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CHAPTER 1
Geometry in Regions of a Space. Basic Concepts

§1. Co-ordinate systems
1.1. Cartesian co-ordinates in a space
1.2. Co-ordinate changes
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2.1. Curves in Euclidean space
2.2. Quadratic forms and vectors

§3. Riemannian and pseudo-Riemannian spaces
3.1. Riemannian metrics
3.2. The Minkowski metric
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4.1. Groups of transformations of a region
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4.3, The isometries of 3-dimensional Euclidean space
4.4, Further examples of transformation groups
4.5. Exercises

85. The Serret-Frenet formulae
5.1. Curvature of curves in the Euclidean plane
5.2. Curves in Euclidean 3-space. Curvature and torsion
5.3, Orthogonal transformations depending on a parameter
5.4. Exercises

§6. Pseudo-Euclidean spaces
6.1. The simplest concepts of the special theory of relativity
6.2. Lorentz transformations
6.3. Exercises



CHAPTER 2
The Theory of Surfaces
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Geometry on a surface in space
7.1. Co-ordinates on a surface
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7.4. Surface area
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The second fundamental form
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The metric on the sphere
Space-like surfaces in pseudo-Euclidean space
10.1. The pseudo-sphere
10.2. Curvature of space-like curves in R?
The language of complex numbers in geometry
11.1. Complex and real co-ordinates
11.2. The Hermitian scalar product
11.3. Examples of complex transformation groups
Analytic functions
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the differential of a function
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12.3. Surfaces in complex space
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CHAPTER 3
Tensors: The Algebraic Theory

§16. Examples of tensors
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17.1. The transformation rule for the components of a tensor

of arbitrary rank
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17.2. Algebraic operations on tensors
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Tensors of type (0, k)

18.1. Differential notation for tensors with lower indices only

18.2. Skew-symmetric tensors of type (0, k)

18.3. The exterior product of differential forms. The exterior algebra

18.4. Skew-symmetric tensors of type (k, 0) (polyvectors). Integrals
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Tensors in Riemannian and pseudo-Riemannian spaces
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19.3. The operator *
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21.1. Skew-symmetric tensors. The invariants of an electromagnetic field
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Vector fields
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CHAPTER 4
The Differential Calculus of Tensors
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The second variation for the equation of the geodesics
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