Preface		1X
Chapter I.	PRELIMINARIES	1
	1. Singular and Cellular Homology Groups	1
	1. Singular chains and homology groups	1
	2. Cell complexes and barycentric subdivisions	4
	3. Cellular homology and the computation of singular	
	homology of the sphere	9
	4. Theorem on the coincidence of singular homology	
	with the cellular homology of a finite cell complex	11
	5. Geometric definition of cellular homology groups	13
	6. Simplest examples of the computation of cellular	15
	homology groups	13
	2. Cohomology Groups and Obstructions to Extending	
	Mappings	17
	1. Singular cochains and the operator δ	17
	2. The problem of the extension of a continuous mapping	
	from a subspace to the whole space	19
	3. The obstruction to extending mappings	19
	4. Cases of the retraction of a space on a subspace	22
	homeomorphic to a sphere	23
	3. Fibrations	28
	1. Defining a locally trivial fibration	28
	2. Examples of fibrations	29
	3. The Hopf bundle geometry	30
	4. Geometry of the fibration of unit vectors tangent to	
	a sphere and the index of the vector field	34
Chapter II.	FUNCTIONS ON MANIFOLDS	41
	1. Exact Morse Functions	41
	2. Multidimensional Analog of Morse Theory	47
Chapter III	.MANIFOLDS OF SMALL DIMENSIONS	55
	1. Homeomorphisms of Two-Dimensional Surfaces	55
	1. Homeotopy group and classification of	
	three-dimensional manifolds of genus one	55
	2. A system of homeotopy group generators of	
	a complete pretzel	61

2. An Algorithm Recognizing the Standard Three-Dimensional Sphere in the Class of Heegard	63
Diagrams of Genus Two	03
1. The Whitehead graphs encoding three-dimensional manifolds. Operations of indices one and two	63
2. Waves separating the vertices and the operation of reducing Whitehead graphs	69
3. The existence of a separating vertex on the Whitehead graphs of genus two, corresponding to the standard three-dimensional sphere. An algorithm recognizing	
a sphere	72
3. On Solving the Four-Dimensional Poincaré Problem: Any	
Four-Dimensional Homotopy Sphere is Homeomorphic to the Standard Sphere	74
Chapter IV. MINIMAL SURFACES	93
1. Simplest Properties of Minimal Surfaces	93
1. Plateau physical experiments and methods of	93
obtaining soap films 2. Physical principles underlying the formation of soap	,,,
films	96
3. Extremal properties of soap films and minimality of	, 0
their area—Properties of the surface of separation	
between two media	98
4. The surface of separation between two media which	
are in equilibrium is the surface of constant mean	100
curvature	103
5. Soap films of constant positive curvature and	103
constant zero curvature	104
6. Stable and unstable surfaces7. Plateau experiments on the stability of a liquid column	105
8. Physical realization of a helicoid	109
9. Physical realization of a catenoid and its surgery with	107
changing boundary frame	113
10. The change of the topological type of minimal surfaces	
depending on their stability or instability	116
11. Two-dimensional minimal surfaces in	
a three-dimensional space and the first Plateau	
principle .	122
12. Area functional, Dirichlet functional, harmonic	40:
mappings, and conformal coordinates	124
13. Singular points of minimal surfaces and three Plateau principles	137
14. Realization of minimal surfaces in nature	144

2.	Topological Properties of Minimal Surfaces	146
	1. On various aproaches to the concepts of surface and boundary	146
	2. Homological boundary of a surface and the role of the coefficient group	148
	3. Curious examples of physical stable minimal surfaces, nevertheless retracting on their boundaries	151
	3* Realization of the "Bing house" in the form of a minimal surface in R ³	159
	4. When does the soap film spanning a boundary frame not contain closed soap bubbles?5. Minimal cones related to singular points of minimal	166
	surfaces	169
	6. Multidimensional minimal cones 7. Minimal surfaces invariant under the action of Lie	172
	groups	175
;	8. Fermat principle, minimal cones, and light rays	179
	9. The S. N. Bernshtein problem	187
	0. Complex submanifolds as minimal surfaces	189
	1. Integral currents	190
	2. Spectral bordisms and the multidimensional Plateau problem	193
	 Existence of a minimum in each homotopy class of multivarifolds 	197
1	4. Cases where the Dirichlet problem has no solution for the minimal surface equation of large codimension	198
	Geometry of Volume Functional and Dirichlet Functional	202
	Extremals	203
	1. Lower estimate of the volume of minimal surfaces	203
	2. Vector field deformation coefficient	206
	3. Closed surfaces of non-trivial topological type and least volume	207
	4. The cases where there are no local minima of the Dirichlet functional in the class of mappings of	
	homogeneous spaces to an arbitrary Riemannian manifold	210
	5. Cases where there are no Dirichlet functional local minima in the class of mappings of an arbitrary	
	Riemannian manifold to a homogeneous space	213
		216
		223

References

Index