Contents

Preface	ix
Chapter 1. Geometry of Cubic Curves §1.1. Addition of points on a cubic	1 1
§1.2. Lines and curves on the projective plane	8
§1.3. The tangents and inflection points	11
§1.4. Normal forms of the nonsingular cubic	16
§1.5. Singular cubics	20
§1.6. No nonsingular cubic admits a rational parameterization	22
Chapter 2. Elliptic Functions	25
$\S 2.1.$ The topological structure of nonsingular cubics in $\mathbb{C}P^2$	26
§2.2. The elliptic functions	29
§2.3. The Weierstrass function	32
§2.4. A differential equation for the Weierstrass function $\wp(z)$ §2.5. A parameterization of the cubic with the help of the Weierstrass	35
function	36
§2.6. The elliptic integrals	39
§2.7. Addition theorems for the elliptic integrals $F(\varphi)$ and $E(\varphi)$	44
§2.8. The elliptic Jacobi functions	46
§2.9. The Weierstrass theorem on functions possessing an algebraic ad-	
dition theorem	49
Chapter 3. Arcs of Curves and Elliptic Integrals	53
§3.1. Arcs of the ellipse and the hyperbola	53
§3.2. Division of arcs of the ellipse	55
§3.3. Curves with elliptic arcs	60
§3.4. Curves whose arc lengths can be expressed in terms of arc lengths of the circle	64
	67
Chapter 4. Abel's Theorem on Division of Lemniscate	69
§4.1. Construction of a regular 17-gon. An elementary approach	71
§4.2. Construction of regular polygons. Elements of Galois theory	78
§4.3. The equation for the division of the lemniscate	86
§4.4. Proof of Abel's theorem on the division of the lemniscate	91
§4.5. Several remarks on Serret's curves	
Chapter 5. Arithmetic of Cubic Curves §5.1. Diophantus' method of secants. Second degree diophantine equa-	103
tions	104

viii CONTENTS

$\S 5.2.$	Addition of points on a cubic curve	111
	Several examples	115
$\S 5.4.$	Mordell's theorem	119
$\S 5.5.$	The rank and the torsion group of an elliptic curve	124
Chapter	6. Algebraic Equations	131
$\S 6.1.$	Solving cubic and quartic equations	131
$\S 6.2.$	Symmetric polynomials	133
$\S 6.3.$	The Lagrange resolvents	134
$\S 6.4.$	Roots of unity	137
$\S 6.5.$	The Abel theorem on the unsolvability in radicals of the general quintic equation	140
86.6	The Tschirnhaus transformations. Quintic equations in Bring's	140
30.0.	form	145
Chapter	7. Theta Functions and Solutions of Quintic Equations	149
	Definition of theta functions	149
§7.2.	Zeros of theta functions	150
	The relation $\Theta_3^4 = \Theta_2^4 + \Theta_0^4$	151
	Representation of theta functions by infinite products	152
§7.5.	The relation $\Theta_1'(0) = \pi \Theta_0(0) \Theta_2(0) \Theta_3(0)$	154
§7.6.	Dedekind's η -function and the functions f , f_1 , f_2	155
§7.7.	Transformations of theta functions induced by transformations	
v	of $ au$	156
§7.8.	The general scheme of solution of quintic equations	158
	Transformations of order 5	159
§7.10.	The change of parameter $\tau \mapsto \tau + 2$	160
	The change of parameter $\tau \mapsto -\frac{1}{\tau}$	161
	The change of parameter $\tau \mapsto \frac{\tau - 1}{\tau + 1}$	163
§7.13.	Functions invariant with respect to the changes of parameter $\tau \mapsto$	
3	$\tau + 2, \ \tau \mapsto -\frac{1}{\tau} \text{ and } \tau \mapsto \frac{\tau - 1}{\tau + 1}$	164
§7.14.	Deduction of the modular equation	165
	Solving quintic equations	166
-	The main modular function $j(\tau)$	169
-	The fundamental domain of $j(\tau)$	170
-	How to solve the equation $j(\tau) = c$	173
	The functions invariant under the changes of parameter $\tau \mapsto \tau + 1$	
	and $\tau \mapsto -\frac{1}{\tau}$	175
§7.20.	The functions invariant with respect to the changes of parameter	.=0
	$\tau \mapsto \tau + 2$ and $\tau \mapsto -\frac{1}{\tau}$	176
Bibliogra	арһу	179
Index		183