждении следствий, которые влечет за собой

ТЕОРЕМА 1. Для любых наборов $\mathscr{P}, \mathscr{N} \in \mathbb{N}$, связанных соотношением $\mathscr{P} \prec \mathscr{N}$, найдется такой набор $\mathscr{M} \in \mathbb{N}$, что

$$\operatorname{rank} \mathcal{M} \leqslant \operatorname{rank} \mathcal{N} \quad u \quad \mathcal{P} \prec < \mathcal{M} \prec \mathcal{N}.$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 94-01-01350).

Замечание. Если $p=\operatorname{rank}\mathscr{P}\leqslant n=\operatorname{rank}\mathscr{N}$, теорема 1 очевидна: можно взять $\mathscr{M}=\mathscr{P}$; поэтому будем считать, что p>n.

Итак, теорему 1 можно переформулировать следующим образом.

ТЕОРЕМА 1'. Пусть генерирующие функции $g_n(x)$ и $g_p(x)$ являются суммами n и p гипербол, p>n и $g_p(x)\leqslant g_n(x)$ при $x\in [0,1]$. Тогда существует генерирующая функция $g_m(x)$ (сумма m гипербол c числом слагаемых $m\leqslant n$) такая, что

$$g_m(x)\leqslant g_n(x)$$
 na $[0,1]$ u $g_m(x)\geqslant g_p(x)$ npu ocex $x\geqslant 0$.

Теорема о гиперболах является частным случаем формулируемой ниже теоремы 2. В § 3 будет введен класс \mathbb{G} ядер G(s,x) в полуполосе

$$s > 0, \quad \alpha \leqslant x \leqslant \beta \leqslant +\infty.$$

Ядро Коши 1/(s+x), s>0, $x\geqslant 0$, – пример такого ядра; обозначая его C(s,x), можем представить генерирующую функцию $g(\mathcal{N},x)$ в виде

$$g(\mathcal{N},x) = \sum a_j C(s_j,x), \quad 1 \leqslant j \leqslant \operatorname{rank} \mathcal{N}.$$

В §§ 4-7 будет доказана

ТЕОРЕМА 2. Фиксируем число $\gamma \in (\alpha, \beta)$ и ядро $G \in \mathbb{G}$, сопоставим каждому набору $\mathcal{N} \in \mathbb{N}$ генерирующую функцию

$$g(\mathcal{N},x) = \sum a_j G(s_j,x), \qquad x \in [\alpha,\beta], \quad 1 \leqslant j \leqslant \operatorname{rank} \mathcal{N},$$

и введем два отношения предшествования на N:

$$\mathcal{M} \prec \mathcal{N}$$
, ecan $g(\mathcal{M}, x) \leqslant g(\mathcal{N}, x)$ npu $x \in [\alpha, \gamma]$, $\mathcal{P} \prec < \mathcal{M}$, ecan $g(\mathcal{P}, x) \leqslant g(\mathcal{M}, x)$ npu $x \in [\alpha, \beta]$.

При таком толковании знаков \prec и \prec < теорема 1 остается верной: для любых наборов $\mathscr{P}, \mathscr{N} \in \mathbb{N}, \mathscr{P} \prec \mathscr{N}$, найдется такой набор $\mathscr{M} \in \mathbb{N}$, что

$$\operatorname{rank} \mathcal{M} \leqslant \operatorname{rank} \mathcal{N} \quad u \quad \mathcal{P} \prec < \mathcal{M} \prec \mathcal{N}.$$

ЗАМЕЧАНИЕ. Для конкретности ядра G класса $\mathbb G$ предполагаются заданными в канонической области – полуполосе $s>0, x\in [\alpha,\beta]$. Иногда естественнее задавать ядра в других областях, сводя эти случаи к каноническому с помощью простых преобразований. Например, ядро

$$x^t$$
, $t \in \mathbb{R}$, $0 < \alpha \leqslant x \leqslant \beta = 1$,

переходит в ядро из класса \mathbb{G} , если положить $t = \ln s, s > 0$.

§ 2. Теорема о числе ступенек и другие следствия

Теорема о гиперболах была придумана для обоснования новых алгоритмов в задаче обращения годографа — классической обратной задаче математической геофизики, состоящей в определении скорости распространения сейсмических волн в Земле по временам пробега. При наличии волновода (зоны пониженной скорости) решение этой задачи неединственно [1]–[3]: имеется бесконечно много различных моделей Земли, неразличимых по годографу (кривой времен пробега). Требуется описать все эти модели; в частности, нужно найти модель c самым широким волноводом. Эта задача теоретической сейсмологии приводит [4]–[7] к следующей математической.

2.1. Задача о самой широкой лесенке. Рассмотрим множество $\mathbb F$ заданных на полуоси невозрастающих неотрицательных ступенчатых функций с конечным числом ступенек и с интегралом 1. Каждой функции $f \in \mathbb F$ сопоставим число h(f) – сумму длин ступенек, где f > 0. Введем на $\mathbb F$ отношение частичной упорядоченности $f^* \prec f$ (его определение 2.1 дано ниже).

Для любой $f \in \mathbb{F}$ среди всех $f^* \prec f$ требуется найти f^0 с максимальной суммой длин ступенек $h(f^0)$.

Для $f \in \mathbb{F}$, принимающей положительные значения f_j на ступеньках длины h_j , введем координаты a_j , s_j : $a_j = f_j h_j$ – интеграл под j-й ступенькой, $s_j = f_j^2$ – квадрат j-го значения, и тем самым установим биективное соответствие между функциями f из \mathbb{F} , наборами $\mathscr N$ из \mathbb{N} и генерирующими функциями $g(\mathscr N,x)$:

$$f \in \mathbb{F} \iff \mathcal{N} \in \mathbb{N} \iff g(\mathcal{N},x) = \sum \frac{a_j}{s_j + x}, \ 1 \leqslant j \leqslant \operatorname{rank} \mathcal{N}.$$

Определение 2.1.

$$f^* \prec f \iff \mathcal{N}^* \prec \mathcal{N} \iff g(\mathcal{N}^*, x) \leqslant g(\mathcal{N}, x), \ x \in [0, 1].$$

 Φ ункционал $h(f)=\sum h_j,$ сопоставляющий функции $f\in\mathbb{F}$ сумму длин ступенек $h_j,$ равен

$$h(\mathcal{N}) = \sum \frac{a_j}{\sqrt{s_j}} \quad (\mathcal{N} \in \mathbb{N}, \ 1 \leqslant j \leqslant \operatorname{rank} \mathcal{N}),$$

так что задачу о самой широкой лесенке можно переформулировать следующим образом:

Для любого набора $\mathcal{N}\in\mathbb{N}$ найти $\sup h(\mathcal{N}^*)$ по всем $\mathcal{N}^*\prec\mathcal{N}.$

Верна [7], [8] следующая теорема существования и единственности.

ТЕОРЕМА 2.1. Для любого набора $\mathcal{N} \in \mathbb{N}$ существует такой набор $\mathcal{N}^0 \prec \mathcal{N}$, что для всех $\mathcal{N}^* \prec \mathcal{N}$ ($\mathcal{N}^* \neq \mathcal{N}^0$)

$$h(\mathcal{N}^*) < h(\mathcal{N}^0).$$

Иными словами, для любой функции $f \in \mathbb{F}$ среди всех $f^* \prec f$ существует ровно одна функция f^0 ($f^0 \iff \mathcal{N}^0$), на которой достигается $\max h(f^*)$.

Теорема о гиперболах играет важную роль в доказательстве, уточнении и обобщении теоремы 2.1 (см. 2.2–2.4).

2.2. Теорема о числе ступенек. Непосредственным следствием теоремы о гиперболах является

ТЕОРЕМА 2.2. Функция f^0 , на которой достигается $\max h(f^*)$ по всем $f^* \prec f$, имеет не больше ступенек, чем $f^{(1)}$

Чтобы убедиться в этом, введем на $\mathbb F$ еще одно отношение частичной упорядоченности $f^* \prec < f$ и докажем теорему 2.3, объясняющую выбор обозначения $\prec <$.

Определение 2.2.

$$f^* \prec < f \iff \mathcal{N}^* \prec < \mathcal{N} \iff g(\mathcal{N}^*, x) \leqslant g(\mathcal{N}, x), \ x \geqslant 0.$$

TEOPEMA 2.3. Ecau $\mathscr{P} \prec < \mathscr{M} \ u \ \mathscr{P} \neq \mathscr{M}, \ mo \ h(\mathscr{P}) < h(\mathscr{M}).$

Доказательство. Чтобы доказать теорему 2.3, достаточно заметить, что

$$\frac{1}{\sqrt{s}} = \frac{2}{\pi} \int_0^\infty (s+x)^{-1} \, d\sqrt{x} \,, \text{ так что } h(\mathcal{N}) = \frac{2}{\pi} \int_0^\infty g(\mathcal{N},x) \, d\sqrt{x}.$$

Сопоставляя теоремы 1 и 2.3, видим, что теорема 2.2 действительно следует из теоремы о гиперболах, а верхнюю грань

$$\sup h(\mathscr{M}), \quad \mathscr{M} \prec \mathscr{N},$$

следует искать лишь среди наборов $\mathcal{M} \prec \mathcal{N}$ с рангом rank $\mathcal{M} \leqslant \operatorname{rank} \mathcal{N}$. Запись $1/\sqrt{s}$ в виде интеграла Стилтьеса подготавливает

2.3. Расширение класса функционалов. Введем на N функционалы

$$h(\mathscr{N}) = \sum a_j \varphi(s_j), \quad \varphi(s) = \int_0^\infty (s+x)^{-1} d\theta(x)$$

с произвольной неотрицательной (и такой, что интеграл $\varphi(s)$ сходится) мерой Стилтьеса $d\theta$. Обобщение $(2/\pi)\,d\sqrt{x}\to d\theta(x)$ не является самоцелью, а позволяет продвинуться в задаче на максимум, где $1/\sqrt{s}$ включается в однопараметрическое семейство $\psi(s,t),\,t\in[0,1)$:

$$\psi(s,t)=\frac{2}{\pi}\frac{\arctan\sqrt{s/t}}{\sqrt{s}}=\frac{2}{\pi}\int_t^\infty\frac{d\sqrt{x}}{s+x} \ \text{при } t\in(0,1);$$

$$\psi(s,0)=1/\sqrt{s}$$

(эта задача тоже возникает при обращении годографа и является ключевой для построения границы множества всех решений [9], [10]).

Сопоставление с теоремой 2 приводит к дальнейшим обобщениям.

Фиксируем ядро $G(s,x) \in \mathbb{G}, s > 0, x \in [\alpha,\beta]$, и положим

$$arphi(s) = \int_{lpha}^{eta} G(s,x) \, d heta(x), \quad h(\mathscr{N}) = \sum a_j arphi(s_j), \ \ 1 \leqslant j \leqslant \mathrm{rank} \, \mathscr{N}.$$

Меру Стилтьеса $d\theta(x)$, функцию $\varphi(s)$ и функционал $h(\mathcal{N})$ назовем невырожденными, если $d\theta(x)$ не сосредоточена в конечном числе точек $x \in [\alpha, \beta]$.

Класс невырожденных функционалов $h(\mathscr{N})$ на \mathbb{N} обозначим $\mathbb{H}=\mathbb{H}(G)$; каждый функционал $h\in\mathbb{H}(G)$ определяется заданием неотрицательной невырожденной меры $d\theta(x), x\in[\alpha,\beta]$, и связан с генерирующей функцией

$$g(\mathcal{N},x) = \sum a_j G(s_j,x), \quad \ 1 \leqslant j \leqslant \mathrm{rank}\, \mathcal{N},$$

формулой

$$h(\mathcal{N}) = \int_{\alpha}^{\beta} g(\mathcal{N}, x) d\theta(x). \tag{*}$$

2.4. Теорема о ранге. Трактуя знаки \prec и \prec < как в теореме 2, получаем класс K экстремальных задач, зависящих от G, h и \mathcal{N} :

Для произвольных $G \in \mathbb{G}$, $h \in \mathbb{H}(G)$ и $\mathcal{N} \in \mathbb{N}$ найти $\sup h(\mathcal{N}^*)$, $\mathcal{N}^* \prec \mathcal{N}$. Ввиду (*) и с учетом 3.3 (см. §3) теорема 2.3 верна для любого функционала $h \in \mathbb{H}$. $\langle 2 \rangle$ Поэтому из теоремы 2 следует теорема о ранге (аналог теоремы 2.2).

 ${\it Teopema 2.4.}$ Для любой экстремальной задачи класса K верхнюю грань

$$\sup h(\mathcal{M}), \qquad \mathcal{M} \prec \mathcal{N},$$

нужно искать лишь среди наборов $\mathcal{M} \prec \mathcal{N}$ с рангом $\mathrm{rank}\,\mathcal{M} \leqslant \mathrm{rank}\,\mathcal{N}$.

Условия существования и единственности набора \mathcal{M}^0 , на котором эта верхняя грань достигается, установлены в [10].

$\S 3$. Класс \mathbb{G} ядер G(s,x)

В § 3 дается определение вполне положительных ядер, или, короче, TP-ядер [11] (от английского totally positive) и вводится класс \mathbb{G} ядер G(s,x); проверяется, что теорема 1 является частным случаем теоремы 2.

3.1. ТР-ядра. Ниже предполагается, что $-\infty < \alpha < \beta \leqslant +\infty$.

Определение 3.1. Функция G(s,x), определенная при

$$s > 0$$
, $\alpha \leqslant x \leqslant \beta$,

называется вполне положительным ядром (или TP-ядром), если для любого n и любых s_j и x_k $(1\leqslant j,k\leqslant n)$ таких, что

$$s_1 > \cdots > s_n > 0$$
 и $\beta \geqslant x_1 > \cdots > x_n \geqslant \alpha$,

определитель $|G(s_j, x_k)|$ положителен:

$$\begin{vmatrix} G(s_1, x_1) & \dots & G(s_1, x_n) \\ \dots & \dots & \dots \\ G(s_n, x_1) & \dots & G(s_n, x_n) \end{vmatrix} > 0.$$

Замечание. Данное определение эквивалентно стандартному [11], [12], отличаясь от него порядком нумерации строк и столбцов.

ПРИМЕР 3.1. При любых $\alpha \geqslant 0$ и $\beta > \alpha$ ядро Коши C(s,x) = 1/(s+x) является ТР-ядром в полуполосе s > 0, $x \in [\alpha, \beta]$, поскольку [13, с. 110, 320]

$$\left|C(s_j,x_k)\right| = \prod_{1 \leqslant j < k \leqslant n} (s_j - s_k)(x_j - x_k) / \prod_{1 \leqslant j,k \leqslant n} (s_j + x_k).$$

3.2. Тождество $G(s,\beta)\equiv 1$. В класс $\mathbb G$ будут включены TP-ядра, удовлетворяющие некоторым дополнительным ограничениям. Одно из них — moxedecm-во $G(s,\beta)\equiv 1, s>0$. Следующий пример показывает, что оно не противоречит включению в класс $\mathbb G$ ядра Коши C(s,x).

ПРИМЕР 3.2. Положим $C(s,+\infty)\equiv 1.$ Так доопределенное ядро C(s,x) вполне положительно при s>0 и $x\geqslant 0$, т.е. определитель

$$\Delta = \begin{vmatrix} 1 & 1/(s_1 + x_2) & \dots & 1/(s_1 + x_n) \\ \dots & \dots & \dots & \dots \\ 1 & 1/(s_n + x_2) & \dots & 1/(s_n + x_n) \end{vmatrix}$$

положителен при любых $s_i, x_k \ (1 \leqslant i \leqslant n, 2 \leqslant k \leqslant n)$ таких, что

$$s_1 > \dots > s_n > 0, \quad x_2 > \dots > x_n \geqslant 0.$$
 (*)

Доказательство. Определитель Δ получится, если $|C(s_j,x_k)|$ умножить на x_1 и устремить x_1 к $+\infty$. Так как

$$x_1 \prod_{2 \le k \le n} (x_1 - x_k) / \prod_{1 \le j \le n} (s_j + x_1) \to 1$$
 при $x_1 \to +\infty$,

то по формуле из примера 3.1

$$\Delta = \prod_{1 \leqslant j < k \leqslant n} (s_j - s_k) \prod_{2 \leqslant j < k \leqslant n} (x_j - x_k) / \prod_{\substack{1 \leqslant j \leqslant n \\ 2 \leqslant k \leqslant n}} (s_j + x_k),$$

т.е. $\Delta > 0$ при ограничениях (*).

3.3. Связь с **Т-системами.** Напомним, как ТР-ядра связаны с чебышевскими системами [11], [12].

Определение 3.2. Функции $\tau_j(x), 0 \leqslant j \leqslant q, x \in [\alpha, \beta],$ образуют систему Чебышёва (или T-систему) порядка q, если любой многочлен

$$P(x) = \sum_{0 \le j \le q} p_j \tau_j(x) \qquad \left(p_j \in \mathbb{R}, \quad \sum_{0 \le j \le q} p_j^2 > 0 \right)$$

имеет при $x \in [\alpha, \beta]$ не более q корней.

Простейший пример T-системы $\tau_j(x)=x^j$ объясняет, почему и в общем случае P(x) именуется многочленом.

Легко понять: функции $\{\tau_j(x)\}_0^q$, $\alpha\leqslant x\leqslant \beta$, тогда и только тогда образуют Т-систему порядка q, когда определитель

$$\begin{vmatrix} \tau_0(x_0) & \tau_0(x_1) & \dots & \tau_0(x_q) \\ \tau_1(x_0) & \tau_1(x_1) & \dots & \tau_1(x_q) \\ \vdots & \vdots & \ddots & \vdots \\ \tau_q(x_0) & \tau_q(x_1) & \dots & \tau_q(x_q) \end{vmatrix}$$

отличен от нуля при любых $x_k \ (0\leqslant k\leqslant q), \beta\geqslant x_0>x_1>\cdots>x_q\geqslant \alpha.$

Доказательство следует из рассмотрения однородной системы q+1 уравнений

$$\sum_{0 \leqslant j \leqslant q} p_j \tau_j(x_k) = 0$$

относительно p_0, p_1, \ldots, p_q .

Таким образом, для любого ТР-ядра G(s,x) $(s>0, x\in [\alpha,\beta])$ и любых различных $s_j>0$ $(0\leqslant j\leqslant q)$ функции $\tau_j(x)=G(s_j,x)$ образуют Т-систему порядка q при $x\in [\alpha,\beta]$. Аналогично, при

$$\beta \geqslant x_0 > x_1 > \cdots > x_n \geqslant \alpha$$

система функций $\xi_0(s)=G(s,x_0),\,\xi_1(s)=G(s,x_1),\ldots,\xi_n(s)=G(s,x_n)$ является Т-системой порядка n на любом отрезке оси s>0. Функции $\xi_j(s),\,0\leqslant j\leqslant n,$ задают кривую $\mathscr V$ в $\mathbb R^{n+1}$. Если $x_0=\beta$ и $G\in\mathbb G$, то (ввиду тождества $G(s,\beta)\equiv 1$) $\mathscr V$ лежит в гиперплоскости $\xi_0=1$. (3)

3.4. Определение класса \mathbb{G} . Фиксируем число $\gamma \in (\alpha, \beta)$. ТР-ядро G(s, x) $(s > 0, x \in [\alpha, \beta]), G(s, \beta) \equiv 1$, включается в класс \mathbb{G} , если оно непрерывно в полуполосе $s > 0, x \in [\alpha, \gamma]$, непрерывно по s при $x \in [\alpha, \beta]$ (4) и при $s \to 0$ удовлетворяет условиям

$$G(s,\alpha) o +\infty, \quad \frac{G(s,x)}{G(s,\alpha)} o 0$$
 для любого $x \in (\alpha,\gamma].$

Для ядра Коши C(s,x) $(s>0,x\geqslant 0)$ эти условия выполняются:

$$\frac{1}{s} \to +\infty$$
, $\frac{1/(s+x)}{1/s} = \frac{s}{s+x} \to 0$ при $s \to 0$.

Тем самым, с учетом примеров 3.1 и 3.2, $C(s,x) \in \mathbb{G}$, так что теорема 1 является частным случаем теоремы 2.

Остается доказать эту более общую теорему. Сначала сделаем это для наборов ${\mathcal N}$ ранга 1 и 2.

§4. Доказательство теоремы для наборов ${\mathscr N}$ ранга 1

В случае, когда $\operatorname{rank} \mathcal{N} = 1$, теорема 2 допускает значительное усиление:

- (1) достаточно считать, что G(s,x) является TP-ядром в полуполосе s>0, $x\in [\alpha,\beta]$, непрерывным по s при $x=\alpha$ и удовлетворяющим тождеству $G(s,\beta)\equiv 1$.
- (2) не нужны никакие ограничения на G(s,x) при $s \to 0$;
- (3) условие $\mathscr{P} \prec \mathscr{N}$ можно заменить неравенством $g(\mathscr{P}, \alpha) \leqslant g(\mathscr{N}, \alpha)$;
- (4) в рассматриваемом случае утверждается, что при любом $x \in (\alpha, \beta)$ выполняется строгое неравенство $g(\mathscr{P}, x) < g(\mathscr{N}, x)$.

Итак, в § 4 будет доказано следующее

УТВЕРЖДЕНИЕ 1. Пусть G(s,x) – вполне положительное ядро в полуполосе $s>0, x\in [\alpha,\beta]$, непрерывное по s при $x=\alpha$ и тождественно равное 1 при $x=\beta,$ и пусть для наборов $\mathcal{N}\in\mathbb{N}_1$ и $\mathscr{P}\in\mathbb{N}_p$ ($\mathscr{P}\neq\mathcal{N}$) выполняется неравенство $g(\mathscr{P},\alpha)\leqslant g(\mathcal{N},\alpha)$. Тогда $g(\mathscr{P},x)< g(\mathcal{N},x)$ при всех $x\in(\alpha,\beta)$.

Доказательство использует три леммы.

ЛЕММА 4.1. Пусть G(s,x) — вполне положительное ядро в полуполосе $s>0, x\in [\alpha,\beta],$ тождественно равное 1 при $x=\beta$. Тогда G(s,x) убывает по s при любом $x\in [\alpha,\beta)$.

Доказательство. Так как G является TP-ядром, то при t>s>0 определитель

$$\begin{vmatrix} G(t,\beta) = 1 & G(t,x) \\ G(s,\beta) = 1 & G(s,x) \end{vmatrix} = G(s,x) - G(t,x)$$

положителен, т.е. G(t,x) < G(s,x) при t > s.

ЛЕММА 4.2. Пусть $g(\mathscr{P}, x)$ – генерирующая функция, соответствующая набору $\mathscr{P} = \{a_1, a_2, s_1, s_2\} \in \mathbb{N}_2$ и TP-ядру $G(s, x), s > 0, x \in [\alpha, \beta]$:

$$g(\mathscr{P},x)=a_1G(s_1,x)+a_2G(s_2,x), \qquad x\in [\alpha,\beta].$$

Пусть G непрерывно по s при $x = \alpha$ и $G(s,\beta) \equiv 1$. Тогда существует такое значение s_0 , что $G(s_0,\alpha) = g(\mathscr{P},\alpha)$. Это значение определяется однозначно, оно принадлежит интервалу (s_2,s_1) и $G(s_0,x) > g(\mathscr{P},x)$ при всех $x \in (\alpha,\beta)$.

Доказательство. Из леммы 4.1, примененной к $x=\alpha$, и условий $a_{1,2}>0$, $a_1+a_2=1$ следует, что $G(s,\alpha)>g(\mathscr{P},\alpha)$ при $s\leqslant s_2,\,G(s,\alpha)< g(\mathscr{P},\alpha)$ при $s\geqslant s_1$ и $G(s,\alpha)=g(\mathscr{P},\alpha)$ ровно при одном $s=s_0\in (s_2,s_1)$.

Чтобы доказать, что $G(s_0,x)>g(\mathscr{P},x)$ при любом $x\in(\alpha,\beta)$, рассмотрим определитель

$$D(x) = \begin{vmatrix} G(s_1, \beta) = 1 & G(s_1, x) & G(s_1, \alpha) \\ G(s_0, \beta) = 1 & G(s_0, x) & G(s_0, \alpha) \\ G(s_2, \beta) = 1 & G(s_2, x) & G(s_2, \alpha) \end{vmatrix}.$$

Вычитая из второй строки первую, умноженную на a_1 , и третью, умноженную на a_2 , получаем:

$$D(x) = \begin{vmatrix} 1 & G(s_1, x) & G(s_1, \alpha) \\ 0 & G(s_0, x) - g(\mathscr{P}, x) & 0 \\ 1 & G(s_2, x) & G(s_2, \alpha) \end{vmatrix}.$$

Таким образом,

$$D(x) = [G(s_0, x) - g(\mathscr{P}, x)][G(s_2, \alpha) - G(s_1, \alpha)].$$

Так как D(x)>0 и $G(s_2,\alpha)>G(s_1,\alpha)$, то $G(s_0,x)>g(\mathscr{P},x)$.

Индукцией по $p \geqslant 2$ из леммы 4.2 получается

ЛЕММА 4.3. Пусть $g(\mathscr{P},x)$ – генерирующая функция, соответствующая набору $\mathscr{P} = \{a_1,\ldots,a_p,s_1,\ldots,s_p\} \in \mathbb{N}_p$ и TP -ядру $G(s,x),\ s>0,\ x\in [\alpha,\beta]$:

$$g(\mathscr{P}, x) = a_1 G(s_1, x) + \dots + a_p G(s_p, x), \qquad x \in [\alpha, \beta].$$

Пусть G непрерывно по s при $x=\alpha$ и $G(s,\beta)\equiv 1$. Тогда существует и единственно такое s_0 , что $G(s_0,\alpha)=g(\mathscr{P},\alpha)$; это s_0 лежит в интервале (s_p,s_1) и $G(s_0,x)>g(\mathscr{P},x)$ при всех $x\in(\alpha,\beta)$.

ДОКАЗАТЕЛЬСТВО. Индукционный переход от p-1 к p получается заменой ${\mathscr P}$ набором

$$\{a_1,\ldots,a_{p-2},a_{p-1}+a_p,s_1,\ldots,s_{p-2},t_{p-1}\}\in\mathbb{N}_{p-1},$$

в котором $t_{p-1} \in (s_p, s_{p-1})$ однозначно определяется из условия

$$a_{p-1}G(s_{p-1},\alpha) + a_pG(s_p,\alpha) = (a_{p-1} + a_p)G(t_{p-1},\alpha).$$

Утверждение 1 сразу следует из лемм 4.1 и 4.3.

\S 5. Доказательство теоремы для наборов ${\mathscr N}$ ранга 2

Подробно разберем в $\S 5$ случай rank $\mathcal{N}=2$; общий случай $\mathcal{N}\in\mathbb{N}_n$ будет рассмотрен в $\S \S 6$, 7. Докажем

Утверждение 2. Пусть $G(s,x) \in \mathbb{G}$ при $s>0, x\in [\alpha,\beta]$ и $\gamma\in (\alpha,\beta)$; $\mathcal{N}\in\mathbb{N}_2, p>2$ и $\mathscr{P}\in\mathbb{N}_p$. Пусть $\mathscr{P}\prec\mathcal{N},$ т.е. генерирующие функции $g(\mathcal{N},x)$ и $g(\mathscr{P},x)$ связаны неравенством

$$g(\mathscr{P}, x) \leqslant g(\mathscr{N}, x), \qquad \alpha \leqslant x \leqslant \gamma.$$

Тогда найдется набор \mathcal{M} , rank $\mathcal{M}\leqslant 2$, для которого $\hat{\mathscr{P}}\prec<\mathcal{M}\prec\mathcal{N}$, т.е.

$$g(\mathscr{M},x)\leqslant g(\mathscr{N},x)\quad npu\quad x\in [\alpha,\gamma]\quad u\quad g(\mathscr{P},x)\leqslant g(\mathscr{M},x)\quad npu\quad x\in [\alpha,\beta].$$

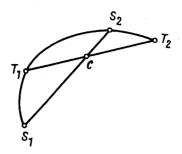


Рис. 1

Доказательство опирается на четыре леммы. Утверждение 2 почти в точности совпадает с последней из них и легко следует из нее предельным переходом.

С первыми двумя леммами связана следующая *геометрическая конструкция*. Положим (как в 3.3)

$$\xi_0(s) = G(s, \beta) \equiv 1, \quad \xi_1(s) = G(s, \gamma), \quad \xi_2(s) = G(s, \alpha).$$

Вектор-функция $\xi(s)=\left\{\xi_0(s)\equiv 1,\ \xi_1(s),\ \xi_2(s)\right\}$ задает кривую $\mathscr V$ в $\mathbb R^3$, лежащую в плоскости $\xi_0=1$. Так как $\xi_k(s), 0\leqslant k\leqslant 2$, образуют T-систему порядка 2, то $\mathscr V$ выпукла (никакие три точки $\mathscr V$ не лежат на одной прямой $^{(5)}$). Возьмем открытый отрезок $S=(S_1,S_2)$ с концами $S_{1,2}\in\mathscr V$ и точку $T_2\in\mathscr V$ так, что

$$S_{1,2} = \xi(s_{1,2}), \quad T_2 = \xi(t_2), \quad s_1 > s_2 > t_2 > 0.$$

Тогда (рис. 1) для любой точки $\mathscr{C} \in S$ существует и единственна такая точка $T_1 = \xi(t_1) \in \mathscr{V}$, что открытый отрезок $T = (T_1, T_2)$ пересекает S в точке \mathscr{C} ; точка T_1 лежит на дуге S_1S_2 кривой \mathscr{V} , т.е. $s_1 > t_1 > s_2$. Этот очевидный факт равносилен пункту 1 следующей леммы.

ЛЕММА 5.1. Пусть G(s,x) – вполне положительное ядро в полуполосе $s>0,\ x\in [\alpha,\beta],\$ тождественно равное 1 при $x=\beta$ и непрерывное по s при $x=\alpha$ и при $x=\gamma\in (\alpha,\beta);\ \mathcal{N}=\{a_1,a_2,s_1,s_2\}$ – произвольный набор из $\mathbb{N}_2,\$ и t_2 – произвольное число в интервале $(0,s_2)$. Тогда

1) существует ровно один набор $\mathscr{M} = \{b_1, b_2, t_1, t_2\}$, для которого генерирующие функции

$$g(\mathcal{N}, x) = a_1 G(s_1, x) + a_2 G(s_2, x),$$
 $g(\mathcal{M}, x) = b_1 G(t_1, x) + b_2 G(t_2, x)$

совпадают при $x=lpha,\ eta\ u\ \gamma;$ при этом $s_1>t_1>s_2;$

2)
$$g(\mathcal{N}, x) > g(\mathcal{M}, x)$$
 na (α, γ) , m.e. $\mathcal{M} \prec \mathcal{N}$.

Доказательство. Равносильность пункта 1 приведенному выше факту становится очевидной, если трактовать наборы

$$\mathcal{N} = \{a_1, a_2, s_1, s_2\}, \quad \mathcal{M} = \{b_1, b_2, t_1, t_2\} \in \mathbb{N}_2$$

как точки отрезков $S=(S_1,S_2)$ и $T=(T_1,T_2)$ на рис. 1: \mathscr{N} – центр масс $a_{1,2}$, помещенных в точки $S_{1,2}=\xi(s_{1,2}), \mathscr{M}$ – центр масс $b_{1,2}$ в точках $T_{1,2}=\xi(t_{1,2}).$ Пересечение S и T в точке \mathscr{C} , изображающей \mathscr{N} и \mathscr{M} , означает, что

$$a_1\xi(s_1) + a_2\xi(s_2) = b_1\xi(t_1) + b_2\xi(t_2),$$

или подробнее:

$$a_1G(s_1,x) + a_2G(s_2,x) = b_1G(t_1,x) + b_2G(t_2,x)$$
 при $x = \alpha, \beta, \gamma$.

Чтобы доказать пункт 2, рассмотрим определитель

$$P(x) = \begin{vmatrix} G(s_1, \beta) = 1 & G(s_1, \gamma) & G(s_1, x) & G(s_1, \alpha) \\ G(t_1, \beta) = 1 & G(t_1, \gamma) & G(t_1, x) & G(t_1, \alpha) \\ G(s_2, \beta) = 1 & G(s_2, \gamma) & G(s_2, x) & G(s_2, \alpha) \\ G(t_2, \beta) = 1 & G(t_2, \gamma) & G(t_2, x) & G(t_2, \alpha) \end{vmatrix}$$
$$= A_1G(s_1, x) + A_2G(s_2, x) - B_1G(t_1, x) - B_2G(t_2, x).$$

Очевидно, $P(\alpha)=P(\beta)=P(\gamma)=0$. Так как G является TP-ядром, то P(x)>0 на (α,γ) и коэффициенты $A_{1,2}$ и $B_{1,2}$ положительны. Поэтому разность $\rho(x)$ генерирующих функций $g(\mathcal{N},x)$ и $g(\mathcal{M},x)$, равная

$$a_1G(s_1,x) + a_2G(s_2,x) - b_1G(t_1,x) - b_2G(t_2,x),$$

совпадает с P(x) с точностью до положительного множителя $^{(6)}$, и значит (рис. 2), $g(\mathcal{N},x) > g(\mathcal{M},x)$ на (α,γ) , т.е. $\mathcal{M} \prec \mathcal{N}$.

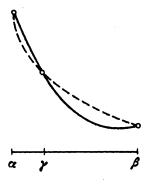


Рис. 2

При фиксированном наборе $\mathcal{N} \in \mathbb{N}_2$ и меняющемся $t_2 \in (0, s_2)$ построенный набор \mathcal{M} является функцией t_2 :

$$\mathscr{M} = \mathscr{M}(t_2) = \{b_1(t_2), b_2(t_2), t_1(t_2), t_2\}.$$

Пусть (рис. 3) $t_2 < t_2^* < s_2$, тогда по лемме $5.1~\mathcal{M}(t_2) \prec \mathcal{M}(t_2^*) \prec \mathcal{N}$, т.е. графики $g(\mathcal{M}(t_2),x),\ t_2 \in (0,s_2)$, образуют однопараметрическое семейство сталактитов на (α,γ) : при $x=\alpha$ и $x=\gamma$ функции $g(\mathcal{M}(t_2),x)$ не зависят от t_2 , а при любом $x\in (\alpha,\gamma)$ монотонно убывают при уменьшении t_2 . Как они ведут себя при $t_2\to 0$?

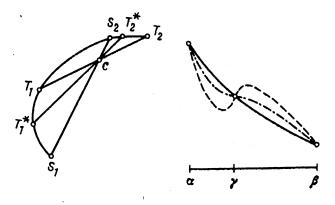


Рис. 3

ЛЕММА 5.2. Если $G \in \mathbb{G}$, то при $t_2 \to 0$ в наборе $\mathscr{M} = \mathscr{M}(t_2)$

$$b_1(t_2) \to 1$$
, $b_2(t_2) \to 0$, $t_1(t_2) \to t_0 \in (s_2, s_1)$

 $u g(\mathcal{M}, x) \to G(t_0, x)$ для всех $x \in (\alpha, \gamma]$.

ДОКАЗАТЕЛЬСТВО. Из рис. 3 видно: $t_1(t_2)$ убывает при уменьшении t_2 . Так как к тому же $t_1(t_2) \in (s_2, s_1)$, то существует

$$\lim_{t_2 \to 0} t_1(t_2) = t_0 \in [s_2, s_1).$$

Из тождества $g(\mathcal{M},\alpha)=b_1G(t_1,\alpha)+b_2G(t_2,\alpha)\equiv g(\mathcal{N},\alpha)$ следует, что

$$b_2(t_2)G(t_2,\alpha) < g(\mathcal{N},\alpha).$$

Воспользуемся этим неравенством и тем, что при $t \to 0$ (см. 3.4)

$$G(t, \alpha) o \infty$$
 и $\frac{G(t, x)}{G(t, \alpha)} o 0$ для любого $x \in (\alpha, \gamma]$.

Пусть $t_2 \to 0$. Тогда

$$b_2(t_2) = b_2(t_2) \frac{G(t_2, \alpha)}{G(t_2, \alpha)} < \frac{g(\mathscr{N}, \alpha)}{G(t_2, \alpha)},$$

т.e.

$$b_2(t_2) \to 0$$
, $b_1(t_2) = 1 - b_2(t_2) \to 1$.

Значит, для любого $x \in (\alpha, \gamma]$ в сумме

$$g(\mathcal{M}(t_2), x) = b_1(t_2)G(t_1(t_2), x) + b_2(t_2)G(t_2, x)$$

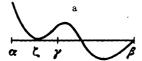
первое слагаемое стремится к $G(t_0,x)$; второе слагаемое стремится к нулю, поскольку

$$b_2(t_2)G(t_2,x) = b_2(t_2)G(t_2,\alpha)\frac{G(t_2,x)}{G(t_2,\alpha)} < g(\mathcal{N},\alpha)\frac{G(t_2,x)}{G(t_2,\alpha)}.$$

Следовательно, $g(\mathcal{M}(t_2), x) \to G(t_0, x)$ для всех $x \in (\alpha, \gamma]$.

Остается заметить, что $t_0 \neq s_2$ $\langle 7 \rangle$, значит, $t_0 \in (s_2, s_1)$, и все утверждения леммы доказаны.

Следующая лемма утверждает, что для наборов $\mathscr{P} \in \mathbb{N}_p$ (p > 2) и $\mathscr{M} \in \mathbb{N}_2$, связанных соотношением $\mathscr{P} \prec \mathscr{M}$, разность генерирующих функций $g(\mathscr{M}, x)$ и $g(\mathscr{P}, x)$ не может быть такой, как на рис. 4а.



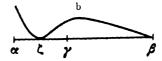


Рис. 4

ЛЕММА 5.3. Пусть ТР-ядро G(s,x) определено в полуполосе $s>0, x\in [\alpha,\beta]$ и непрерывно при $\alpha\leqslant x\leqslant \gamma<\beta,$ и пусть для наборов

$$\mathcal{M} \in \mathbb{N}_2, \quad \mathscr{P} \in \mathbb{N}_p, \quad p > 2, \quad \mathscr{P} \prec \mathcal{M},$$

разность генерирующих функций $g(\mathcal{M},x)-g(\mathcal{P},x)$ имеет корни

$$x = \beta$$
 u $x = \zeta \in (\alpha, \gamma)$.

Тогда (рис. 4b) $g(\mathcal{M},x) > g(\mathcal{P},x)$ на $[\gamma,\beta), m.e.$ $\mathcal{P} \prec< \mathcal{M}$.

Эта лемма будет доказана в более общем виде в § 7.

Леммы 5.1-5.3 используются при доказательстве следующей леммы.

ЛЕММА 5.4. Пусть $G \in \mathbb{G}$, $\mathcal{N} = \{a_1, a_2, s_1, s_2\} \in \mathbb{N}_2$, p > 2 и $\mathscr{P} \in \mathbb{N}_p$. Пред-положим, что для генерирующих функций $g(\mathcal{N}, x)$ и $g(\mathscr{P}, x)$ выполняется строгое неравенство $g(\mathscr{P}, x) < g(\mathcal{N}, x)$, $x \in [\alpha, \gamma]$, $\gamma \in (\alpha, \beta)$. Тогда найдется набор \mathscr{M} , rank $\mathscr{M} \leqslant 2$, для которого $g(\mathscr{M}, x) \leqslant g(\mathscr{N}, x)$ при $x \in [\alpha, \gamma]$ и $g(\mathscr{P}, x) \leqslant g(\mathscr{M}, x)$ при $x \in [\alpha, \beta]$.

Доказательство. По условию $\mathscr{P} \prec \mathscr{N}$. Если существует такой набор $\mathscr{M} \in \mathbb{N}_1$, что $\mathscr{P} \prec \mathscr{M} \prec \mathscr{N}$, то по утверждению 1 (см. $\S 4$) $\mathscr{P} \prec < \mathscr{M}$, и лемма 5.4 доказана. Поэтому предположим, что такого набора не существует.

Применим к набору $\mathcal N$ лемму 5.1 и для каждого $t_2 \in (0,s_2)$ построим набор $\mathcal M = \mathcal M(t_2) = \left\{b_1(t_2), b_2(t_2), t_1(t_2), t_2\right\} \prec \mathcal N$. Если бы для любого $t_2 \in (0,s_2)$ выполнялось неравенство

$$g(\mathscr{P}, x) < g(\mathscr{M}(t_2), x), \quad x \in [\alpha, \gamma],$$

то по лемме 5.2 отсюда следовало бы, что

$$g(\mathscr{P},x) \leqslant G(t_0,x) \leqslant g(\mathscr{N},x), \quad x \in [\alpha,\gamma],$$

т.е. вопреки предположению существовал бы такой набор $\mathcal{M}_0\in\mathbb{N}_1$, для которого $\mathscr{P}\prec\mathcal{M}_0\prec\mathcal{N}$. Значит, для некоторых $t_2^0\in(0,s_2)$ и $\zeta\in(\alpha,\gamma)$

$$g(\mathscr{P},\zeta)=g(\mathscr{M}(t_2^0),\zeta)\quad \text{и}\quad g(\mathscr{P},x)\leqslant g(\mathscr{M}(t_2^0),x) \ \text{ при}\ \ x\in [\alpha,\gamma].$$

По лемме 5.3 последнее неравенство выполняется на всем отрезке $[\alpha,\beta]$. Тем самым лемма 5.4 доказана. Как уже было сказано, утверждение 2 следует из нее предельным переходом.

§ 6. Лемма о сталактитах

Для наборов $\mathcal N$ ранга n>2 теорема 2 доказывается по той же схеме, что и при n=2, но доказательство сложнее. Начнем с обобщения геометрической конструкции из $\S 5$.

6.1. Симплексы с вершинами на выпуклой кривой. Пусть G(s,x) – вполне положительное ядро в полуполосе $s>0, x\in [\alpha,\beta]$, непрерывное при $\alpha\leqslant x\leqslant \gamma<\beta$ и тождественно равное 1 при $x=\beta$. Положим $\eta_0=\beta, \eta_1=\gamma, \eta_n=\alpha$. Произвольно фиксируем такие точки η_j на (α,γ) и такое $\varepsilon>0$, что $\eta_{j-1}>\eta_j+\varepsilon$ (1< j< n), и положим

$$\xi(s) = \{\xi_0 = G(s, \beta) \equiv 1, G(s, \gamma), \dots, G(s, \eta_j + \varepsilon), G(s, \eta_j), \dots, G(s, \alpha)\}.$$

Вектор-функция $\xi(s)$, s>0, задает кривую $\mathscr V$ в $\mathbb R^{2n-1}$, лежащую в гиперплоскости $\xi_0=1$. Так как компоненты $\xi(s)$ образуют Т-систему порядка 2n-2, то

 $\mathscr V$ выпукла (по определению это означает, что любое аффинное пространство размерности 2n-3 имеет самое большее 2n-2 общих точек $\mathfrak c\mathscr V$).

Возьмем такой открытый симплекс $S=(S_1,\ldots,S_n)$ с вершинами $S_j\in\mathcal{V}$ и такую точку $T_n\in\mathcal{V}$, что

$$S_j = \xi(s_j) \ (1 \le j \le n), \ T_n = \xi(t_n), \ s_1 > \dots > s_n > t_n > 0.$$

Тогда (рис. 5) для любой точки $\mathscr{C} \in S$ существует ровно один открытый симплекс $T = (T_1, \ldots, T_n)$ с вершинами $T_j \in \mathscr{V}$, пересекающий S в точке \mathscr{C} . При этом вершины T чередуются с вершинами S на \mathscr{V} :

$$T_j = \xi(t_j) \ (1 \le j \le n), \quad s_1 > t_1 > \dots > s_n > t_n > 0.$$

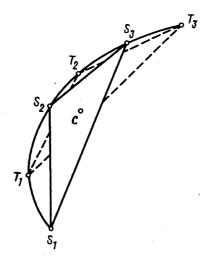


Рис. 5

Это – известный факт из теории *канонических представлений* Маркова–Крейна [12]; для полноты изложения мы докажем его в $\S 8^{(8)}$, а пока будем им пользоваться: он равносилен первой части леммы 6.1, формулируемой в 6.2.

6.2. Лемма о наборе \mathcal{M} . Будем трактовать наборы

$$\mathcal{N} = \{a_1, \dots, a_n, s_1, \dots, s_n\}, \quad \mathcal{M} = \{b_1, \dots, b_n, t_1, \dots, t_n\} \in \mathbb{N}_n$$

как точки симплексов S и T из 6.1: \mathscr{N} – центр масс a_j , помещенных в вершины S_j , \mathscr{M} – центр масс b_j в вершинах T_j , $1\leqslant j\leqslant n$. Пересечение S и T в точке \mathscr{C} , изображающей \mathscr{N} и \mathscr{M} , означает, что

$$\sum_{j=1}^{n} a_{j} \xi(s_{j}) = \sum_{j=1}^{n} b_{j} \xi(t_{j}),$$

т.е. что генерирующие функции

$$g(\mathcal{N}, x) = \sum_{j=1}^{n} a_j G(s_j, x), \quad g(\mathcal{M}, x) = \sum_{j=1}^{n} b_j G(t_j, x)$$

совпадают при $x = \eta_i$ $(1 \leqslant j \leqslant n)$ и при $x = \eta_i + \varepsilon$ (1 < j < n).

Разность $g(\mathcal{N},x)-g(\mathcal{M},x)$ с точностью до положительного множителя равна определителю

$$\begin{vmatrix} G(s_1,x) & G(s_1,\beta) & G(s_1,\gamma) & \dots & G(s_1,\eta_j+\varepsilon) & G(s_1,\eta_j) & \dots & G(s_1,\alpha) \\ G(t_1,x) & G(t_1,\beta) & G(t_1,\gamma) & \dots & G(t_1,\eta_j+\varepsilon) & G(t_1,\eta_j) & \dots & G(t_1,\alpha) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ G(s_n,x) & G(s_n,\beta) & G(s_n,\gamma) & \dots & G(s_n,\eta_j+\varepsilon) & G(s_n,\eta_j) & \dots & G(s_n,\alpha) \\ G(t_n,x) & G(t_n,\beta) & G(t_n,\gamma) & \dots & G(t_n,\eta_j+\varepsilon) & G(t_n,\eta_j) & \dots & G(t_n,\alpha) \end{vmatrix}$$

Поэтому (рис. 6) она отрицательна при $\beta > x > \gamma$, а на (α, γ) принимает отрицательные значения в интервалах $(\eta_j, \eta_j + \varepsilon)$, 1 < j < n, и положительна при всех $x \in (\alpha, \gamma)$ вне отрезков $[\eta_j, \eta_j + \varepsilon]$.

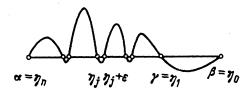


Рис. 6

Сформулируем полученный результат в виде леммы.

ЛЕММА 6.1. Пусть TP -ядро G(s,x) определено в полуполосе $s>0, x\in [\alpha,\beta],$ непрерывно при $\alpha\leqslant x\leqslant \gamma<\beta$ и тождественно равно 1 при $x=\beta$: $G(s,\beta)\equiv 1;$ $\mathcal{N}=\left\{a_1,\ldots,a_n,s_1,\ldots,s_n\right\}$ — произвольный набор из $\mathbb{N}_n,\ t_n$ — произвольное число в интервале $(0,s_n)$. Тогда, каковы бы ни были точки $\eta_j\ (1< j< n)$ и число $\varepsilon>0$ такие, что

$$\eta_0 = \beta > \eta_1 = \gamma > \eta_2 > \dots > \eta_n = \alpha, \quad \eta_{j-1} > \eta_j + \varepsilon \quad (1 < j < n),$$

существует ровно один набор $\mathcal{M} = \{b_1, \dots, b_n, t_1, \dots, t_n\}$, для которого разность $g(\mathcal{N}, x) - g(\mathcal{M}, x)$ генерирующих функций

$$g(\mathcal{N}, x) = \sum_{j=1}^{n} a_j G(s_j, x), \qquad g(\mathcal{M}, x) = \sum_{j=1}^{n} b_j G(t_j, x)$$

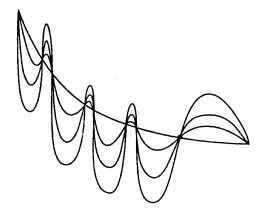
имеет 2n-1 корней

$$x = \eta_j \quad (0 \le j \le n) \quad u \quad x = \eta_j + \varepsilon \quad (1 < j < n);$$

npu этом $t_k \in (s_{k+1}, s_k), 1 \leq k < n, u$

$$g(\mathcal{N}, x) - g(\mathcal{M}, x) > 0$$

всюду на $(lpha, \gamma)$ вне отрежов $[\eta_j, \eta_j + arepsilon], 1 < j < n.$



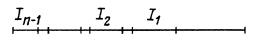


Рис. 7

6.3. Семейство $\mathcal{M}(t)$. Сталактиты. Если фиксировать набор $\mathcal{N} \in \mathbb{N}_n$, точки η_j $(0 \le j \le n)$ и число ε и менять $t_n = t \in (0, s_n)$, то набор \mathcal{M} в лемме 6.1 окажется функцией t:

$$\mathcal{M} = \mathcal{M}(t) = \{b_1(t), \dots, b_n(t), t_1(t), \dots, t_{n-1}(t), t_n = t\}.$$

Если $s_n>t^*>t>0$, то по лемме 6.1 числа

$$s_j, \ t_j^* = t_j(t^*) \ \text{u} \ t_j = t_j(t), \ 1 \leqslant j \leqslant n,$$

чередуются: $s_1 > t_1^* > t_1 > \dots > t_{n-1}^* > t_{n-1} > s_n$, и

$$g(\mathcal{N}, x) > g(\mathcal{M}(t^*), x) > g(\mathcal{M}(t), x)$$

для любого x на (α, γ) вне отрезков $[\eta_j, \eta_j + \varepsilon], 1 < j < n$, так что на интервалах $I_k \subseteq (\eta_{k+1}, \eta_k) \subset (\alpha, \beta), 1 \leqslant k \leqslant n-1$, разделяющих эти отрезки, графики $g(\mathcal{M}(t), x), t \in (0, s_n)$, образуют однопараметрическое семейство сталактитов (рис. 7, сравним со случаем n = 2 в §5).

Пусть ядро $G \in \mathbb{G}$. Предположим, что наборы

$$\mathcal{N} \in \mathbb{N}_n, \ \mathcal{P} \in \mathbb{N}_p \ (p > n, \ \mathcal{P} \prec \mathcal{N})$$

удовлетворяют условию минимальности: не существует набора \mathcal{M} ранга меньше n, для которого $\mathscr{P} \prec \mathcal{M} \prec \mathcal{N}$. Предположим также, что для генерирующих функций $g(\mathscr{P},x)$ и $g(\mathscr{N},x)$ выполняется строгое неравенство

$$g(\mathscr{P}, x) < g(\mathscr{N}, x), \quad x \in [\alpha, \gamma],$$

так что при t, близких к s_n ,

$$g(\mathscr{P}, x) < g(\mathscr{M}(t), x), \quad x \in [\alpha, \gamma].$$

При уменьшении t последнее неравенство может нарушиться на одном или нескольких интервалах I_k $(1\leqslant k\leqslant n-1)$; цель, которую мы ставим перед собой в $\S 6$, —

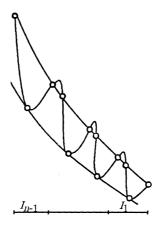


Рис. 8

доказать, что при фиксированном ${\mathscr N}$ и любом достаточно малом ${\varepsilon}>0$ можно подобрать такие

$$\eta_i \in (\alpha, \gamma) = (\eta_n, \eta_1), \quad \eta_{i-1} > \eta_i + \varepsilon, \quad 1 < j < n,$$

что при уменьшении t сталактиты $g(\mathcal{M}(t), x)$ достигнут графика $g(\mathcal{P}, x)$ одновременно на всех интервалах I_1, \ldots, I_{n-1} (рис. 8).

В §7 мы выведем из этого факта теорему 2.

6.4. Предельные соотношения при $t \to 0$ и множества $\mathbb{M}_k(\varepsilon)$.

ЛЕММА 6.2. Если $G \in \mathbb{G}$, то при $t \to 0$ в наборе $\mathscr{M} = \mathscr{M}(t)$

$$b_n(t) \to 0$$
, $b_j(t) \to b_j^0 > 0$, $t_j(t) \to t_j^0 \in (s_{j+1}, s_j)$ $(1 \le j \le n-1)$

 $u g(\mathcal{M}, x) \to g(\mathcal{M}^0, x)$ для всех $x \in (\alpha, \gamma]$, где

$$\mathcal{M}^0 = \{b_1^0, \dots, b_{n-1}^0, t_1^0, \dots, t_{n-1}^0\} \in \mathbb{N}_{n-1}.$$

Доказательство. Так же, как в лемме 5.2, доказывается, что при $t \to 0$

$$t_j(t) \to t_j^0 \in [s_{j+1}, s_j) \ (1 \le j \le n-1), \ b_n(t) \to 0, \ b_n(t)G(t, x) \to 0$$

для любого $x \in (\alpha, \gamma]$. Так как $0 < b_j(t) < 1, 1 \leqslant j \leqslant n$, то при $t \to 0$ множество значений, принимаемых каждым коэффициентом $b_j(t)$, имеет предельную точку $b_j^0 \in [0, 1]$. Значит, для некоторой последовательности значений $t \to 0$

$$g(\mathcal{M}(t), x) = \sum_{j=1}^{n} b_j(t)G(t_j(t), x) \to \sum_{j=1}^{n-1} b_j^0 G(t_j^0, x) = g(\mathcal{M}^0, x)$$

при всех $x \in (\alpha, \gamma]$ и при $x = \beta$ (отсюда $\sum_{i=1}^{n-1} b_i^0 = 1$). По построению

$$g(\mathcal{M}^0, x) = g(\mathcal{N}, x)$$
 при $x = \eta_k \ (0 \le k \le n - 1)$ и $x = \eta_k + \varepsilon \ (1 < k < n).$

Этими условиями \mathcal{M}^0 определяется однозначно: не существует набора

$$\mathcal{M}^* = \{b_1^*, \dots, b_{n-1}^*, t_1^*, \dots, t_{n-1}^*\} \neq \mathcal{M}^0,$$

для которого разность

$$g(\mathcal{M}^*, x) - g(\mathcal{M}^0, x) = \sum_{j=1}^{n-1} \left[b_j^* G(t_j^*, x) - b_j^0 G(t_j^0, x) \right]$$

имела бы 2n-2 нуля. Поэтому $b_j(t)$ не имеет ни одной предельной точки $b_j^* \neq b_j^0$ $(1 \leqslant j \leqslant n-1)$, т.е. $g(\mathcal{M}(t),x)$ сходится к $g(\mathcal{M}^0,x)$ на $(\alpha,\gamma]$ при $t\to 0$.

Из совпадения $g(\mathcal{M}_0,x)$ и $g(\mathcal{N},x)$ в 2n-2 точках следует также $^{(9)}$, что для каждого j $(1\leqslant j\leqslant n-1)$, во-первых, $t_j^0\neq s_{j+1}$, т.е. $t_j^0\in (s_{j+1},s_j)$, и во-вторых, $0< b_j^0<1$, т.е. $\mathcal{M}^0\in\mathbb{N}_{n-1}$.

Если $G\in \mathbb{G}$ и наборы $\mathscr{N}\in\mathbb{N}_n,\,\mathscr{P}\in\mathbb{N}_p\,(p>n,\,\mathscr{P}\prec\mathscr{N})$ удовлетворяют условию минимальности (см. 6.3), то из леммы 6.2 вытекает

СЛЕДСТВИЕ. Неравенство $g(\mathscr{P}, x) < g(\mathscr{M}(t), x), \ x \in (\alpha, \gamma],$ не может выполняться при всех $t \in (0, s_n)$.

Подробнее: пусть (см. 6.3) при t, близких к s_n ,

$$g(\mathscr{P}, x) < g(\mathscr{M}(t), x), \quad x \in [\alpha, \gamma],$$

тогда при уменьшении t это неравенство *обязательно нарушится*: для некоторого числа $t_0 \in (0, s_n)$ и некоторой точки $\zeta \in (\alpha, \gamma)$ окажутся выполненными условия

$$g(\mathscr{P},\zeta)=g(\mathscr{M}(t_0),\zeta)$$
 и $g(\mathscr{P},x)\leqslant g(\mathscr{M}(t_0),x)$ при $x\in [\alpha,\gamma].$

Эти t_0 и ζ зависят от выбора точек $\eta_j, 1 < j < n$, которые (вместе с набором $\mathscr N$ и числом $\varepsilon > 0$) определяют семейство $\mathscr M(t)$. Точка ζ заведомо не принадлежит отрезкам $[\eta_j, \eta_j + \varepsilon], 1 < j < n$ (где $g(\mathscr M(t), x) \geqslant g(\mathscr N, x) > g(\mathscr P, x)$) и, следовательно, лежит в одном из интервалов $I_1, \ldots, I_{n-1} \subset (\alpha, \gamma)$, разделяющих эти отрезки.

Введем следующее обозначение: отнесем $\eta = \{\eta_j\}_{j=2}^{n-1}$ к множеству $\mathbb{M}_k(\varepsilon)$, если уравнение

$$g(\mathscr{P},x) = g(\mathscr{M}(t_0),x)$$

имеет корень

$$x = \zeta \in I_k \subset (\eta_{k+1}, \eta_k), \quad 1 \le k \le n-1,$$

и $g(\mathscr{P},x)\leqslant g(\mathscr{M}(t_0),x)$ при всех $x\in [lpha,\gamma].$

6.5. Лемма о сталактитах. Из леммы Шпернера [14] следует (10): пересечение $\mathbb{M}_1(\varepsilon) \cap \cdots \cap \mathbb{M}_{n-1}(\varepsilon) = \mathbb{M}(\varepsilon)$ не пусто, т.е. доказана

ПЕММА 6.3. Пусть $G \in \mathbb{G}$, наборы $\mathcal{N} \in \mathbb{N}_n$, $\mathcal{P} \in \mathbb{N}_p$ $(p > n, \mathcal{P} \prec \mathcal{N})$ удовлетворяют условию минимальности (не существует набора \mathcal{M} ранга меньше n, для которого $\mathcal{P} \prec \mathcal{M} \prec \mathcal{N}$) и выполняется строгое неравенство $g(\mathcal{P}, x) < g(\mathcal{N}, x), \ x \in [\alpha, \gamma]$.

Тогда для любого достаточно малого $\varepsilon > 0$ существуют такие η_j ,

$$\eta_0 = \beta > \eta_1 = \gamma > \eta_2 > \dots > \eta_n = \alpha, \quad \eta_{j-1} > \eta_j + \varepsilon \quad (1 < j < n),$$

что построенные по ним сталактиты $g(\mathscr{M}(t),x)$ достигают графика $g(\mathscr{P},x)$ одновременно на всех интервалах $I_1,\ldots,I_{n-1}\subset(\alpha,\gamma)$, разделяющих отрежи $[\eta_j,\eta_j+\varepsilon],\ 1< j< n.$

Иначе говоря, найдутся $t_0 \in (0,s_n)$ и такие $\zeta_k \in I_k \ (1\leqslant k\leqslant n-1),$ что

$$g(\mathscr{P},\zeta_k)=g(\mathscr{M}(t_0),\zeta_k)$$
 и $g(\mathscr{P},x)\leqslant g(\mathscr{M}(t_0),x)$ при $x\in [lpha,\gamma].$

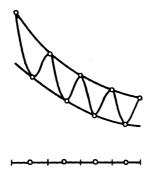


Рис. 9

§7. Доказательство теоремы об отношениях предшествования

Устремляя ε к нулю, получаем (рис. 9), что верна

 Π ЕММА 7.1.~B условиях леммы 6.3 существуют такие чередующиеся точки

$$\eta_1 = \gamma > \zeta_1 > \eta_2 > \dots > \zeta_{n-1} > \eta_n = \alpha \tag{*}$$

и такой набор $\mathcal{M} \in \mathbb{N}_n$, что график $g(\mathcal{M}, x)$, $x \in [\alpha, \gamma]$, располагается между графиками $g(\mathcal{N}, x)$ и $g(\mathcal{P}, x)$, попеременно совпадая с ними в точках (*):

$$g(\mathcal{P}, x) \leqslant g(\mathcal{M}, x) \leqslant g(\mathcal{N}, x), \qquad x \in [\alpha, \gamma];$$

$$g(\mathcal{M}, \eta_i) = g(\mathcal{N}, \eta_i), \quad 1 \leqslant j \leqslant n; \qquad g(\mathcal{M}, \zeta_k) = g(\mathcal{P}, \zeta_k), \quad 1 \leqslant k \leqslant n - 1.$$

Докажем, что $g(\mathscr{P},x)\leqslant g(\mathscr{M},x)$ на всем отрезке $\alpha\leqslant x\leqslant \beta,$ и выведем отсюда теорему 2.

ЛЕММА 7.2. Пусть TP-ядро G(s,x) определено в полуполосе $s>0, x\in [\alpha,\beta]$ и непрерывно при $\alpha\leqslant x\leqslant \gamma<\beta,$ и пусть для наборов

$$\mathcal{M} \in \mathbb{N}_n, \quad \mathscr{P} \in \mathbb{N}_p \qquad (2 \leqslant n < p, \quad \mathscr{P} \prec \mathscr{M})$$

разность генерирующих функций $g(\mathscr{M},x)-g(\mathscr{P},x)$ имеет n корней:

$$x = \beta$$
 u $x = \zeta_k$ $(1 \leqslant k \leqslant n-1)$, $\gamma > \zeta_1 > \cdots > \zeta_{n-1} > \alpha$.

Тогда $g(\mathcal{M},x) > g(\mathcal{P},x)$ на $[\gamma,\beta)$, т.е. $\mathcal{P} \prec < \mathcal{M}$.

Доказательство. Пусть

$$\mathscr{M} = \{b_1, \ldots, b_n, t_1, \ldots, t_n\}, \quad \mathscr{P} = \{c_1, \ldots, c_p, u_1, \ldots, u_p\}.$$

Для малого $\varepsilon > 0$ положим

$$Q = Q(x, \varepsilon) = g(\mathcal{M}, x) - g(\mathcal{P}, x) - \varepsilon \begin{vmatrix} G(t_1, \beta) & G(t_1, x) \\ G(t_2, \beta) & G(t_2, x) \end{vmatrix}$$
$$= \sum_{k=1}^{n} \bar{b}_k(t)G(t_k, x) - \sum_{k=1}^{p} c_kG(u_k, x),$$

где $\bar{b}_1=b_1+\varepsilon G(t_2,\beta), \ \bar{b}_2=b_2-\varepsilon G(t_1,\beta), \ \bar{b}_k=b_k$ при $3\leqslant k\leqslant n$. Определитель в формуле для Q (множитель при ε) положителен при $x\in [\alpha,\beta)$ и равен нулю при $x=\beta$. Поэтому для некоторых

$$\zeta_k^+ = \zeta_k^+(\varepsilon), \quad \zeta_k^- = \zeta_k^-(\varepsilon), \quad 1 \leqslant k \leqslant n-1,$$

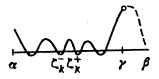


Рис. 10

стремящихся к ζ_k при $\varepsilon \to 0$ (рис. 10),

$$Q=0$$
 при $x=eta,\ x=\zeta_k^+$ и $x=\zeta_k^ (1\leqslant k\leqslant n-1),$ $Q>0$ при $x\in [lpha,\gamma]$ вне отрезков $[\zeta_k^-,\zeta_k^+],\ 1\leqslant k\leqslant n-1.$

Все $k,\,1\leqslant k\leqslant p$, для которых $u_k\neq t_1,\ldots,t_n$, разобьем на n+1 классов $K_j=\{k\mid t_{j-1}>u_k>t_j\}\ (1\leqslant j\leqslant n+1,\,t_0=+\infty,\,t_{n+1}=0).$ Просуммируем $c_kG(u_k,x)$ по всем $k\in K_j$:

$$e_j(x) = \sum c_k G(u_k, x), \quad k \in K_j, \ 1 \leqslant j \leqslant n+1,$$

и представим Q в виде

$$Q = \sum_{k=1}^{n} b_k^0 G(t_k, x) - \sum_{j=1}^{n+1} e_j(x), \tag{*}$$

где $b_k^0=ar b_k$, если среди u_1,\dots,u_p нет числа t_k $(1\leqslant k\leqslant n)$, и $b_k^0=ar b_k-c_j$, если $u_j=t_k$.

Замечание. Можно считать, что ни один из классов K_j $(1\leqslant j\leqslant n+1)$ не пуст (все $e_j\not\equiv 0$). Иначе число нулей Q лишь на 1 меньше числа слагаемых в (*), и Q однозначно с точностью до множителя q>0 записывается в виде определителя, не меняющего знак на $[\gamma,\beta)$, что доказывает лемму 7.2; например, если $e_{n+1}(x)\equiv 0$, то $Q=q\Delta$, где определитель

$$\Delta = \begin{vmatrix} e_1(\beta) & \dots & e_1(\zeta_k^+) & e_1(\zeta_k^-) & \dots & e_1(x) \\ G(t_1, \beta) & \dots & G(t_1, \zeta_k^+) & G(t_1, \zeta_k^-) & \dots & G(t_1, x) \\ \dots & \dots & \dots & \dots & \dots \\ e_n(\beta) & \dots & e_n(\zeta_k^+) & e_n(\zeta_k^-) & \dots & e_n(x) \\ G(t_n, \beta) & \dots & G(t_n, \zeta_k^+) & G(t_n, \zeta_k^-) & \dots & G(t_n, x) \end{vmatrix}$$

положителен на $[\gamma, \beta)$, поскольку G является TP -ядром.

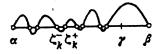


Рис. 11

Итак, предположим, что все $e_j \not\equiv 0$ ($1 \leqslant j \leqslant n+1$). По критерию из 3.3 функции $e_1(x), G(t_1, x), \ldots, e_n(x), G(t_n, x), e_{n+1}(x)$ образуют T-систему на $[\alpha, \beta]$. Поэтому (рис. 11) однозначно строится функция

$$P = P(x, \varepsilon) = \sum_{k=1}^{n} b_k^* G(t_k, x) - \sum_{j=1}^{n} c_j^* e_j(x) - e_{n+1}(x)$$

с корнями $\beta, \, \zeta_k^+, \, \zeta_k^- \, (1\leqslant k\leqslant n-1)$ и $\alpha,$ положительная всюду на (α,β) вне отрезков $[\zeta_k^-,\zeta_k^+]$ и отрицательная при $x\in (\zeta_k^-,\zeta_k^+),\, 1\leqslant k\leqslant n-1$:

$$P = p \begin{vmatrix} e_1(\beta) & \dots & e_1(\zeta_k^+) & e_1(\zeta_k^-) & \dots & e_1(x) & e_1(\alpha) \\ G(t_1, \beta) & \dots & G(t_1, \zeta_k^+) & G(t_1, \zeta_k^-) & \dots & G(t_1, x) & G(t_1, \alpha) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ e_n(\beta) & \dots & e_n(\zeta_k^+) & e_n(\zeta_k^-) & \dots & e_n(x) & e_n(\alpha) \\ G(t_n, \beta) & \dots & G(t_n, \zeta_k^+) & G(t_n, \zeta_k^-) & \dots & G(t_n, x) & G(t_n, \alpha) \\ e_{n+1}(\beta) & \dots & e_{n+1}(\zeta_k^+) & e_{n+1}(\zeta_k^-) & \dots & e_{n+1}(x) & e_{n+1}(\alpha) \end{vmatrix},$$

множитель p>0 выбирается так, чтобы коэффициент при $e_{n+1}(x)$ оказался равным -1.

Разность R=Q-P является линейной комбинацией 2n функций

$$e_1(x), G(t_1, x), \ldots, e_n(x), G(t_n, x),$$

образующих T-систему порядка 2n-1. Разность R имеет 2n-1 корней:

$$x = \beta$$
, $x = \zeta_k^+$, $x = \zeta_k^ (1 \le k \le n - 1)$.

Значит, $R=r\Delta$, где Δ – вышисанный выше определитель (см. замечание). Так как R>0 при $x=\alpha$, то r>0. Поэтому R>0 на $[\gamma,\beta)$. Поскольку и P>0 на $[\gamma,\beta)$, то

$$Q = R + P > 0$$
 на $[\gamma, \beta)$.

Отсюда и $g(\mathscr{M},x)-g(\mathscr{P},x)>Q>0$ на $[\gamma,\beta)$.

ЛЕММА 7.3. Пусть ядро $G(s,x) \in \mathbb{G}$ при $s>0, x\in [\alpha,\beta]$ и $\gamma\in (\alpha,\beta),$ и пусть для наборов

$$\mathcal{N} = \{a_1, \dots, a_n, s_1, \dots, s_n\} \in \mathbb{N}_n \quad u \quad \mathscr{P} \in \mathbb{N}_p \quad (p > n, \ \mathscr{P} \prec \mathscr{N})$$

выполняется строгое неравенство

$$g(\mathscr{P}, x) < g(\mathscr{N}, x), \qquad x \in [\alpha, \gamma].$$

Тогда найдется набор $\mathcal{M}=\{b_1,\ldots,b_m,t_1,\ldots,t_m\}\in\mathbb{N}_m,\ m\leqslant n,\ c$ числами $t_j\in(0,s_1),\ 1\leqslant j\leqslant m,\ для которого$

$$g(\mathscr{M},x)\leqslant g(\mathscr{N},x)\quad npu\quad x\in [\alpha,\gamma] \quad u\quad g(\mathscr{P},x)\leqslant g(\mathscr{M},x)\quad npu\quad x\in [\alpha,\beta].$$

Замечание. Прежде, чем доказывать лемму 7.3, отметим, что из нее предельным переходом (использующим ограниченность b_j и $t_j, 1\leqslant j\leqslant m$, и непрерывность G(s,x) по s при $x\in [\alpha,\beta]$) следует

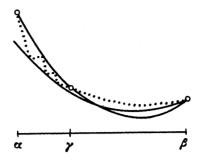


Рис. 12

УТВЕРЖДЕНИЕ 3. Пусть $G \in \mathbb{G}$, p > n, $\mathscr{N} \in \mathbb{N}_n$ и $\mathscr{P} \in \mathbb{N}_p$, и пусть $\mathscr{P} \prec \mathscr{N}$, m.e. для генерирующих функций $g(\mathscr{N},x)$ и $g(\mathscr{P},x)$ выполняется нестрогое неравенство

$$g(\mathscr{P},x)\leqslant g(\mathscr{N},x)$$
 npu $\alpha\leqslant x\leqslant \gamma<\beta.$

Тогда найдется набор \mathcal{M} , rank $\mathcal{M} \leq n$, для которого $\mathcal{P} \prec < \mathcal{M} \prec \mathcal{N}$, т.е.

$$g(\mathscr{M},x)\leqslant g(\mathscr{N},x) \ \text{npu} \ x\in [\alpha,\gamma] \quad \text{u} \quad g(\mathscr{P},x)\leqslant g(\mathscr{M},x) \ \text{npu} \ x\in [\alpha,\beta].$$

ДОКАЗАТЕЛЬСТВО. Докажем лемму 7.3 индукцией по n. Для $n \leq 2$ она верна (см. лемму 5.4 и утверждение 1 в $\S 4$). Допустим, что она, а значит, и утверждение 3 верны для наборов $\mathcal{N} = \mathcal{M}^0$ ранга меньше n, и докажем ее для наборов $\mathcal{N} \in \mathbb{N}_n$.

По условию $\mathscr{P} \prec \mathscr{N}$. Если существует такой набор \mathscr{M}^0 , rank $\mathscr{M}^0 = m^0 \leqslant n$, что $\mathscr{P} \prec \mathscr{M}^0 \prec \mathscr{N}$, то (по индукционному допущению) найдется $\mathscr{M} \in \mathbb{N}_m$, $m \leqslant m^0 \leqslant n$, для которого $\mathscr{P} \prec \mathscr{M} \prec \mathscr{M}^0 \prec \mathscr{N}$, и лемма 7.3 доказана. Если такого набора \mathscr{M}^0 не существует, т.е. выполняется условие минимальности, то лемма 7.3 и утверждение 3 следуют из лемм 7.1, 7.2 (рис. 12).

Доказательство теоремы об отношениях предшествования закончено.

§8. Комментарии

1. Было бы неверно думать, что $h(f^*) < h(f)$, если $f^* \prec f$, а число ступенек f^* больше, чем у f. Тем неожиданнее теорема 2.2.

2.
$$h(\mathscr{M}) - h(\mathscr{P}) = \int_{-\infty}^{\beta} [g(\mathscr{M}, x) - g(\mathscr{P}, x)] d\theta(x).$$

Разность $g(\mathcal{M}, x) - g(\mathcal{P}, x)$ неотрицательна и имеет конечное число корней, а $d\theta(x) \geqslant 0$ и не сосредоточена в конечном числе точек. Значит, $h(\mathcal{M}) > h(\mathcal{P})$.

- 3. В доказательстве теоремы 2 мы будем трактовать наборы из \mathbb{N}_n как точки симплексов с вершинами на \mathscr{V} .
- 4. При $x \in (\gamma, \beta]$ непрерывность по x не предполагается (в примере 3.2 ее нет при $x = \beta$).
- 5. Иначе нетривиальная линейная комбинация $\sum_{0\leqslant k\leqslant 2}p_k\xi_k(s)$ имела бы три корня.
- 6. Линейная комбинация $A_1\rho(x)-a_1P(x)$ трех функций $G(t_1,x),\ G(s_2,x),\ G(t_2,x),$ образующих Т-систему порядка 2, имеет три корня $(\alpha,\beta$ и $\gamma)$, и значит, тождественно равна нулю.
- 7. По построению $G(t_0,\gamma)=g(\mathcal{N},\gamma)=a_1G(s_1,\gamma)+a_2G(s_2,\gamma)$, а при $t_0=s_2$ это равенство невозможно, так как (по лемме 4.1) $G(s_2,\gamma)>G(s_1,\gamma)$, а коэффициенты $a_{1,2}>0$ и в сумме равны 1.

8. Выделим на $\mathscr V$ дугу $\mathscr D$ с концами $S_1=\xi(s_1),\,T_n=\xi(t_n)$ (на рис. 13 индекс n=3) и рассмотрим ее замкнутую выпуклую оболочку $\mathscr R(\mathscr D)$. По теореме Рисса [12, с. 30] $\mathscr R(\mathscr D)$ совпадает с множеством центров масс, расположенных на дуге $\mathscr D$. Проведем луч $T_n\mathscr C$. Пусть $\mathscr E$ – точка, в которой он выходит из $\mathscr R(\mathscr D)$, и Γ – опорная гиперплоскость к $\mathscr R(\mathscr D)$ в точке $\mathscr E$.

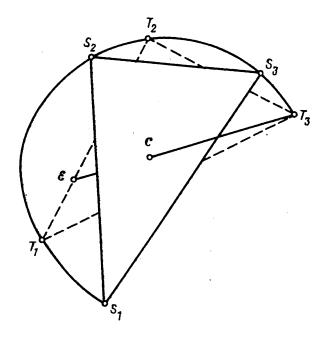


Рис. 13

До сих пор построение проводилось в аффинном подпространстве $\xi_0 = 1$ в \mathbb{R}^{2n-1} , так что dim $\Gamma = 2n-3$. Теперь возьмем линейное подпространство Λ в \mathbb{R}^{2n-1} (dim $\Lambda = 2n-2$), содержащее Γ :

$$\lambda_0 \xi_0 + \lambda_1 \xi_1 + \dots + \lambda_{2n-2} \xi_{2n-2} = 0,$$

ориентацию выберем так, чтобы для точек дуги ${\mathscr D}$

$$\xi(s) = \{\xi_j(s)\}_{j=0}^{2n-2}, \quad t_n < s < s_1,$$

(лежащих по одну сторону от Λ) многочлен $\mu(s) = \sum_{j=0}^{2n-2} \lambda_j \xi_j(s)$ был неотрицателен (на $\mathcal{D} \cap \Gamma$ он равен нулю).

Представим $\mathscr E$ как центр масс на дуге $\mathscr D$. Так как $\mathscr E \in \mathscr R(\mathscr D) \cap \Gamma$, то все эти массы расположены в точках $\mathscr D \cap \Gamma$. Таких точек – конечное число k (не больше, чем корней $\mu(s)$), т.е.

$$\mathscr{E} = \sum_{j=1}^{k} d_{j} \xi(t_{j}), \qquad \sum_{j=1}^{k} d_{j} = 1, \quad d > 0, \quad 1 \leqslant j \leqslant k,$$

$$s_{1} \geqslant t_{1} > t_{2} > \dots > t_{k} \geqslant t_{n}.$$
(*)

Докажем, что последнее неравенство – строгое: $t_k > t_n$ и k = n - 1.

Доказательство. Рассмотрим n-мерное аффинное пространство Π , содержащее точки S_1,\ldots,S_n,T_n , и его (n-1)-мерное подпространство π , содержащее S_1,\ldots,S_n . Так как $\mathscr{C}\in\pi\subset\Pi$, то $T_n\mathscr{C}\subset\Pi$ и $\mathscr{E}\in\mathscr{R}(\mathscr{D})\cap\Gamma\cap\Pi$. Аффинное пространство $\Gamma\cap\Pi$ является опорным к выпуклому множеству $\mathscr{R}(\mathscr{D})\cap\Pi$ в точке \mathscr{E} . Это опорное пространство не содержит T_n (иначе точка T_n была бы видна из \mathscr{E} , а это – не так, поскольку луч $T_n\mathscr{E}$ пересекает симплекс $S=(S_1,\ldots,S_n)\subset\pi$ во внутренней точке \mathscr{C} и, следовательно, S отгораживает T_n от \mathscr{E} в Π). Значит, $T_n\not\in\Gamma$ и ни одна из масс d_j в (*) не сосредоточена в T_n , т.е. $t_k>t_n$.

Замечание. В приведенном рассуждении использовано, что Γ не содержит Π (и значит, $\Gamma \cap \Pi \neq \Pi$): если бы точки S_1, \ldots, S_n, T_n принадлежали Γ , то у многочлена $\mu(s) - \varepsilon$ было не меньше, чем 2n корней.

Проверим теперь, что неравенства k < n-1 и k > n-1 невозможны и, следовательно, k = n-1.

Предположение k < n-1 противоречит выпуклости \mathscr{V} : считая, что k=n-2 (если k < n-2, нужно добавить в (*) точки $t_j \in (t_n,s_1)$ с нулевыми массами d_j , $k+1\leqslant j\leqslant n-2$), рассмотрим аффинное пространство \mathscr{A} , $\dim\mathscr{A}=2n-3$, содержащее точки

$$\xi(s_1), \dots, \xi(s_n), \xi(t_1), \dots, \xi(t_{n-2});$$
 (**)

с одной стороны, по определению выпуклости, \mathscr{A} не содержит ни одной точки \mathscr{V} , кроме точек (**); с другой стороны, вместе с точками \mathscr{C} , $\mathscr{E} \in \mathscr{A}$ вся прямая $\mathscr{C}\mathscr{E}$ принадлежит \mathscr{A} и, значит, $T_n \in \mathscr{C}\mathscr{E} \subset \mathscr{A}$.

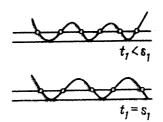


Рис. 14

Неравенство k>n-1 невозможно, так как в этом случае число корней многочлена $\mu(s)-\varepsilon$ (рис. 14) больше, чем 2n-2.

Так как $\mathscr{C} = b_n T_n + (1 - b_n) \mathscr{E}$, то, полагая

$$b_j = (1 - b_n)d_j, \quad 1 \leqslant j \leqslant n - 1,$$

ввиду (*) получаем: $\mathscr{C}=\sum\limits_{j=1}^n b_j\xi(t_j)$. Так как, с другой стороны, $\mathscr{C}=\sum\limits_{j=1}^n a_j\xi(s_j)$, то, по определению вектор-функции $\xi(s)$, многочлен

$$P(x) = \sum_{j=1}^{n} [a_{j}G(s_{j}, x) - b_{j}G(t_{j}, x)] = 0$$

при $x = \eta_j \ (0 \leqslant j \leqslant n)$ и $x = \eta_j + \varepsilon \ (1 < j < n)$. Числа b_j и точки t_j определяются этим условием однозначно: иначе линейная комбинация

$$\sum_{j=1}^{n-1} \left[b_j^* G(t_j^*, x) - b_j G(t_j, x) \right] + (b_n^* - b_n) G(t_n, x)$$

функций T-системы порядка не выше 2n-2 имела бы 2n-1 нулей. Более того, из указанного условия следует, что точки s_i и t_i чередуются:

$$s_1 > t_1 > \cdots > s_n > t_n$$
.

Доказательство. С точностью до положительного множителя многочлен P(x) равен определителю

$$\begin{vmatrix} G(s_1,x) & G(s_1,\beta) & G(s_1,\gamma) & \dots & G(s_1,\eta_j+\varepsilon) & G(s_1,\eta_j) & \dots & G(s_1,\alpha) \\ G(t_1,x) & G(t_1,\beta) & G(t_1,\gamma) & \dots & G(t_1,\eta_j+\varepsilon) & G(t_1,\eta_j) & \dots & G(t_1,\alpha) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ G(s_n,x) & G(s_n,\beta) & G(s_n,\gamma) & \dots & G(s_n,\eta_j+\varepsilon) & G(s_n,\eta_j) & \dots & G(s_n,\alpha) \\ G(t_n,x) & G(t_n,\beta) & G(t_n,\gamma) & \dots & G(t_n,\eta_j+\varepsilon) & G(t_n,\eta_j) & \dots & G(t_n,\alpha) \end{vmatrix} = \sum_{j=1}^{n} A_j G(s_j,x) - \sum_{j=1}^{n} B_j G(t_j,x),$$

и числа $A_j,\,B_j,$ пропорциональные $a_j,\,b_j$ $(1\leqslant j\leqslant n),$ положительны только в том случае, когда $s_1>t_1>\cdots>s_n>t_n.$

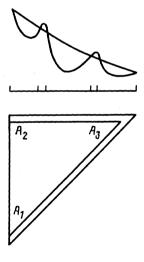


Рис. 15

9. Линейная комбинация

$$g(\mathcal{N}, x) - g(\mathcal{M}^0, x) = \sum_{j=1}^n a_j G(s_j, x) - \sum_{j=1}^{n-1} b_j^0 G(t_j^0, x)$$

нетривиальна (поскольку $a_1 \neq 0$) и имеет 2n-2 нуля

$$x = \eta_k \quad (0 \leqslant k \leqslant n-1), \quad x = \eta_k + \varepsilon \quad (1 < k < n),$$

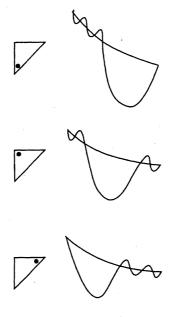


Рис. 16

поэтому все функции $G(s_j,x)$ $(1\leqslant j\leqslant n), G(t_j^0,x)$ $(1\leqslant j\leqslant n-1)$ различны и все b_j^0 $(1\leqslant j\leqslant n-1)$ отличны от нуля.

10. Пусть n=4 (рис. 15). На плоскости η_3, η_2 неравенства

$$\eta_4 = \alpha < \eta_3 < \eta_3 + \varepsilon < \eta_2 < \eta_2 + \varepsilon < \eta_1 = \gamma$$

задают открытый треугольник с вершинами

$$A_1 = (\alpha, \alpha + \varepsilon), \quad A_2 = (\alpha, \gamma - \varepsilon), \quad A_3 = (\gamma - 2\varepsilon, \gamma - \varepsilon).$$

Каждая точка $A=(\eta_3,\eta_2)\in \triangle A_1A_2A_3$ отнесена хотя бы к одному из множеств $\mathbb{M}_{1,2,3}(\varepsilon)$ (см. обозначение в конце 6.4). Нумерация множеств $\mathbb{M}_k(\varepsilon)$ и вершин A_k согласована (рис. 16): точки, расположенные вблизи вершины A_k , принадлежат $\mathbb{M}_k(\varepsilon), 1\leqslant k\leqslant 3$; более того, легко проверить, что точки вблизи стороны A_jA_k принадлежат $\mathbb{M}_j(\varepsilon)\cup \mathbb{M}_k(\varepsilon), 1\leqslant j< k\leqslant 3$. Это позволяет доказать с помощью леммы Шпернера, что

$$M_1(\varepsilon) \cap M_2(\varepsilon) \cap M_3(\varepsilon) \neq 0.$$

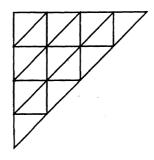


Рис. 17

Доказательство. Построим три семейства прямых, параллельных сторонам треугольника $A_1A_2A_3$. Взяв в каждом семействе по 2^N-1 равноотстоящих прямых (рис. 17), получим mpuancyляцию \mathcal{T}_N . Каждой вершине V триангуляции присвоим номер, равный $\min\{j\mid \mathbb{M}_j(\varepsilon)\ni V\}$. При большом N вершины вблизи A_j получат номер j, а вершины вблизи A_jA_k – номера j или k.

По лемме Шпернера найдется треугольник Δ_N триангуляции \mathcal{T}_N с вершинами, получившими номера 1, 2, 3 (лемма Шпернера утверждает, что таких правильно занумерованных треугольников – нечетное число). Пусть A – предельная точка последовательности Δ_N ($N \to \infty$). Тогда A принадлежит пересечению $\mathbb{M}(\varepsilon) = \mathbb{M}_1(\varepsilon) \cap \mathbb{M}_2(\varepsilon) \cap \mathbb{M}_3(\varepsilon)$, т.е. $\mathbb{M}(\varepsilon)$ не пусто.

В общем случае доказательство аналогично.

Список литературы

- 1. *Гервер М. Л., Маркушевич В. М.* Исследование неоднозначности при определении по годографу скорости распространения сейсмической волны // ДАН СССР. 1965. Т. 163. № 6. С. 1377—1380.
- Gerver M. L., Markushevich V. M. Determination of seismic wave velocity from the travel-time curve // Geophys. J. R. astr. Soc. 1966. V. 11. P. 165-173.
- 3. Гервер М. Л., Маркушевич В. М. Определение по годографу скорости распространения сейсмической волны. Методы и программы для анализа сейсмических наблюдений // Вычисл. сейсмология. Вып. 3. М.: Наука, 1967. С. 3–51.
- Гервер М. Л. Теоремы сравнения в одномерной обратной кинематической задаче. Теория и алгоритмы интерпретации геофизических данных // Вычисл. сейсмология. Вып. 22. М.: Наука, 1989. С. 127–137.
- 5. *Гервер М. Л.* Волноводы и устойчивые многочлены. І. Компьютерный анализ геофизических полей // Вычисл. сейсмология. Вып. 23. М.: Наука, 1990. С. 182–205.
- Гервер М. Л. Волноводы и устойчивые многочлены. П. Современные методы интерпретации сейсмологических данных // Вычисл. сейсмология. Вып. 24. М.: Наука, 1991. С. 102–148.
- Гервер М. Л. Рациональные аппроксимации, устойчивые многочлены и расслоения в задаче поиска самого широкого волновода. Геодинамика и прогноз землетрясений // Вычисл. сейсмология. Вып. 26. М.: Наука, 1994. С. 176–201.
- 8. Γ ервер M. J. Существование и единственность максимума и теоремы о конусах l-аштроксимациях и расслоениях для одного класса экстремальных задач // Препринт: МИТП РАН, 1994.
- 9. Gerver M. L. Hierarchy and Influence Zones for a Class of Extremum Problems: Theorems and Conjectures // Preprint, 1993.
- Gerver M. L. Hierarchy and Influence Zones for a Class of Extremum Problems: with Applications in Travel-Time Inversion // Special Semester in Approximation Theory. Israel, 1994.
- 11. Kарлин C., Cтадден B. Чебышевские системы и их применение в анализе и статистике. М.: Наука, 1976.
- 12. *Крейн М. Г., Нудельман А. А.* Проблема моментов Маркова и экстремальные задачи. М.: Наука, 1973.
- 13. *Полиа \Gamma.*, $\mathit{Ceze}\ \Gamma$. Задачи и теоремы из анализа. Ч. 2. М.: Наука, 1978.
- Sperner E. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes // Abh. Math. Sem. V. 6. Hamburg, 1928. P. 265–272.

Международный институт теории прогноза землетрясений и Поступила в редакцию математической геофизики РАН 29.12.1994 e-mail: mitpan@venus. mitp. rssi. ru (with the indication in subject: for Dr. M. Gerver); Московский государственный университет им. М. В. Ломоносова e-mail: mitpan@venus. mitp. rssi. ru (with the indication in subject: for M. Gerver and E. Kudryavtseva)