Preface	vi
Introduction	1
CHAPTER I. Historical Survey and Introduction to the Classical	
Theory of Minimal Surfaces	21
§1. The sources of multidimensional calculus of variations §2. The 19th century—the epoch of discovery of the main	21
properties of minimal surfaces	30
§3. Topological and physical properties of two-dimensional	
mimimal surfaces	43
§4. Plateau's four experimental principles and their	
consequences for two-dimensional mimimal surfaces	62
§5. Two-dimensional minimal surfaces in Euclidean space and	
in a Riemannian manifold	68
CHAPTER II. Information about Some Topological Facts Used in	
the Modern Theory of Minimal Surfaces	95
§1. Groups of singular and cellular homology	95
§2. Cohomology groups	97
CHAPTER III. The Modern State of the Theory of Minimal	
Surfaces	99
§1. Minimal surfaces and homology	99
§2. Theory of currents and varifolds	129
§3. The theory of minimal cones and the equivariant	
Plateau problem	138
CHAPTER IV. The Multidimensional Plateau Problem in the Spectral Class of All Manifolds with a Fixed	
Boundary	167

the class of spectra of maps of smooth manifolds with a fixed boundary. An analog of the theorems of Douglas and Rado in the case of arbitrary Riemannian manifolds.	
The solution of Plateau's problem in an arbitrary class of spectra of closed bordant manifolds §2. Some versions of Plateau's problem require for their	167
statement the concepts of generalized homology and cohomology	178
§3. In certain cases the Dirichlet problem for the equation of a minimal surface of large codimension does not	102
have a solution §4. Some new methods for an effective construction of globally minimal surfaces in Riemannian manifolds	183 186
CHAPTER V. Multidimensional Minimal Surfaces and Harmonic	100
Maps §1. The multidimensional Dirichlet functional and harmonic	207
maps. The problem of minimizing the Dirichlet functional on the homotopy class of a given map §2. Connections between the topology of manifolds and	207
properties of harmonic maps §3. Some unsolved problems	217 228
CHAPTER VI. Multidimensional Variational Problems and Multivarifolds. The Solution of Plateau's Problem	
in a Homotopy Class of a Map of a Multivarifold	233
§1. Classical formulations	233234
§2. Multidimensional variational problems §3. The functional language of multivarifolds	234
§4. Statement of Problems B, B', and B" in the language of	
the theory of multivarifolds	249
CHAPTER VII. The Space of Multivarifolds	253
§1. The topology of the space of multivarifolds	253
§2. Local characteristics of multivarifolds §3. Induced maps	260 266
SHAPTER VIII. Parametrizations and Parametrized Multivarifolds §1. Spaces of parametrizations and parametrized multivarifolds	273273
§2. The structure of spaces of parametrizations and parametrized multivarifolds	280

§3. Exact parametrizations	290
§4. Real and integral multivarifolds	295
CHAPTER IX. Problems of Minimizing Generalized Integrands in Classes of Parametrizations and Parametrized	
Multivarifolds. A Criterion for Global Minimality	299
§1. A theorem on deformation	299
§2. Isoperimetric inequalities	309
§3. Statement of variational problems in classes of	
parametrizations and parametrized multivarifolds	314
§4. Existence and properties of minimal parametrizations and	217
parametrized multivarifolds	317
CHAPTER X. Criteria for Global Minimality	331
§1. Statement of the problem in the functional language of	
currents	331
§2. Generalized forms and their properties	334
§3. Conditions for global minimality of currents	336
§4. Globally minimal currents in symmetric problems §5. Specific examples of globally minimal currents and surfaces	342
	350
CHAPTER XI. Globally Minimal Surfaces in Regular Orbits of the	
Adjoint Representation of the Classical Lie Groups	359
§1. Statement of the problem. Formulation of the main theorem	359
§2. Necessary information from the theory of representations of	261
the compact Lie groups §3. Topological structure of the space G/T_G	361 365
§4. A brief outline of the proof of the main theorem	368
	, 300
Appendix. Volumes of Closed Minimal Surfaces and the	
Connection with the Tensor Curvature of the Ambient	222
Riemannian Space	377
Bibliography	381
Subject Index	401