Chapter 1

CW-COMPLEXES AND BUNDLES. HOMOLOGY, COHOMOLOGY, AND HOW TO COMPUTE THEM

1.	CW-Com	olexes and Their Simplest Properties	1
	1.1.		1
	1.2.	Examples of CW-Complexes	3
2.	Singula	ar Homology Groups	6
	2.1.	Singular Simplexes, the Boundary	
		Operator, and Homology Groups	6
	2.2.	Chain Complexes, Chain Homotopy, and	
		Homotopic Invariance of Homology Groups .	9
3.	The Ex	act Homotopic Sequence of a Pair	12
	3.1.	The Construction of the Exact Sequence .	12
	3.2.	The Reduction of the Relative Homology	
		to the Absolute One	14
4.	Cell H	omology	20
	4.1.	Computation of the Singular Homology of	
		a Sphere	20
	4.2.	Groups of Cell Chains	22
	4.3.	Groups of Cell Homology	23
	4.4.	Theorem on Coincidence of Singular and	٠,
		Cell Homology of a Finite Complex	24
	4.5.		0.7
		Homology	27
	4.6.		20
		Cell Homology	30
5.	Cohomo	logy	34
	5.1.	Singular Cochains and the Operator δ	34

	5.2.	Cohomology Groups	35
	5.3.	Cohomology Groups with Coefficients in a	
		Field	37
6.	Bundles		40
	6.1.	Definition of a Locally Trivial Bundle .	40
	6.2.	Examples of Bundles	42
	6.3.		43
	6.4.	Geometry of the Bundle of Unit Tangent	
		Vectors to a Sphere	48
7.	Some Me	ethods of Computation of (Co)homology	
	(Specti	ral Sequences)	56
	7.1.	Filtration of a Complex	56
	7.2.	Recovering the Spectral Sequence from the	
		Filtration	57
	7.3.	Main Algebraic Properties of Spectral	0,
		Sequences	62
	7.4.	The Cohomological Spectral Sequence	65
	7.5.	The Spectral Sequence of a Bundle	66
	7.6.	Multiplication in the Cohomological	00
		Spectral Sequence	70
	7.7.	Some Examples of Computations Using	70
	, , , , ,	Spectral Sequences	72
		spectral sequences	12
		Chapter 2	
		CRITICAL POINTS OF SMOOTH FUNCTIONS	
		ON MANIFOLDS	
8.		al Points and Geometry of Level Surfaces .	79
	8.1.		79
	8.2.	The Canonical Presentation of a Function	
		in a Neighborhood of a Nondegenerate	
		Critical Point	81
	8.3.	The Topological Structure of Level	
		Surfaces of a Function in Neighborhoods	
		of Critical Points	85
	8.4.	A Presentation of a Manifold in the Form	
		of a CW-Complex Connected with the Morse	
		Function	88
	8.5.		
		tion of a Compact Manifold into the Sum	
		of Handles	89
9.	Points	of Bifurcation and Their Connection with	5,5
-, •			
			9/1
	Homolog	By	94 94

	9.2.	A Theorem That Connects the Poincare	
		Polynomials of the Function and That of	
		the Manifold	97
	9.3.	Several Corollaries	100
	9.4.	Critical Points of Functions on Two-	
		Dimensional Manifolds	103
0.	Critic	al Points of Functions and the Category of	
		fold	110
	10.1.		110
	10.2.		111
	10.3.	A Formulation of the Theorem on the Lower	
		Boundary of the Number of Points of Bi-	
	1	furcation	114
	10.4.	Proof of the Theorem	116
	10.5.	Examples of the Computation of Categories	119
1.		ible Morse Functions and Bordisms	125
	11.1.		125
	11.2.	A Decomposition of a Bordism into a	
		Composition of Elementary Bordisms	126
	11.3.	Gradient-Like Fields and Separatrix-Like	
		Disks	128
	11.4.	Reconstructions of Level Surfaces of a	
		Smooth Function	131
	11.5.		
			133
	11.6.	tions	140
		•	
		Chapter 3	
		7 6	
		TOPOLOGY OF THREE-DIMENSIONAL MANIFOLDS	
2.	The Ca	nonical Presentation of Three-Dimensional	
	Manifo		147
	12.1.		
		Splittings	147
	12.2.		149
	12.3.	The Coding of Three-Dimensional Manifolds	
		in Terms of Nets	153
	12.4.	Nets and Separatrix Diagrams	156
13.		oblem of Recognition of a Three-Dimension-	
		ere	158
	13.1.		158
	13.2.		171
14.		orithmic Classification of Manifolds	171
	8		

	14.1.	Fundamental Groups of Three-Dimensional	
		Manifolds	171
	14.2.	Fundamental Groups of Four-Dimensional	
		Manifolds	173
	14.3.	On the Impossibility of Classifying	
		Smooth Manifolds in Dimensions Greater	
		Than 3	174
		Chambau /	
		Chapter 4	
		SYMMETRIC SPACES	
		STRUETRIC SPACES	
15.	Main P	roperties of Symmetric Spaces, Their	
	Models	and Isometry Groups	179
	15.1.	Definition of Symmetric Spaces	179
	15.2.	Lie Groups as Symmetric Spaces	179
	15.3.	Properties of the Curvature Tensor	181
	15.4.	Involutive Automorphisms and the Corre-	
		sponding Symmetric Spaces	182
	15.5.	The Cartan Model of Symmetric Spaces	184
	15.6.	Geometry of Cartan Models	187
	15.7.	Several Important Examples of Symmetric	
		Spaces	190
16.	Geomet	ry of Lie Groups	196
	16.1.	Semisimple Lie Groups and Lie Algebras .	196
	16.2.	Cartan Subalgebras	197
	16.3.	Roots of a Semisimple Lie Algebra and Its	
		Root Decomposition	199
	16.4.	Several Properties of a Root System	201
	16.5.	Root Systems of Simple Lie Algebras	208
17.	Compact	t Lie Groups	212
	17.1.	Real Forms	212
	17.2.	The Compact Form	214
18.	Orbits	of the Coadjoint Representation	221
	18.1.	Generic and Singular Orbits	221
	18.2.	Orbits in Lie Groups	226
	18.3.	Proof of the Theorem on Conjugacy of	
		Maximum Tori in a Compact Lie Group	228
	18.4.	The Weyl Group and Its Relationship to	
		Orbits	236

Chapter 5

SYMPLECTIC GEOMETRY

	Sympted	etic Manifolds	241
	19.1.	The Symplectic Structure and Its Canon-	
		ical Presentation. The Skew Symmetric	
		Gradient	241
	19.2.	Hamiltonian Vector Fields	245
	19.3.	The Poisson Bracket and Integrals of	
	17.5.	Hamiltonian Fields	246
	19.4.	The Liouville Theorem (Commutative In-	
	19.4.	tegration of Hamiltonian Systems)	251
20	NT	tegration of mamiltonian bystems)	231
20.		nutative Integration of Hamiltonian	258
	Systems	5	258
	20.1.	Noncommutative Lie Algebras of Integrals.	260
	20.2.	A Theorem on Noncommutative Integration	200
	20.3.	The Reduction of Hamiltonian Systems with	0.00
		Noncommutative Symmetries	263
	20.4.	Orbits of the (Co)adjoint Representation	
		as Symplectic Manifolds	272
		Chapter 6	
		Chap to 2	
		GEOMETRY AND MECHANICS	
21.	The Em	bedding of Hamiltonian Systems into Lie	
41.			
	Alcohr	bedding of namifeonian bybeems into the	275
	Algebr	as	275
	Algebr 21.1.	as	
	Algebr 21.1.	The Formulation of the Problem and Full Sets of Commutative Functions	275275
	Algebr	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension-	
	Algebr 21.1.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and	
	Algebr 21.1.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras.	275
	Algebr 21.1. 21.2.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimensional Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	
	Algebr 21.1.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	275
	Algebr 21.1. 21.2.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	275
	Algebr 21.1. 21.2.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	275 280 284
	Algebr 21.1. 21.2. 21.3.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	275
	Algebr 21.1. 21.2. 21.3. 21.4.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series	275 280 284
	Algebr 21.1. 21.2. 21.3.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284
	Algebr 21.1. 21.2. 21.3. 21.4.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284
77	Algebr 21.1. 21.2. 21.3. 21.4. 21.5.	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284 288
22.	Algebr 21.1. 21.2. 21.3. 21.4. 21.5. Comple	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284 288 292
22.	Algebr 21.1. 21.2. 21.3. 21.4. 21.5. Comple System	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284 288
22.	Algebr 21.1. 21.2. 21.3. 21.4. 21.5. Comple	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284 288 292
22.	Algebr 21.1. 21.2. 21.3. 21.4. 21.5. Comple System	The Formulation of the Problem and Full Sets of Commutative Functions Equations of Motion of a Multidimension- al Solid Body with a Fixed Point and Their Analogs on Semisimple Lie Algebras. Complex Series Hamiltonian Systems of Compact and Normal Series	275 280 284 288 292