0 1	11.00	
ntrod	luction	xi
100 Car 100 Ca	mplectic Geometry and the Integration of Hamiltonian stems	1
1.	Symplectic manifolds	1
1.1	Symplectic Structure and its Canonical Representation. Skew-Symmetric Gradient	1
1.2		4
	Hamiltonian Vector Fields	. 8
1.4	. The Poisson Bracket and Hamiltonian Field Integrals	11
1.5		15
2.	Symplectic Geometries and Lie Groups	17
2.1	Summary of the Necessary Results on Lie Groups and Lie Algebras	17
2.2		22
2.3	Differential Equations for Invariants and Semi-Invariants of the Coadjoint Representation	27
0.3.	Liouville's Theorem	30
3.1	. Commutative Integration of Hamiltonian Systems	30
3.2	. Non-Commutative Lie Algebras of Integrals	32
3.3		34
3.4		36
3.5	. Orbits of the Coadjoint Representation as Symplectic Manifolds	46
3.6	. The Connection between Commutative and Non-	
	Commutative Liouville Integration	47

	4.	Algebraicization of Hamiltonian Systems on Lie Group Orbits	52
		The Realization of Hamiltonian Systems on the Orbits of the Coadjoint Representation	52
	4.2.	Examples of Algebraicized Systems	58
	5.	Complete Commutative Sets of Functions on Symplectic Manifolds	63
2.	Secti	onal Operators and Their Applications	67
	6.	Sectional Operators, Finite-Dimensional Representations, Dynamic Systems on the Orbits of Representation	67
	7.000	Examples of Sectional Operators	71
	7.1.	Equations of Motion of a Multi-Dimensional Rigid Body with a Fixed Point and Their Analogs on Semi-Simple Lie Algebras. The Complex Semi-Simple Series	71
	7.2.	Hamiltonian Systems of the Compact and the Normal Series	75
	7.3.	Equations of Inertial Motion of a Multi-Dimensional Rigid Body in an Ideal Fluid	79
	7.4.	Equations of Inertial Motion of a Multi-Dimensional Rigid Body in an Incompressible Ideally Conductive Fluid	89
3.	Secti	ional Operators on Symmetric Spaces	100
	8.	Construction of the Form \mathbf{F}_C and the Flow \mathbf{X}_Q in the Case of a Symmetric Space	100
	9.	The Case of the Group $\mathfrak{H}=\mathfrak{B}=(\mathfrak{H}\times\mathfrak{H})/\mathfrak{H}$ (Symmetric Spaces of Type II)	105
	10.	The Case of Type I, III, IV Symmetric Spaces	107
	10.1	Symmetric Spaces of Maximal Rank	107
		The Symmetric Space $S^{n-1} = SO(n)/SO(n-1)$ (The Real Case)	111
	10.3.	Hamiltonian Flows X_Q , Symplectic Structures F_C and the Equations of Motion of Analogs of a Multi-Dimensional	120
	10.4	Rigid Body The Symmetric Space $S^{n-1} = SO(n)/SO(n-1)$ (The	120
		Complex Case)	121
	10.5	Examples of Flows X_Q on S^{n-1} (The Complex Case)	131

1.		nods of Construction of Functions in Involution on ts of Coadjoint Representation of Lie Groups	136
	11.	Method of Argument Translation	136
		Translations of Invariants of Coadjoint Representation Representations of Lie Groups in the Space of the Functions on the Orbits and Corresponding	136 138
		Involutive Sets of Functions	138
	12.	Methods of Construction of Commutative Sets of Functions Using Chains of Subalgebras	143
	13.	Method of Tensor Extensions of Lie Algebras	147
	13.1.	Basic Definitions and Results	147
		The Proof of the General Theorem The Application of the Algorithm (A) to the Construction	151 160
	13.4.	of S-Representations Algebras with Poincaré Duality	162
	14.	Similar Functions	167
		Partial Invariants	167
	14.2.	Involutivity of Similar Functions	168
	15.	Contractions of Lie Algebras	171
		Restriction Theorem	171
	15.2.	Contractions of \mathbb{Z}_2 -Graded Lie Algebras	174
5.		aplete Integrability of Hamiltonian Systems on Orbits of Algebras	179
	16.	Complete Integrability of the Equations of Motion of a Multi-Dimensional Rigid Body with a Fixed Point in the Absence of Gravity	179
	16.1.	Integrals of Euler Equations on Semi-Simple Lie Algebras	179
	16.2.	Examples for Lie Algebras of so(3) and so(4)	185
	16.3.	Cases of Complete Integrability of Euler's Equations on Semi-Simple Lie Algebras	189
	17.	Cases of Complete Integrability of the Equations of Inertial Motion of a Multi-Dimensional Rigid Body in an Ideal Fluid	194
	18.	The Case of Complete Integrability of the Equations of Inertial Motion of a Multi-Dimensional Rigid Body in an Incompressible, Ideally Conductive Fluid	198
		Complete Integrability of the Euler Equations on Extensions $\Omega(G)$ of Semi-Simple Lie Algebras	198

	Complete Integrability of a Geodesic Flow on $T^*\Omega(\mathfrak{G})$ Extensions of $\Omega(G)$ for Low-Dimensional Lie Algebras	203 204
19.	Some Integrable Hamiltonian Flows with Semi-Simple Group	205
19.1.	of Symmetries Integrable Systems in the 'Compact Case'	205
19.2.	Integrable Systems in the Non-Compact Case. Multi- Dimensional Lagrange's Case	208
19.3.	Functional Independence of Integrals	212
20.	The Integrability of Certain Hamiltonian Systems on Lie Algebras	214
20.1.	Completely Involutive Sets of Functions on Singular Orbits in $su(m)$	215
20.2.	Completely Involutive Sets of Functions on Affine Lie Algebras	219
21.	Completely Involutive Sets of Functions on Extensions of	224
21.1	Abelian Lie Algebras The Main Construction	224
	Lie Algebras of Triangular Matrices	232
22.	Integrability of Euler's Equations on Singular Orbits of Semi-Simple Lie Algebras	236
	Integrability of Euler's Equations on Orbits O Intersecting the Set $tH_{\mathbb{R}}$, $t \in \mathbb{C}$	236
	Integrability of Euler's Equations $\dot{x} = [x, \varphi_{abD}(x)]$ for Singular a	244
22.3.	Integrability of Euler's Equations $\dot{x} = [\dot{x}, \varphi_{abD}(x)]$ on the Subalgebra G_n Fixed Under the Canonical Involutive	
	Automorphism $\sigma: G \rightarrow G$ for Singular Elements $a \in G$	247
22.4.	Integrability of Euler's Equations for an <i>n</i> -Dimensional Rigid Body	253
23.	Completely Integrable Hamiltonian Systems on Symmetric Spaces	254
	Integrable Metrics ds_{abD}^2 on Symmetric Spaces	254
23.2. 23.3.	The Metrics ds_{ab}^2 on a Sphere S^n Applications to Non-Commutative Integrability	257 263
24.	Morse's Theory of Completely Integrable Hamiltonian Systems. Topology of the Surfaces of Constant Energy Level	
	of Hamiltonian Systems, Obstacles to Integrability and Classification of the Rearrangements of the General Position	
	of Liouville Tori in the Neighborhood of a Bifurcation Diagram	266

24.1. The Four-Dimensional Case 24.2. The General Case	270	
Bibliography	281	
Index	293	

_ _ _