CHAPTER 1

Exa	amples of Manifolds	1
§1.	The concept of a manifold	1
	1.1. Definition of a manifold	1
	1.2. Mappings of manifolds; tensors on manifolds	5
	1.3. Embeddings and immersions of manifolds. Manifolds with	
	boundary	9
§2.	The simplest examples of manifolds	10
	2.1. Surfaces in Euclidean space. Transformation groups as manifolds	10
	2.2. Projective spaces	15
	2.3. Exercises	19
§3.	Essential facts from the theory of Lie groups	20
	3.1. The structure of a neighbourhood of the identity of a Lie group.	
	The Lie algebra of a Lie group. Semisimplicity	20
	3.2. The concept of a linear representation. An example of a	
	non-matrix Lie group	28
§4.	Complex manifolds	31
	4.1. Definitions and examples	31
	4.2. Riemann surfaces as manifolds	37
§5.	The simplest homogeneous spaces	41
	5.1. Action of a group on a manifold	41
	5.2. Examples of homogeneous spaces	42
211	5.3. Exercises	46
§6.	Spaces of constant curvature (symmetric spaces)	46
	6.1. The concept of a symmetric space	46
	6.2. The isometry group of a manifold. Properties of its Lie algebra	49
	6.3. Symmetric spaces of the first and second types	51
	6.4. Lie groups as symmetric spaces	53
	6.5. Constructing symmetric spaces. Examples	55
	6.6. Exercises	58

§7. Vector bundles on a manifold	59
7.1. Constructions involving tangent vectors	59
7.2. The normal vector bundle on a submanifold	62
CHAPTER 2	
Foundational Questions. Essential Facts Concerning Functions	
on a Manifold. Typical Smooth Mappings	65
	65
§8. Partitions of unity and their applications	
8.1. Partitions of unity	66
8.2. The simplest applications of partitions of unity. Integrals over	
manifold and the general Stokes formula	69
8.3. Invariant metrics	74
§9. The realization of compact manifolds as surfaces in \mathbb{R}^N	76
§10. Various properties of smooth maps of manifolds	77
10.1. Approximation of continuous mappings by smooth ones	77
10.2. Sard's theorem	79
10.3. Transversal regularity	83
10.4. Morse functions	86
§11. Applications of Sard's theorem	90
11.1. The existence of embeddings and immersions	90
11.2. The construction of Morse functions as height functions	93
11.3. Focal points	95
CHAPTER 3	
The Degree of a Mapping. The Intersection Index of Submanifold	ds.
Applications	99
	99
§12. The concept of homotopy	99
12.1. Definition of homotopy. Approximation of continuous maps	00
and homotopies by smooth ones	99
12.2. Relative homotopies	102
§13. The degree of a map	102
13.1. Definition of degree	102
13.2. Generalizations of the concept of degree	104
13.3. Classification of homotopy classes of maps from an arbitrary	106
manifold to a sphere	106
13.4. The simplest examples	108
§14. Applications of the degree of a mapping	110
14.1. The relationship between degree and integral	110
14.2. The degree of a vector field on a hypersurface	112
14.3. The Whitney number. The Gauss-Bonnet formula	114
14.4. The index of a singular point of a vector field	118
14.5. Transverse surfaces of a vector field. The Poincaré-Bendixson	
theorem	122
§15. The intersection index and applications	125
15.1. Definition of the intersection index	125
15.2. The total index of a vector field	127

15.3. The signed number of fixed points of a self-map (the Lefsch number). The Brouwer fixed-point theorem 15.4. The linking coefficient	130 133
CHAPTER 4	
Orientability of Manifolds. The Fundamental Group.	405
Covering Spaces (Fibre Bundles with Discrete Fibre)	135
§16. Orientability and homotopies of closed paths	135
16.1. Transporting an orientation along a path	135
16.2. Examples of non-orientable manifolds	137
§17. The fundamental group 17.1. Definition of the fundamental group	139 139
17.1. Definition of the fundamental group 17.2. The dependence on the base point	141
17.2. The dependence on the base point 17.3. Free homotopy classes of maps of the circle	142
17.4. Homotopic equivalence	143
17.5. Examples	144
17.6. The fundamental group and orientability	147
§18. Covering maps and covering homotopies	148
18.1. The definition and basic properties of covering spaces	148
18.2. The simplest examples. The universal covering	150
18.3. Branched coverings. Riemann surfaces	153
18.4. Covering maps and discrete groups of transformations	156
§19. Covering maps and the fundamental group. Computation of the	
fundamental group of certain manifolds	157
19.1. Monodromy	157
19.2. Covering maps as an aid in the calculation of fundamental	ı 160
groups 19.3. The simplest of the homology groups	160
19.4. Exercises	166
§20. The discrete groups of motions of the Lobachevskian plane	166
TO:	5 5 4
CHAPTER 5	
Homotopy Groups	185
§21. Definition of the absolute and relative homotopy groups. Example 1	ples 185
21.1. Basic definitions	185
21.2. Relative homotopy groups. The exact sequence of a pair	189
§22. Covering homotopies. The homotopy groups of covering spaces	
and loop spaces	193
22.1. The concept of a fibre space	193
22.2. The homotopy exact sequence of a fibre space	195
22.3. The dependence of the homotopy groups on the base poin	
22.4. The case of Lie groups	201
22.5. Whitehead multiplication	204
§23. Facts concerning the homotopy groups of spheres. Framed norr	
bundles. The Hopf invariant	207
23.1. Framed normal bundles and the homotopy groups of sphe	eres 207

	23.2. The suspension map	212
	23.3. Calculation of the groups $\pi_{n+1}(S^n)$	214
	23.4. The groups $\pi_{n+2}(S^n)$	210
CU	APTER 6	
	ooth Fibre Bundles	
Sm	ooth Fibre Bundles	220
§24.	The homotopy theory of fibre bundles	220
	24.1. The concept of a smooth fibre bundle	220
	24.2. Connexions	225
	24.3. Computation of homotopy groups by means of fibre bundles	228
	24.4. The classification of fibre bundles	235
	24.5. Vector bundles and operations on them	241
	24.6. Meromorphic functions	243
	24.7. The Picard-Lefschetz formula	249
§25.	The differential geometry of fibre bundles	251
	25.1. G-connexions on principal fibre bundles	251
	25.2. G-connexions on associated fibre bundles. Examples	259
	25.3. Curvature	263
	25.4. Characteristic classes: Constructions	269
	25.5. Characteristic classes: Enumeration	278
§26.	Knots and links. Braids	286
	26.1. The group of a knot	286
	26.2. The Alexander polynomial of a knot	289
	26.3. The fibre bundle associated with a knot	290
	26.4. Links	292
	26.5. Braids	294
CHA	APTER 7	
Son	ne Examples of Dynamical Systems and Foliations	
	Manifolds	297
g27.	The simplest concepts of the qualitative theory of dynamical systems. Two-dimensional manifolds	205
	27.1. Basic definitions	297
		297
820	27.2. Dynamical systems on the torus	302
920.	Hamiltonian systems on manifolds. Liouville's theorem. Examples	308
	28.1. Hamiltonian systems on cotangent bundles	308
	28.2. Hamiltonian systems on symplectic manifolds. Examples 28.3. Geodesic flows	309
		312
	28.4. Liouville's theorem	314
220	28.5. Examples	317
829.	Foliations	322
	29.1. Basic definitions	322
820	29.2. Examples of foliations of codimension 1	327
g3U.	Variational problems involving higher derivatives	333
	30.1. Hamiltonian formalism	333
	30.2. Examples	337

30.3. Integration of the commutativity equations. The connexion with	240
the Kovalevskaja problem. Finite-zoned periodic potentials	340
30.4. The Korteweg-deVries equation. Its interpretation as an	244
infinite-dimensional Hamiltonian system	344
30.5 Hamiltonian formalism of field systems	347
CHAPTER 8	
The Global Structure of Solutions of Higher-Dimensional	
Variational Problems	358
§31. Some manifolds arising in the general theory of relativity (GTR)	358
31.1. Statement of the problem	358
31.2. Spherically symmetric solutions	359
31.3. Axially symmetric solutions	369
31.4. Cosmological models	374
31.5. Friedman's models	377
31.6. Anisotropic vacuum models	381
31.7. More general models	385
§32. Some examples of global solutions of the Yang–Mills equations.	
Chiral fields	393
32.1. General remarks. Solutions of monopole type	393
32.2. The duality equation	399
32.3. Chiral fields. The Dirichlet integral	403
§33. The minimality of complex submanifolds	414
300. The minimum of tempter entering	
Bibliography	
Index	423